JPH0631337B2 - Coal gasification power generator - Google Patents

Coal gasification power generator

Info

Publication number
JPH0631337B2
JPH0631337B2 JP60048320A JP4832085A JPH0631337B2 JP H0631337 B2 JPH0631337 B2 JP H0631337B2 JP 60048320 A JP60048320 A JP 60048320A JP 4832085 A JP4832085 A JP 4832085A JP H0631337 B2 JPH0631337 B2 JP H0631337B2
Authority
JP
Japan
Prior art keywords
gas
oxygen
particulate matter
coal
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60048320A
Other languages
Japanese (ja)
Other versions
JPS61207490A (en
Inventor
下田  誠
次太 雪竹
馨象 大塚
俊太郎 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60048320A priority Critical patent/JPH0631337B2/en
Publication of JPS61207490A publication Critical patent/JPS61207490A/en
Publication of JPH0631337B2 publication Critical patent/JPH0631337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Industrial Gases (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は特に噴流層式ガス化装置で生成したガス中の粒
子状物質を除去するのに好適な脱じん装置を有する、石
炭ガス化発電装置に関する。
Description: FIELD OF THE INVENTION The present invention relates to a coal gasification power generator having a dedusting device particularly suitable for removing particulate matter in gas produced by a spouted bed gasifier. Regarding

〔発明の背景〕[Background of the Invention]

石炭ガス化発電システムにおける脱じん装置について
は、例えば特開昭51−5303号公報、特開昭51−1790
1号公報などに示されているが、どのような方法で脱じ
んするかは言及されてない。この原因は脱じん装置を適
用する際に周知しておくべき、捕集対象となる粒子状物
質の粒子径、形状、組成等の物性及びガス温度、ガス組
成等のガス条件を十分に把握していなかつたためと考え
る。
Regarding the dust removing device in the coal gasification power generation system, for example, JP-A-51-5303 and JP-A-51-1790.
Although it is shown in Japanese Patent Publication No. 1, etc., it is not mentioned how to remove dust. The cause of this should be well known when applying the dust removal equipment, and the physical properties such as particle size, shape and composition of the particulate matter to be collected and the gas conditions such as gas temperature and gas composition should be fully understood. I think that it was because I hadn't.

ところで、従来実用化されている複合発電システムは第
2図に示すような構成となつている。
By the way, the combined power generation system that has been put into practical use has a configuration as shown in FIG.

ガス化炉本体1に石炭80及び空気あるいは酸素などの
含酸素気体であるガス化剤81を供給し、石炭のガス化
が行われ、含じん石炭ガスとしてガス冷却器30へ入
り、ここで給水83を蒸気82に変換しこの蒸気82は
ガス化剤としてガス化炉本体1及び、あるいは排熱ボイ
ラ60へ供給される。ガス冷却器30で冷却された生成
ガスは湿式除塵装置及び湿式脱硫装置からなるガス精製
装置40に入り、除塵、脱硫された精製された石炭ガス
41として、ガスタービン50に供給され、燃焼され
て、電力に変換される。このとき排ガスは排熱ボイラ6
0を経て排出される。一方、排熱ボイラ60から発生し
た蒸気は蒸気タービン70へ供給され、電力に変換され
る。
Coal 80 and a gasifying agent 81 which is an oxygen-containing gas such as air or oxygen are supplied to the gasification furnace main body 1 to gasify the coal and enter the gas cooler 30 as dust-containing coal gas, where water is supplied. 83 is converted into steam 82, and this steam 82 is supplied to the gasification furnace main body 1 and / or the exhaust heat boiler 60 as a gasifying agent. The produced gas cooled by the gas cooler 30 enters a gas purification device 40 including a wet dust removing device and a wet desulfurization device, and is supplied to a gas turbine 50 as a purified coal gas 41 that has been subjected to dust removal and desulfurization and is burned. , Converted to electricity. At this time, the exhaust gas is the exhaust heat boiler 6
It is discharged through 0. On the other hand, the steam generated from the exhaust heat boiler 60 is supplied to the steam turbine 70 and converted into electric power.

以上のように、従来のシステムはガス精製装置に湿式法
を用いていたので、ガス温度が低下し、熱損失が大きい
という問題があつた。
As described above, since the conventional system uses the wet method for the gas purifier, there is a problem that the gas temperature is lowered and the heat loss is large.

〔発明の目的〕[Object of the Invention]

本発明は上記欠点を改善しようとしてなされたもので、
その目的とするところは、脱じん装置におけるガス温度
の低下を防ぎ、発電効率の向上を図ることにある。
The present invention has been made to solve the above drawbacks,
The purpose thereof is to prevent the gas temperature in the dust removal device from decreasing and to improve power generation efficiency.

〔発明の概要〕[Outline of Invention]

即ち、本発明の特徴とするところは、原料石炭を前記ガ
ス化装置へ導入する装置と、酸素含有気体あるいは蒸気
などのガス化剤を前記ガス化装置へ送給する装置と、前
記ガス化装置で生成されたガスに含まれる粒子状物質を
除去する脱じん装置と、この脱じん装置で浄化されたガ
スによつて駆動されるタービンと、このタービンに結合
されて発電を行う発電機とより構成した石炭ガス化発電
プラントにおいて、前記脱じん装置として少なくとも2
組設けた乾式のろ過フイルタ内蔵脱じん装置と、前記脱
じん装置内へ酸素あるいは含酸素高圧気体源から酸素を
供給して前記フイルタに捕集された可燃性粒子状物質を
燃焼する系統と、前記酸素の供給によつて可燃性粒子状
物質が燃焼された一方の脱じん装置を他方の脱じん装置
で浄化されたガスの一部もしくは別置したガス源からの
浄化ガスによつて逆洗する系統とより構成したことを特
徴とする石炭ガス化発電装置にある。
That is, a feature of the present invention is a device for introducing raw coal into the gasifier, a device for feeding a gasifying agent such as an oxygen-containing gas or steam to the gasifier, and the gasifier. The dedusting device that removes the particulate matter contained in the gas generated in 1., the turbine that is driven by the gas that is purified by this dedusting device, and the generator that is connected to this turbine and that generates electricity. In the configured coal gasification power plant, at least 2 as the dust removal device
A dry dust filter with a built-in dry filter filter provided as a set, and a system for supplying oxygen from the oxygen or oxygen-containing high pressure gas source into the dust filter to burn the combustible particulate matter collected in the filter, One of the dedusting devices in which combustible particulate matter has been burned by the supply of oxygen is backwashed with a part of the gas purified by the other dedusting device or with a purified gas from a separate gas source. The coal gasification power generation device is characterized by being configured with a system that

脱じん装置を決定する上で最も重要なことは、捕集対象
となる粒子状物質の物性、特に粒子径、形状、電気抵抗
等である。本発明者等は石炭処理量0.5t/dの噴流層
式石炭ガス化炉を用いて、石炭は太平洋炭でガス化剤と
して空気を用いて、生成ガス中の粒子状物質を捕集し
た。その粒子状物質の粒径分布の例を第3図に示す。第
3図のAは噴流層式石炭ガス化炉から発生したダストの
粒径分布、Cはこのときの原料である微粉炭の粒径分
布、Bは石炭火力発電所から排出されるフライアッシュ
の粒径分布の例である。この図から、噴流層式石炭ガス
化炉から排出されるダストの粒径は極めて小さく、その
平均粒径は石炭火力発電所から排出されるフライアツシ
ユの約20μmに比べて著しく小さく1μm程度である
ことがわかる。このように小さい粒子状物質は遠心力を
利用したサイクロンではほとんど捕集できない。また、
石炭火力発電所で微粉炭ボイラから発生するフライアツ
シユを捕集する電気集じん装置では、1μm程度の微粒
子を捕集するには、極めて大きな装置となるし、単位ガ
ス量当りの粒子濃度が石炭火力なみの20g/m
あつても、実規模になるとガス圧が25〜30気圧にな
るので、ガス温度600℃としても実ガス量当りでは8
〜10倍の160〜200g/mと極めて高濃度にな
るので、電気集じん装置の適用は難しく、更に600℃
の耐熱性及びHS等の腐食性ガスに対する耐食性があ
る金属材料が必要である。また、電気集じんでは粒子の
電気抵抗率が重要であるが、第2図のガス化装置で生成
したガス中の粒子の電気抵抗率は103Ω・cmと誘導再飛
散現象が発生し、集じん困難な粒子であり、電気集じん
装置は適用できない。
The most important factor in determining the dust removal device is the physical properties of the particulate matter to be collected, particularly the particle size, shape, electrical resistance, and the like. The present inventors used a spouted bed type coal gasification furnace having a coal throughput of 0.5 t / d, and used coal as Taiheiyo coal with air as a gasifying agent to collect particulate matter in the produced gas. An example of the particle size distribution of the particulate matter is shown in FIG. In Fig. 3, A is a particle size distribution of dust generated from a spouted bed type coal gasification furnace, C is a particle size distribution of pulverized coal as a raw material at this time, and B is a fly ash discharged from a coal-fired power plant. It is an example of particle size distribution. From this figure, the particle size of the dust discharged from the spouted bed type coal gasification furnace is extremely small, and its average particle size is about 1 μm, which is significantly smaller than about 20 μm of the fly ash discharged from the coal-fired power plant. I understand. Such small particulate matter can hardly be collected by a cyclone using centrifugal force. Also,
An electrostatic precipitator that collects fly ash generated from a pulverized coal boiler in a coal-fired power plant will be an extremely large device to collect fine particles of about 1 μm, and the particle concentration per unit amount of gas is a coal-fired power plant. Even with 20 g / m 3 N , the gas pressure becomes 25 to 30 atm on a real scale, so even if the gas temperature is 600 ° C., it is 8 per actual gas amount.
Since the concentration is extremely high, 160 to 200 g / m 3 which is 10 times higher, it is difficult to apply an electrostatic precipitator, and 600 ° C.
A metal material having heat resistance and corrosion resistance to corrosive gas such as H 2 S is required. Also, the electrical resistivity of the particles is important for collecting electricity, but the electrical resistivity of the particles in the gas generated by the gasifier in Fig. 2 is 10 3 Ω · cm, and the induced re-entrainment phenomenon occurs, It is a particle that is difficult to collect and cannot be applied to an electrostatic precipitator.

従つて、第2図のガス化装置で生成したガス中の粒子の
物性を分析した結果、平均粒径1μm程度、電気抵抗率
が103Ω・cmと低抵抗ダストであること等を明らかと
し、このような粒子を高効率で捕集する方法は過が有
力である。
Therefore, as a result of analyzing the physical properties of the particles in the gas generated by the gasifier of Fig. 2, it was clarified that the average particle size was about 1 µm and the electrical resistivity was 10 3 Ω · cm, which was low-resistance dust. However, a method of collecting such particles with high efficiency is overkill.

本発明によれば、乾式の脱じん装置を用いるのでガスの
温度低下がなく、したがつて発電効率の向上が図れる。
また脱じん装置を少くとも2個設けられているので、交
互に使用することにより連続的に脱じん作用を行うこと
ができる。
According to the present invention, since the dry dust removing device is used, the temperature of the gas does not decrease, and therefore the power generation efficiency can be improved.
Moreover, since at least two dedusting devices are provided, the dedusting action can be continuously performed by alternately using them.

〔発明の実施例〕Example of Invention

以下本発明の一実施例を第1図によつて説明する。1は
石炭ガス化装置のガス化炉で、このガス化炉1には原料
となる石炭が供給管2を通じて高圧流体源3からの搬送
ガスで供給される。また、酸素及び含酸素気体であるガ
ス化剤は管4から、更に、高圧過熱水蒸気であるガス化
剤は管5から夫々ガス化炉1に供給される。6はガス化
炉1で生成された取出し管、7及び7′は生成されたガ
スに含まれている粒子状物質を捕集する脱じん装置で、
その内部にはフイルタが設けられている。8及び9は取
出管6に設けられ、脱じん装置7,7′に流入するガス
を切換える切換えバルブ、10及び11は脱じん装置
7,7′で精製された精製ガス取出し管18に夫々設け
られた切換えバルブ、12乃至15は脱じん装置7,
7′に付着した粒子状物質を除去するとき開閉使用する
切換えバルブで、切換えバルブ12,13は脱じん装置
7,7′の精製ガス取出側に、切換えバルブ14,15
は流入側に夫々設けられている。16は精製ガスの一部
を昇圧して脱じん装置7,7′に送るブースター、17
は除去した粒子状物質の取出管である。被ガス化物質と
なる石炭は高圧流体源3より供給される高圧流体を搬送
ガスとして、供給管2でガス化炉1内へ供給され、これ
と同時に酸素及び含酸素気体であるガス化剤は管4か
ら、また、高圧過熱水蒸気は管5からガス化炉1へ供給
される。ガス化炉1内で生成された生成ガスと未反応チ
ヤー、フリーカーボン等は取出し管6を通つて、開にし
た切換えバルブ8を通り、フイルタを内蔵した脱じん装
置7へ導入される。粒子状物質はろ過されて、精製ガス
として、開とした切換えバルブ10を通り、精製ガス取
出し管18を通つて、後置の複合発電システムに供給さ
れる。この時、脱じん装置7に取付けられている切換え
バルブ12及び14は閉となつている。一方、脱じん装
置7′に取付けられている切換えバルブ9及び11は閉
となつており、切換えバルブ13及び15は開となつて
おり、ブースター16で精製ガスを昇圧して、払い落し
用気体として、切換えバルブ13を通つて、フイルタの
内側に供給され、フイルタの内部及び外側に捕集された
粒子状物質はフイルタ表面からはくりして落下し、開と
なつている切換えバルブ15を通つて、取出管17を通
つて排出される。このようにして、脱じん装置7′内の
フイルタは清浄な状態に復帰する。次に、該脱じん装置
7のフイルタにおける通風損失が一定値に達した時、あ
るいは設定した運転時間に達した時に、切換えバルブ
8,10を閉にすると同時に、切換えバルブ12,14
を開として、前述の払い落し操作を行うと同時に、切換
えバルブ8,10に連動して、切換えバルブ9,11を
開にし、切換えバルブ12,15に連動した切換えバル
ブ13,15を閉とすることにより、脱じん装置7′で
粒子状物質を除去し、精製ガスとする操作を行う。この
ように、少なくとも2組以上脱じん装置ないしは、1個
の脱じん装置内で少なくとも2系列以上で前記操作を繰
り返し行うことにより、石炭ガス化で生成したガス中の
粒子状物質を除去した高温の精製ガスを連続的に後置の
複合発電システムに供給できる。なお、第1図では省略
したが、この逆洗操作の前に第4図或いは第5図に示す
ように酸素あるいは含酸素高圧気体源22から酸素を供
給してフイルタに捕集された可燃性粒子状物質を燃焼す
る。該脱じん装置の払い落しは、本実施例では逆洗であ
るが、ブースター14で昇圧した精製ガスを、図示を省
略したパージ容器中へ貯蔵しておき、パルスジエツトで
払い落しても良い。
An embodiment of the present invention will be described below with reference to FIG. Reference numeral 1 is a gasification furnace of a coal gasifier, and coal as a raw material is supplied to the gasification furnace 1 through a supply pipe 2 as a carrier gas from a high-pressure fluid source 3. Further, the gasifying agent that is oxygen and oxygen-containing gas is supplied to the gasification furnace 1 from the pipe 4, and the gasifying agent that is high-pressure superheated steam is supplied to the gasification furnace 1 from the pipe 5. 6 is a take-off pipe produced in the gasification furnace 1, 7 and 7'are dedusting devices for collecting particulate matter contained in the produced gas,
A filter is provided inside. 8 and 9 are provided in the take-out pipe 6, and switching valves 10 and 11 are provided in the purified gas take-out pipe 18 purified by the dedusting devices 7 and 7 ', respectively, for switching the gas flowing into the dedusting devices 7 and 7'. Switching valve, 12 to 15 are dust removing devices 7,
Switching valves used to open and close when removing particulate matter adhering to 7 ', and switching valves 12 and 13 are provided on the purified gas extraction side of the dust removal devices 7 and 7'and switching valves 14 and 15 respectively.
Are provided on the inflow side, respectively. 16 is a booster for boosting a part of the purified gas and sending it to the dust removing device 7, 7 ', 17
Is an extraction tube for the removed particulate matter. Coal as a substance to be gasified is supplied into the gasification furnace 1 through the supply pipe 2 using the high-pressure fluid supplied from the high-pressure fluid source 3 as a carrier gas, and at the same time, the gasifying agent that is oxygen and oxygen-containing gas is High-pressure superheated steam is supplied from the pipe 4 to the gasification furnace 1 from the pipe 5. The generated gas generated in the gasification furnace 1, unreacted charge, free carbon and the like are introduced through a take-out pipe 6, a switching valve 8 which is opened, and a dust removing device 7 having a built-in filter. The particulate matter is filtered and supplied as purified gas through the opened switching valve 10 and the purified gas extraction pipe 18 to the subsequent combined power generation system. At this time, the switching valves 12 and 14 attached to the dust removing device 7 are closed. On the other hand, the switching valves 9 and 11 attached to the dust removing device 7'are closed, the switching valves 13 and 15 are open, and the booster 16 pressurizes the purified gas to remove it. As a result, the particulate matter that is supplied to the inside of the filter through the switching valve 13 and is trapped inside and outside the filter falls off from the surface of the filter and falls through the switching valve 15 that is open. Then, it is discharged through the take-out pipe 17. In this way, the filter in the dust removing device 7'returns to a clean state. Next, when the ventilation loss in the filter of the dust removal device 7 reaches a constant value or when the set operating time is reached, the switching valves 8, 10 are closed and at the same time the switching valves 12, 14 are closed.
At the same time as the above-mentioned wiping operation is performed, the switching valves 9 and 11 are opened in conjunction with the switching valves 8 and 10 and the switching valves 13 and 15 associated with the switching valves 12 and 15 are closed. As a result, the particulate matter is removed by the dedusting device 7'and the purified gas is used. As described above, by repeating the above operation in at least two sets or more in a dust removing apparatus or at least two or more series in one dust removing apparatus, the high temperature obtained by removing the particulate matter in the gas produced by coal gasification The refined gas can be continuously supplied to the post-combined combined cycle power generation system. Although omitted in FIG. 1, before the backwashing operation, as shown in FIG. 4 or 5, oxygen or oxygen-containing high-pressure gas source 22 is supplied with oxygen to collect flammability in the filter. Burn particulate matter. Although the removal of the dust removal apparatus is backwashing in this embodiment, the purified gas pressurized by the booster 14 may be stored in a purge container (not shown) and then removed by a pulse jet.

本発明の一実施例によれば、ガス化装置で生成したガス
中の粒子状物質を高効率で乾式除去した精製ガスを後置
の複合発電システムに供給できるので、発電効率の向上
をはかることができる。
According to one embodiment of the present invention, a refined gas obtained by dry removing particulate matter in a gas produced by a gasifier with high efficiency can be supplied to a post-combined combined cycle power generation system, so that the power generation efficiency can be improved. You can

第4図は本発明の他の実施例で、第1図と異なるのは、
払い落しのためのブースター16の代わりに、払い落し
用の高圧気体源21を設置し、この高圧気体源21の系
統に、酸素あるいは含酸素高圧気体源22を設けたこと
である。
FIG. 4 shows another embodiment of the present invention, which is different from FIG.
Instead of the booster 16 for discharging, a high-pressure gas source 21 for discharging was installed, and an oxygen or oxygen-containing high-pressure gas source 22 was provided in the system of this high-pressure gas source 21.

この場合の利点は高温高圧用のブースター16の代わり
に高圧気体源21を設けたので、容易に高圧気体を得ら
れることである。すなわち、脱じん装置7を払い落し操
作する場合には、切り換えバルブ8及び10を閉とし、
切り換えバルブ12及び14を開にし、高圧気体をフイ
ルタの内面から外面へ通過させることにより、フイルタ
上へ捕集した粒子状物質を取出管17から排出する。こ
の場合の高圧気体としては、窒素等の不活性気体を用い
る。また、ガス化炉1から生成したガス中に含まれる粒
子状物質は前述したように大部分が炭素質の可燃物質で
あるので、脱じん装置7,7′内のフイルタに捕集した
粒子状物質を払い落すときに、酸素あるいは含酸素高圧
気体源22から酸素を供給すると、脱じん装置内は高温
であるのでフイルタ上の粒子状物質は燃焼し、その容積
は大巾に減少し払い落される。ついで、酸素あるいは含
酸素高圧気体源22のバルブを閉とし、窒素等の不活性
気体の高圧気体源21のバルブを開にして、配管系及び
脱じん装置中の酸素をパージして、脱じん装置中の粒子
状物質及び酸素を取出管17から排出する。この際、望
ましくは酸素あるいは含酸素高圧気体はゆるやかに供給
して爆発しないようにするか、あるいは、酸素あるいは
含酸素高圧気体の供給量は脱じん装置7,7′内の石炭
ガス化ガス及び粒子状物質が全て燃焼する量よりは少な
くしておき、払い落し操作後、脱じん装置7,7′内に
酸素が残留しないようにする。この場合のフイルタの材
質としては、多孔質のセラミツクあるいはセラミツクフ
アイバで製造したフイルタが望ましい。
The advantage in this case is that the high-pressure gas source 21 is provided instead of the high-temperature and high-pressure booster 16, so that the high-pressure gas can be easily obtained. That is, when the dust removing device 7 is operated by being blown off, the switching valves 8 and 10 are closed,
The switching valves 12 and 14 are opened, and high-pressure gas is passed from the inner surface to the outer surface of the filter, so that the particulate matter collected on the filter is discharged from the extraction pipe 17. An inert gas such as nitrogen is used as the high pressure gas in this case. Further, since most of the particulate matter contained in the gas generated from the gasification furnace 1 is a carbonaceous combustible substance as described above, the particulate matter collected in the filter in the dedusting device 7, 7 ' If oxygen or oxygen is supplied from the oxygen-containing high pressure gas source 22 when the substance is removed, the particulate matter on the filter burns because the temperature inside the dedusting device is high, and the volume is greatly reduced and the substance is removed. To be done. Then, the valve of the oxygen or oxygen-containing high pressure gas source 22 is closed, and the valve of the high pressure gas source 21 of an inert gas such as nitrogen is opened to purge oxygen in the piping system and the dust removing device to remove dust. The particulate matter and oxygen in the apparatus are discharged from the extraction pipe 17. At this time, preferably, oxygen or oxygen-containing high pressure gas is slowly supplied so as not to explode, or the supply amount of oxygen or oxygen-containing high pressure gas is set to the coal gasification gas in the dedusting device 7, 7 '. The amount is set to be smaller than the amount of all the particulate matter burned so that oxygen does not remain in the dust removing devices 7, 7'after the removing operation. In this case, the material of the filter is preferably a porous ceramic or a filter manufactured by a ceramic fiber.

この実施例では、粒子状物質を燃焼させることにより、
粒子状物質の容積を減少させうるので、払い落しが容易
になる効果がある。なお、酸素或いは含酸素高圧気体を
供給せずに浄化ガスによつて逆洗だけを行う場合には、
フイルタの孔内に次第に粒子状物質が付着蓄積してい
き、脱じん装置内での圧力損失が大となりガス化発電効
率を低下させるが、酸素或いは含酸素高圧気体を供給し
て可燃性粒子状物質を燃焼した後に逆洗することによ
り、脱じん装置内の圧力損失を抑えガス化発電効率の低
下を抑制することができる。
In this example, by burning the particulate matter,
Since the volume of the particulate matter can be reduced, it has an effect of facilitating the removal. In addition, when only backwashing with purified gas without supplying oxygen or oxygen-containing high pressure gas,
Particulate matter gradually builds up and accumulates in the holes of the filter, resulting in a large pressure loss in the dedusting device and lowering the gasification power generation efficiency.However, oxygen or oxygen-containing high pressure gas is supplied to burn combustible particulate matter. By backwashing after burning the substance, it is possible to suppress the pressure loss in the dedusting device and suppress the decrease in gasification power generation efficiency.

第5図は本発明の他の実施例であるが、第4図と異なる
のは脱硫剤貯蔵ホツパ24を設け、ガス化炉1上部の生
成ガス取出し管6中に脱硫剤を添加し、配管及び脱じん
装置7,7′で、脱じんと同時に脱硫を行なわせること
である。
FIG. 5 shows another embodiment of the present invention, but is different from FIG. 4 in that a desulfurizing agent storage hopper 24 is provided, and a desulfurizing agent is added to the produced gas take-out pipe 6 in the upper part of the gasification furnace 1, And desulfurization device 7, 7'to simultaneously perform desulfurization and desulfurization.

この実施例では、脱じんと同時に脱硫を行ないうる効果
がある。
In this embodiment, there is an effect that desulfurization can be performed at the same time as dedusting.

本発明の実施例に使用するフイルタとしては、多孔質の
セラミツク、あるいはセラミツクフアイバをフイルタに
したものが望ましいが、耐熱性金属でも本発明の実施例
に適用可能なものがある。加えて、上記フイルタに脱硫
剤、あるいは燃焼触媒を担持、あるいは含浸したもので
も本発明の効果は達成可能である。
The filter used in the embodiment of the present invention is preferably a porous ceramic or a ceramic fiber filter, but some heat-resistant metals can be applied to the embodiment of the present invention. In addition, the effect of the present invention can be achieved even when the desulfurizing agent or the combustion catalyst is carried or impregnated on the filter.

本実施例中では脱じん装置は全て外面ろ過で説明してあ
るが、内面ろ過であつてもさしつかえない。
In the present embodiment, all the dust removal devices have been described by external filtration, but internal filtration may be used.

〔発明の効果〕〔The invention's effect〕

本発明によれば、石炭等のガス化装置から生成したガス
中の粒子状物質を乾式で高温のまま除去し、精製ガスと
して後置の発電システムに供給できるので、発電効率を
向上できる効果がある。
According to the present invention, it is possible to remove particulate matter in a gas generated from a gasifier such as coal in a dry state at a high temperature and supply it as a purified gas to a subsequent power generation system, so that it is possible to improve power generation efficiency. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明石炭ガス化発電装置における脱じん装置
の一実施例系統図、第2図は従来用いられている石炭ガ
ス化発電装置の系統図、第3図は噴流層式石炭ガス化炉
から発生したダスト、この時使用した微粉炭、フライア
ツシユ等の粉径分布、第4図及び第5図は本発明の第1
図と異なる他の実施例の系統図である。 1……ガス化炉、2……供給管、4,5……ガス化剤供
給をする管、6……生成ガスの取出し管、7,7′……
脱じん装置、8,9,10,11,12,13,14,
15,25,26……切換えバルブ、16……ブースタ
ー、17……取出し管、18……精製ガス取り出し管、
20……循環用供給管、21……高圧気体源、22……
酸素あるいは含酸素高圧気体源、24……脱硫剤貯蔵タ
ンク。
FIG. 1 is a system diagram of an embodiment of a dedusting device in a coal gasification power generation device of the present invention, FIG. 2 is a system diagram of a conventional coal gasification power generation device, and FIG. 3 is a spouted bed type coal gasification The dust generated from the furnace, the pulverized coal used at this time, the particle size distribution of fly ash, etc., FIGS. 4 and 5 are the first of the present invention.
It is a system diagram of another Example different from a figure. 1 ... Gasification furnace, 2 ... Supply pipe, 4,5 ... Pipe for supplying gasifying agent, 6 ... Pipe for taking out produced gas, 7, 7 '...
Dust removal device, 8, 9, 10, 11, 12, 13, 14,
15, 25, 26 ... switching valve, 16 ... booster, 17 ... take-out pipe, 18 ... purified gas take-out pipe,
20 ... Circulation supply pipe, 21 ... High-pressure gas source, 22 ...
Oxygen or oxygen-containing high pressure gas source, 24 ... Desulfurizing agent storage tank.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 俊太郎 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (56)参考文献 特開 昭47−34401(JP,A) 特開 昭59−138892(JP,A) 特開 昭51−123450(JP,A) 特公 昭29−7437(JP,B1) 特公 昭31−2333(JP,B1) 米国特許3892543(US,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shuntaro Koyama 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd. (56) References JP-A-47-34401 (JP, A) JP-A-59 -138892 (JP, A) JP-A-51-123450 (JP, A) JP-B 29-7437 (JP, B1) JP-B 31-2333 (JP, B1) US Patent 3892543 (US, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】石炭をガス化するガス化装置と、原料石炭
を前記ガス化装置へ導入する装置と、酸素含有気体ある
いは蒸気などのガス化剤を前記ガス化装置へ送給する装
置と、前記ガス化装置で生成されたガスに含まれる粒子
状物質を除去する脱じん装置と、この脱じん装置で浄化
されたガスによつて駆動されるタービンと、このタービ
ンに結合されて発電を行う発電機とより構成した石炭ガ
ス化発電装置において、前記脱じん装置として少なくと
も2組設けた乾式のろ過フイルタ内蔵脱じん装置と、前
記脱じん装置内へ酸素あるいは含酸素高圧気体源から酸
素を供給して前記フイルタに捕集された可燃性粒子状物
質を燃焼する系統と、前記酸素の供給によつて可燃性粒
子状物質が燃焼された一方の脱じん装置を他方の脱じん
装置で浄化されたガスの一部もしくは別置したガス源か
らの浄化ガスによつて逆洗する系統とより構成したこと
を特徴とする石炭ガス化発電装置。
1. A gasifier for gasifying coal, a device for introducing raw coal into the gasifier, and a device for feeding a gasifying agent such as an oxygen-containing gas or steam to the gasifier. A dedusting device for removing particulate matter contained in the gas produced by the gasifier, a turbine driven by the gas purified by the dedusting device, and a turbine coupled to this turbine to generate electricity. In a coal gasification power generator configured with a generator, at least two sets of dust removal devices with a built-in dry filter filter are provided as the dust removal device, and oxygen or oxygen is supplied from the oxygen-containing high pressure gas source into the dust removal device. And a system for burning the combustible particulate matter collected in the filter, and one dedusting device in which the combustible particulate matter is burned by the supply of oxygen is purified by the other dedusting device. Was Scan IGCC and wherein more by being configured as part or another location with a line that by connexion backwashed purified gas from the gas source.
JP60048320A 1985-03-13 1985-03-13 Coal gasification power generator Expired - Lifetime JPH0631337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60048320A JPH0631337B2 (en) 1985-03-13 1985-03-13 Coal gasification power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60048320A JPH0631337B2 (en) 1985-03-13 1985-03-13 Coal gasification power generator

Publications (2)

Publication Number Publication Date
JPS61207490A JPS61207490A (en) 1986-09-13
JPH0631337B2 true JPH0631337B2 (en) 1994-04-27

Family

ID=12800114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60048320A Expired - Lifetime JPH0631337B2 (en) 1985-03-13 1985-03-13 Coal gasification power generator

Country Status (1)

Country Link
JP (1) JPH0631337B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613240Y2 (en) * 1986-10-23 1994-04-06 バブコツク日立株式会社 Gasifier for coal, etc.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892543A (en) 1973-05-26 1975-07-01 Adolf Margraf Method of the removal of chemically active components from dust-laden gas streams

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH584352A5 (en) * 1975-04-08 1977-01-31 Bbc Brown Boveri & Cie
EP0114444A3 (en) * 1983-01-24 1985-05-15 Shell Internationale Researchmaatschappij B.V. Process and apparatus for indirect cooling of a hot gas
JPS614730A (en) * 1984-06-18 1986-01-10 Japan Synthetic Rubber Co Ltd Production of organic solvent-soluble polyimide compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892543A (en) 1973-05-26 1975-07-01 Adolf Margraf Method of the removal of chemically active components from dust-laden gas streams

Also Published As

Publication number Publication date
JPS61207490A (en) 1986-09-13

Similar Documents

Publication Publication Date Title
Hasler et al. Gas cleaning for IC engine applications from fixed bed biomass gasification
JP4561481B2 (en) Gas purification equipment
US5181943A (en) Process and apparatus for separating liquid ash
HU216910B (en) Integrated carbonaceous fuel drying and gasification process and apparatus
TW201020020A (en) Method for scrubbing a flue gas of a metallurgical plant and flue gas scrubbing apparatus
CN103614167A (en) High-temperature dust-removing and coke-removing integrated purifying process of biomass crude gas
JP3638969B2 (en) Apparatus and method for removing sulfur species from hot gases obtained from coal
US3912464A (en) Method of and device for separating solid components from a hot combustible gas generated in a reactor
CN215209270U (en) Biomass pressurized fluidized bed gasification and cyclone cracking composite gasification system
JPH0631337B2 (en) Coal gasification power generator
JPH08206543A (en) Dust collector
JP2009112968A (en) Apparatus for treating waste and its operating method
JP2870929B2 (en) Integrated coal gasification combined cycle power plant
CN108913213A (en) A kind of polynary gas-purification Biomass Gasification And Power Generation System of classification
JPS61114009A (en) Coal supplying method and apparatus for coal gasification electric power plant
Chung et al. Filtration and dust cake experiment by ceramic candle filter in high temperature conditions
JP4433902B2 (en) Gas purification equipment
JPS58170515A (en) Apparatus for collecting dust and recovering heat from converter waste gas
WO2024214319A1 (en) Filter regeneration system, gasification combined power generation facility, and filter regeneration method
JP3099300B2 (en) Dust removal system and power plant using the same
KR101529823B1 (en) Integrated gasification combined cycle system
CN110295065B (en) Integrated downdraft biomass gasification power generation system and method
JP4126218B2 (en) Treatment method of solid hydrocarbon in coal gas combined power generation process
CN209602475U (en) A kind of biomass gasifying furnace deduster
CN207552266U (en) Raw coke oven gas dust-extraction unit