JPH063128A - Optical type surface shape measuring apparatus - Google Patents

Optical type surface shape measuring apparatus

Info

Publication number
JPH063128A
JPH063128A JP18477792A JP18477792A JPH063128A JP H063128 A JPH063128 A JP H063128A JP 18477792 A JP18477792 A JP 18477792A JP 18477792 A JP18477792 A JP 18477792A JP H063128 A JPH063128 A JP H063128A
Authority
JP
Japan
Prior art keywords
light
reflected
detected
reflected light
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18477792A
Other languages
Japanese (ja)
Other versions
JP3333236B2 (en
Inventor
Hiroo Fujita
宏夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP18477792A priority Critical patent/JP3333236B2/en
Priority to US08/077,738 priority patent/US5481360A/en
Publication of JPH063128A publication Critical patent/JPH063128A/en
Application granted granted Critical
Publication of JP3333236B2 publication Critical patent/JP3333236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To achieve simultaneous measurement of shapes of the inside and outside of a surface at a superhigh speed by providing an optical heterodyne interfering function and a confocal microscope function within one optical device. CONSTITUTION:Probe light of an acoustooptical element 12 is admitted into a beam splitter 13 and a part thereof is reflected to be detected with a photodetector 14. The other transmission light is condensed with an objective lens 15 to scan over the surface of an object 16 to be measured. The reflected light on the object 16 to be measured travels reversely to be detected with a photodetector 17. Reflected light signals to be detected with the photodetectors 14 and 17 are beat signals with a frequency difference of a double beam light. A control light beat signal 145 is emitted from the photodetector 14 and a reflected light beat signal 175 is emitted from the photodetector 17 to detect a phase difference with a phase comparator 18. The detection covers a optical heterodyne interference. A shape computing section 19 for the outside of surfaces computes a phase difference data to measure the shape of the outside of the surface. The probe light transmitted through the splitter 13 travels reversely through the element 12 and reflected almost entirely with the splitter 11. Thus, the intensity of the reflected light is detected with a photodetector 21 and a confocal detection is performed to compute changes with a shape computing section 22 for the inside of surfaces thereby measuring the shape of the inside of the surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザ光走査を用いた表
面の面外及び面内形状測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an out-of-plane and in-plane shape measuring apparatus using laser beam scanning.

【0002】[0002]

【従来の技術】精密に加工された被測定物表面の面外高
さを1nm精度で測定すると共に、面内形状を10nm
精度で測定するニーズが高まっている。表面粗さ等の面
外形状測定には光干渉を用いる方法が多く用いられてお
り、微小な高さ変化を高精度に測定するには光ヘテロダ
イン干渉法が有効である。これは周波数の異なる2つの
レーザ光を干渉させて差の周波数のビート信号を作成
し、ビート信号の位相変化を1/500波長程度の分解
能で検出して表面の高さ方向の変化を測定する。この光
ヘテロダイン干渉法のなかでも、音響光学素子を2周波
数成分の電気信号で駆動して周波数の異なる2ビーム光
を発生させ、2ビーム光の間の位相変化を検出する差動
型法は本願発明者により、特公平3−44243号公報
の“光ヘテロダイン干渉法による表面形状測定装置”に
詳細に述べられている。
2. Description of the Related Art An out-of-plane height of a surface of an object to be measured which has been precisely processed is measured with an accuracy of 1 nm, and an in-plane shape is measured to be 10 nm.
The need for accurate measurement is increasing. A method using optical interference is often used for measuring out-of-plane shapes such as surface roughness, and optical heterodyne interferometry is effective for highly accurate measurement of minute height changes. In this method, two laser beams having different frequencies are made to interfere with each other to create a beat signal having a difference frequency, and a phase change of the beat signal is detected with a resolution of about 1/500 wavelength to measure a change in the height direction of the surface. . Among the optical heterodyne interferometry methods, the differential method of driving an acousto-optic device with an electric signal of two frequency components to generate two-beam light having different frequencies and detecting a phase change between the two-beam light is the present application. The inventor has described in detail in Japanese Patent Publication No. 3-44243, "Surface shape measuring apparatus by optical heterodyne interferometry".

【0003】表面の面内形状測定には微小スポットに集
光したレーザ光を走査し、被測定物からの反射光強度変
化を検出する方法が多く用いられている。この中でもレ
ーザ走査型共焦点顕微鏡は通常の顕微鏡以上の面内分解
能が得られるものとして多くの分野で用いられている。
これは被測定物からの反射光をピンホール等を通して検
出(共焦点検出)するもので、ノイズとなる散乱光をカ
ットすることで面内分解能を高めることができる。ま
た、共焦点顕微鏡では被測定物に照射するスポット光の
焦点位置からの反射光強度が検出されるため、焦点方向
に変化する高さ変化の測定も可能である。このとき被測
定物をパルスステージ等で光軸方向に移動させ、各移動
位置毎に検出した反射光強度データを処理することによ
り、面内と面外の3次元形状を測定することができる。
For measuring the in-plane shape of the surface, a method is widely used in which a laser beam focused on a minute spot is scanned to detect a change in intensity of reflected light from the object to be measured. Among them, the laser scanning confocal microscope is used in many fields because it can provide in-plane resolution higher than that of an ordinary microscope.
This is to detect the reflected light from the object to be measured through a pinhole or the like (confocal detection), and it is possible to improve the in-plane resolution by cutting the scattered light that becomes noise. Further, since the confocal microscope detects the reflected light intensity from the focal position of the spot light that irradiates the object to be measured, it is possible to measure the height change that changes in the focal direction. At this time, the in-plane and out-of-plane three-dimensional shapes can be measured by moving the object to be measured in the optical axis direction with a pulse stage or the like and processing the reflected light intensity data detected at each moving position.

【0004】[0004]

【発明が解決しようとする課題】前述のレーザ走査型共
焦点顕微鏡は面内、面外形状を測定できるが、面外形状
を測定するためには被測定物を機械ステージで移動させ
る必要がある。さらには被測定物面上に照射するスポッ
ト光の焦点深度が比較的大きいために、面外形状測定の
分解能は0.1μm程度である。従ってレーザ走査型共
焦点顕微鏡では、10nm程度の微小な面外形状の変化
の測定ができない。光ヘテロダイン干渉は数nm程度の
面外形状変化が測定できるが、逆に面内形状測定ができ
ない。このように数nm程度の面外形状変化を持つと共
にμm程度の面内形状変化のある被測定物の面内、面外
形状を高精度に同時測定する測定装置は無く、測定目的
に応じて別々の測定装置を用いていた。本発明は上記問
題点を解決し、一つの測定装置で面内、面外形状を測定
する新規な構成の測定装置を実現することにある。
The laser scanning confocal microscope described above can measure in-plane and out-of-plane shapes, but it is necessary to move an object to be measured on a mechanical stage in order to measure the out-of-plane shape. . Further, the resolution of the out-of-plane shape measurement is about 0.1 μm because the depth of focus of the spot light irradiated on the surface of the object to be measured is relatively large. Therefore, the laser scanning confocal microscope cannot measure minute changes in the out-of-plane shape of about 10 nm. Optical heterodyne interference can measure out-of-plane shape changes of about several nm, but conversely cannot measure in-plane shape. As described above, there is no measuring device for simultaneously measuring the in-plane shape and the out-of-plane shape of an object to be measured, which has an out-of-plane shape change of about several nm and an in-plane shape change of about μm. Separate measuring devices were used. An object of the present invention is to solve the above problems and to realize a measuring device having a novel configuration for measuring in-plane and out-of-plane shapes with one measuring device.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
本発明は、レーザ光源から放射されたレーザ光を第一の
ビームスプリッターを透過させて音響光学素子に入射
し、該音響光学素子から周波数の異なる2ビーム光から
なるプローブ光を発生させて走査し、第二のビームスプ
リッターで前記プローブ光を2つの方向に分離せしめ、
該第二のビームスピリッターで反射し一方の方向に進行
するプローブ光を第一の受光器で検出して参照光ビート
信号を作成し、前記第二のビームスプリッターを透過し
て進行するプローブ光を対物レンズで微小スポットに集
光して形状が測定される被測定物面上に照射して走査
し、該被測定物からの反射光の一部の強度を前記第二の
ビームスプリッターで反射させて第二の受光器で検出し
て反射光ビート信号を作成し、該反射光ビート信号と前
記参照光ビート信号の間の位相変化を位相比較器で検出
して前記被測定物の高さ方向の面外形状を演算する面外
形状演算部を設けると共に、前記第二のビームスプリッ
ターを透過した反射光を前記第一のビームスプリッター
で反射させ、反射光強度分布の一部の範囲の強度を第三
の受光器で検出して反射光強度信号を作成し、該反射光
強度信号の強度変化から前記被測定物の面内形状を演算
する面内形状演算部を設け、面外形状と面内形状を同時
に測定するものである。さらには、前記被測定物の面外
形状と面内形状を別個に測定する場合、面外形状を測定
する場合は前記音響光学素子から周波数の異なる2ビー
ム光を発生させ、第一と第二の受光器で検出した反射光
から面外形状を測定し、面内形状を測定する場合は前記
音響光学素子から単一周波数の単一ビームを発生させ、
第三の受光器で検出した反射光から面内形状を測定する
ものである。
In order to achieve the above object, the present invention provides a laser beam emitted from a laser light source, which is transmitted through a first beam splitter and is incident on an acousto-optical element, and a frequency from the acousto-optical element. Generate and scan probe light composed of two different beams of light, and separate the probe light into two directions by a second beam splitter,
A probe light which is reflected by the second beam splitter and travels in one direction is detected by a first light receiver to create a reference light beat signal, and which travels through the second beam splitter to travel. Is focused on a small spot by the objective lens and irradiated onto the surface of the object to be measured whose shape is to be scanned, and part of the intensity of the reflected light from the object is reflected by the second beam splitter. Then, the reflected light beat signal is created by detecting with the second light receiver, and the phase change between the reflected light beat signal and the reference light beat signal is detected by the phase comparator to measure the height of the DUT. With an out-of-plane shape calculation unit for calculating the out-of-plane shape in the direction, the reflected light transmitted through the second beam splitter is reflected by the first beam splitter, and the intensity of a partial range of the reflected light intensity distribution Is detected by the third light receiver Create a Shako intensity signal, reflected light intensity signal plane shape operation portion from the intensity variation calculating a plane shape of the object to be measured is provided for, which measures the out-of-plane shape and plane shape simultaneously. Furthermore, when the out-of-plane shape and the in-plane shape of the object to be measured are separately measured, two beam lights having different frequencies are generated from the acousto-optic element when measuring the out-of-plane shape, and the first and second The out-of-plane shape is measured from the reflected light detected by the light receiver of, and in the case of measuring the in-plane shape, a single beam of a single frequency is generated from the acousto-optic element,
The in-plane shape is measured from the reflected light detected by the third light receiver.

【0006】[0006]

【作用】音響光学素子を2周波数成分fa±fmの電気
信号で駆動すると、周波数が異なる2ビーム光が発生さ
れる。この2ビーム光の間のなす角度は周波数fmで制
御され、fmが大きいときは2ビームへの分離が大き
く、fmが小さいときは実質的には1ビームの状態にな
る。従って面外形状の測定の場合は、2ビーム光の状態
に設定して、ヘテロダイン干渉により第一と第二の受光
器で検出された交流のビート信号の間の位相変化を検出
する。面内形状の測定の場合は、2ビーム光を用いて
も、1ビーム光を用いてもよく、第三の受光器で直流の
反射光強度信号を検出する。この強度検出はビーム走査
の定点位置であると共に、反射光をピンホール等を通し
て検出する共焦点検出であるため、測定の面内分解能が
高い。このようにして光ヘテロダイン干渉機能と共焦点
顕微鏡機能を一つの光学装置で実現する。
When the acousto-optic device is driven by an electric signal having two frequency components fa ± fm, two beam lights having different frequencies are generated. The angle formed between the two beams of light is controlled by the frequency fm. When fm is large, separation into two beams is large, and when fm is small, one beam is substantially formed. Therefore, in the case of the out-of-plane shape measurement, the two-beam light state is set and the phase change between the AC beat signals detected by the first and second photodetectors due to heterodyne interference is detected. In the case of measuring the in-plane shape, two-beam light or one-beam light may be used, and the DC reflected light intensity signal is detected by the third light receiver. Since this intensity detection is a fixed point position for beam scanning and is confocal detection that detects reflected light through a pinhole or the like, the in-plane resolution of measurement is high. In this way, the optical heterodyne interference function and the confocal microscope function are realized by one optical device.

【0007】面内形状測定に2ビーム光を用いるとき
は、第一、第二、第三の受光器のすべてで反射光信号を
検出し、面外、面内形状の同時測定が可能になる。この
とき各受光器は同一光学装置に設けられているため、面
外形状、面内形状は一つの光学装置で行うことができ
る。このとき、各種の偏光素子を設け、その偏光軸を調
整することにより3つの受光器に入射する反射光の強度
を最適の値に設定する。さらには、面内、面外形状を別
個に測定する場合は、測定の種類に応じて音響光学素子
から発せられるビームの形状を設定し、各受光器に入射
する反射光の強度を最大にし、測定に用いない受光器に
入射する反射光の強度が最小になるようにして、反射光
検出の効率を高めると共に反射光のS/N比を高める。
When two-beam light is used for in-plane shape measurement, the reflected light signal is detected by all of the first, second, and third light receivers, and out-of-plane and in-plane shapes can be simultaneously measured. . At this time, since each light receiver is provided in the same optical device, the out-of-plane shape and the in-plane shape can be obtained by one optical device. At this time, various polarization elements are provided and the polarization axes thereof are adjusted to set the intensities of the reflected light incident on the three light receivers to optimum values. Furthermore, when measuring the in-plane and out-of-plane shapes separately, set the shape of the beam emitted from the acousto-optic element according to the type of measurement, and maximize the intensity of the reflected light that enters each light receiver, The intensity of the reflected light incident on the light receiver not used for the measurement is minimized to enhance the efficiency of the reflected light detection and the S / N ratio of the reflected light.

【0008】[0008]

【実施例】以下図面により本発明の実施例を詳述する。
図1は本発明の構成を示すブロック図である。10はレ
ーザ光源で、例えばHe−Neレーザ、半導体レーザな
どから成り、直線偏光を有するレーザ光100を放射す
る。11は第一のビームスプリッター(以下第一のBS
と略記する)で、偏光に依存する偏光ビームスプリッタ
ーの構成である。レーザ光100の直線偏光軸の調整に
より、第一のBSでほとんど100%のレーザ光を透過
させる。12は音響光学素子(以下にAOと略記する)
で、周波数fmを発する第一の信号源112と周波数f
aを発する第二の信号源114からの信号を入力とする
音響光学素子ドライバー(以下にAOドライバーと略記
する)110で駆動される。ここで周波数fmはAO1
2から発せられるビーム形状の制御を行い、周波数fa
は該ビームの走査制御を行う。第一の信号源112から
発せられる信号の周波数fmが低いときはAO12から
は実質的に1ビームの回折光が発せられ、周波数fmが
高いときは2ビームに分離した回折光が発せられ、2ビ
ーム光は互いに周波数が異なる。
Embodiments of the present invention will be described in detail below with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of the present invention. Reference numeral 10 denotes a laser light source, which is composed of, for example, a He—Ne laser, a semiconductor laser, or the like, and emits laser light 100 having linearly polarized light. 11 is a first beam splitter (hereinafter, the first BS)
Abbreviated)), which is the configuration of the polarization beam splitter that depends on the polarization. By adjusting the linear polarization axis of the laser light 100, almost 100% of the laser light is transmitted by the first BS. 12 is an acousto-optic element (hereinafter abbreviated as AO)
And the first signal source 112 emitting the frequency fm and the frequency f
It is driven by an acousto-optic device driver (hereinafter abbreviated as AO driver) 110 that receives a signal from the second signal source 114 that emits a. Here, the frequency fm is AO1
The beam shape emitted from 2 is controlled, and the frequency fa
Controls the scanning of the beam. When the frequency fm of the signal emitted from the first signal source 112 is low, the AO 12 emits substantially one beam of diffracted light, and when the frequency fm is high, it emits diffracted light separated into two beams. The light beams have different frequencies.

【0009】AO12で発せられた2ビーム光あるいは
1ビーム光のプローブ光は、1/2波長板125で偏光
軸を適当に変換され、第二のビームスプリッター13
(以下に第二のBSと略記する)に入射する。この第二
のBS13は偏光に依存する偏光ビームスプリッターの
構成である。第二のBS13では入射するプローブ光の
一部の強度を反射させ、反射光を第一の受光器14で検
出する。第二のBS13を透過したプローブ光は1/4
波長板135を透過し、対物レンズ15で微小スポット
に集光され、面外、面内形状が測定される被測定物16
に照射されてその面上を走査する。被測定物16で反射
したプローブ光はもとの光路を逆進し、第二のBS13
でその一部の強度が反射されて第二の受光器17で検出
される。このとき1/4波長板135により偏光軸の調
整を行い、プローブ光の一部の強度が反射されるように
する。
The two-beam or one-beam probe light emitted from the AO 12 has its polarization axis appropriately converted by the ½ wavelength plate 125, and the second beam splitter 13
(Hereinafter abbreviated as second BS). This second BS 13 is a polarization-dependent polarization beam splitter configuration. The second BS 13 reflects a part of the intensity of the incident probe light, and the reflected light is detected by the first light receiver 14. 1/4 of the probe light transmitted through the second BS 13
An object to be measured 16 which is transmitted through the wave plate 135 and is focused on a minute spot by the objective lens 15 to measure out-of-plane and in-plane shapes.
It is irradiated with and is scanned on the surface. The probe light reflected by the DUT 16 travels backward in the original optical path, and the second BS 13
Then, a part of the intensity is reflected and detected by the second light receiver 17. At this time, the 1/4 wavelength plate 135 adjusts the polarization axis so that the intensity of part of the probe light is reflected.

【0010】この第一の受光器14、第二の受光器17
で検出される反射光信号は、2ビーム光の間の周波数差
である2fmの周波数を持つビート信号である。第一の
受光器14からは参照光ビート信号145、第二の受光
器17からは反射光ビート信号175が発せられる。1
8は位相比較器で、参照光ビート信号145と反射光ビ
ート信号175の位相差を検出する。この検出は光ヘテ
ロダイン干渉である。参照光ビート信号145の位相は
一定、反射光ビート信号175の位相は被測定物16に
照射される2ビーム光の間の光路差に応じて変化するた
め、位相比較器18による位相差検出で反射光ビート信
号175の位相変化が検出される。19は面外形状演算
部で、位相比較器18からの位相データを演算して被測
定物16の面外形状を変化する。
The first light receiver 14 and the second light receiver 17
The reflected light signal detected at is a beat signal having a frequency of 2 fm, which is the frequency difference between the two beam lights. The reference light beat signal 145 is emitted from the first light receiver 14, and the reflected light beat signal 175 is emitted from the second light receiver 17. 1
A phase comparator 8 detects the phase difference between the reference light beat signal 145 and the reflected light beat signal 175. This detection is optical heterodyne interference. Since the phase of the reference light beat signal 145 is constant and the phase of the reflected light beat signal 175 changes according to the optical path difference between the two beam lights with which the DUT 16 is irradiated, the phase difference can be detected by the phase comparator 18. The phase change of the reflected light beat signal 175 is detected. An out-of-plane shape calculation unit 19 calculates the phase data from the phase comparator 18 to change the out-of-plane shape of the DUT 16.

【0011】第二のBS13を透過した一部の強度を持
つプローブ光は1/2波長板125とAO12を逆進
し、第一のBS11でほとんど全部が反射されるように
する。20はピンホール、21は第三の受光器で、ピン
ホール20を第三の受光器21の面上に直接に張り付け
た構成とする。この構成の受光器により、反射光の強度
分布における中央部を含む一部の範囲の反射光強度を検
出する。従って共焦点検出を行う。さらにこの受光位置
はプローブ光走査の定点位置である。従ってプローブ光
が被測定物16の面上のどの位置を走査していても、反
射光はピンホール20を通して第三の受光器21の一定
位置で検出される。22は面内形状演算部で、第三の受
光器21で検出された直流成分の反射光強度データの変
化を演算して被測定物16のエッジ位置などを検出して
面内形状を測定する。
The probe light having a partial intensity that has passed through the second BS 13 travels backwards through the half-wave plate 125 and the AO 12, and is reflected almost entirely by the first BS 11. Reference numeral 20 is a pinhole, 21 is a third light receiver, and the pinhole 20 is directly attached to the surface of the third light receiver 21. With the light receiver having this configuration, the reflected light intensity in a partial range including the central portion in the intensity distribution of the reflected light is detected. Therefore, confocal detection is performed. Further, this light receiving position is a fixed point position for probe light scanning. Therefore, no matter which position on the surface of the object 16 is scanned by the probe light, the reflected light is detected at the fixed position of the third light receiver 21 through the pinhole 20. An in-plane shape calculation unit 22 calculates the change in the reflected light intensity data of the DC component detected by the third light receiver 21 to detect the edge position of the DUT 16 and measures the in-plane shape. .

【0012】被測定物16の面内、面外形状を同時に測
定するときは、AO12から周波数の異なる2ビーム光
を発生させ、3つの受光器14、17、21のすべてで
反射光が検出できるように各種の偏光素子の偏光軸の調
整を行う。面外形状だけを単独に測定するときは、1/
2波長板125、1/4波長板135の偏光軸を調整す
ることにより、第一の受光器14及び第二の受光器17
だけに反射光が入射されるようにする。また、面内形状
だけを測定する場合は、逆に第三の受光器21に最大の
反射光が入射されるようにする。なお、図に示した偏光
素子以外の偏光板などの偏光素子を設けて偏光分離の調
整を行う構成にすることもできる。
When simultaneously measuring the in-plane shape and the out-of-plane shape of the object to be measured 16, two light beams having different frequencies are generated from the AO 12 and the reflected light can be detected by all the three light receivers 14, 17, 21. As described above, the polarization axes of various polarizing elements are adjusted. 1 / when measuring only the out-of-plane shape
The first photoreceiver 14 and the second photoreceiver 17 are adjusted by adjusting the polarization axes of the two-wave plate 125 and the quarter-wave plate 135.
Only the reflected light should be incident on it. On the contrary, when measuring only the in-plane shape, the maximum reflected light is made incident on the third light receiver 21. A polarizing element such as a polarizing plate other than the polarizing element shown in the figure may be provided to adjust the polarization separation.

【0013】図2に面外、面内形状を同時に行うときの
被測定物16の形状例を示す。被測定物16は反射率R
sを持つ基材部25と、反射率Rmを持つ寸法部26か
らなり、寸法部26と基材部25の間は凸状に0.1μ
m程度の段差hがある。この被測定物面上を微小スポッ
トに集光された2ビーム光27、28が走査される。2
ビーム光27、28のピーク強度間距離は第一の信号源
112から発せられる周波数fmの交流信号で制御さ
れ、ピーク強度間距離を個々のビームのビーム直径程度
の距離に設定する。さらに第二の信号源114から発せ
られる周波数faを変化させて2ビーム光27、28を
走査する。
FIG. 2 shows an example of the shape of the DUT 16 when the out-of-plane and in-plane shapes are simultaneously performed. The DUT 16 has a reflectance R
It is composed of a base material portion 25 having s and a dimension portion 26 having a reflectance Rm, and a space between the dimension portion 26 and the base material portion 25 is 0.1 μ in a convex shape.
There is a step h of about m. The two-beam light 27, 28 focused on a minute spot is scanned on the surface of the object to be measured. Two
The distance between the peak intensities of the light beams 27 and 28 is controlled by the AC signal of the frequency fm emitted from the first signal source 112, and the distance between the peak intensities is set to the distance of the beam diameter of each beam. Further, the frequency fa emitted from the second signal source 114 is changed to scan the two beam lights 27 and 28.

【0014】図3に検出される信号波形例を示す。図3
(1)に示した波形31は第二の受光器17で検出され
た反射光の位相変化の波形である。本構成による光ヘテ
ロダイン干渉では2ビーム光27、28の間の光路差を
検出する差動型の検出であるため、検出された位相は被
測定物16の表面の微分を表すことになる。レーザ光源
がHe−Neレーザであるとき、位相の1度は0.88
nmの光路差である。従って基材部25と寸法部26の
エッジ位置である段差発生部では位相が段差に応じて変
化する。基材部25及び寸法部26の面上での位相変化
はその面上での表面粗さを表す。ここで、位相の正符号
は2ビーム光27、28の間の面が凸、位相の負符号は
同じく面が凹の状態である。このようにして得られた位
相データを面外形状演算部19で積分処理すると表面ト
ポグラフィーが測定できる。
FIG. 3 shows an example of detected signal waveforms. Figure 3
The waveform 31 shown in (1) is a waveform of the phase change of the reflected light detected by the second light receiver 17. Since the optical heterodyne interference according to this configuration is a differential type detection that detects the optical path difference between the two beam lights 27 and 28, the detected phase represents the differentiation of the surface of the DUT 16. When the laser light source is a He-Ne laser, the phase of 1 degree is 0.88.
The optical path difference is nm. Therefore, in the step generating portion which is the edge position of the base material portion 25 and the dimension portion 26, the phase changes according to the step. The phase change on the surface of the base material portion 25 and the dimension portion 26 represents the surface roughness on that surface. Here, the positive sign of the phase is a convex surface between the two beam lights 27 and 28, and the negative sign of the phase is a concave surface. The surface topography can be measured by integrating the phase data thus obtained in the out-of-plane shape calculator 19.

【0015】図3(2)に示す波形32は同じく2ビー
ム光27、28を走査したとき、第三の受光器21で検
出される反射光強度パターン信号である。各部材の表面
反射率はRm>Rsである。波形32は強度の中央部3
22、324で強度変化が変調されている。図3(3)
に示す波形33は反射光強度パターン信号32の差分強
度波形である。2つの立ち上がりピーク330、331
の間のピーク332、及び2つの立ち下がりピーク33
5、336の間のピーク337の位置を検出する。この
ピーク位置332、337は2ビーム光の強度分布にお
ける中央部が基材部25と寸法部26のエッジ位置に照
射されている状態である。面内形状演算部22において
このエッジ位置を検出する。このエッジ位置の間での2
ビーム光の走査量から寸法が測定でき、エッジ位置の変
化から形状が測定できる。
A waveform 32 shown in FIG. 3 (2) is a reflected light intensity pattern signal detected by the third light receiver 21 when the two beam lights 27 and 28 are similarly scanned. The surface reflectance of each member is Rm> Rs. Waveform 32 is central part 3 of intensity
The intensity change is modulated at 22, 324. Figure 3 (3)
A waveform 33 shown in is a differential intensity waveform of the reflected light intensity pattern signal 32. Two rising peaks 330, 331
Between the peaks 332 and the two falling peaks 33
The position of peak 337 between 5,336 is detected. The peak positions 332 and 337 are the state where the central portion of the intensity distribution of the two-beam light is irradiated to the edge positions of the base material portion 25 and the dimension portion 26. The in-plane shape calculation unit 22 detects this edge position. 2 between this edge position
The dimension can be measured from the scanning amount of the light beam, and the shape can be measured from the change in the edge position.

【0016】面外形状、面内形状を個別に測定する場合
は、図3で説明した2ビーム光走査を用いてもよいが、
特に面内形状測定では1ビーム光の走査を行ってもよ
い。図4に1ビーム走査を行ったときのエッジ検出例を
示す。被測定物は図2に示したものと同一である。図4
(1)の波形41は反射光強度信号である。波形の立ち
上がり部410、立ち下がり部415は単調増加、単調
減少する。図4(2)の波形42は波形41に差分処理
を行った差分強度信号波形である。2つのピーク強度位
置420、425を検出する。このピーク強度位置は反
射光強度変化率が最大となる位置で、照射ビームのピー
ク強度位置がエッジ部に照射された状態である。
When the out-of-plane shape and the in-plane shape are individually measured, the two-beam optical scanning described in FIG. 3 may be used.
In particular, in the in-plane shape measurement, scanning with one light beam may be performed. FIG. 4 shows an example of edge detection when one-beam scanning is performed. The object to be measured is the same as that shown in FIG. Figure 4
The waveform 41 of (1) is the reflected light intensity signal. The rising portion 410 and the falling portion 415 of the waveform monotonically increase and monotonically decrease. A waveform 42 in FIG. 4B is a difference intensity signal waveform obtained by performing a difference process on the waveform 41. Two peak intensity positions 420, 425 are detected. This peak intensity position is a position where the rate of change in reflected light intensity is maximum, and the peak intensity position of the irradiation beam is in a state of being irradiated on the edge portion.

【0017】図5に本発明による表面形状測定装置の光
学系の具体的構成例を示す。レーザ光源10から放射さ
れたレーザ光は第一のBS11を透過し、シリンドリカ
ルレンズ50と凸レンズ51の組合せで紙面に平行な面
内に広がりを持つシートビームに変換されてAO12に
照射される。AO12からは前述のごとく周波数fmに
応じたプローブ光が発生する。AO12を出射したプロ
ーブ光は1/2波長板125、凸レンズ52、シリンド
リカルレンズ53を経て再び円形ビームに変換される。
発散光として進行するプローブ光は第二のBS13で2
方向に分割される。反射した一部の強度を持つ光は凸レ
ンズ54で集光され、第一の受光器14で検出される。
透過光は凸レンズ55でコリメートされ、1/4波長板
135を経て対物レンズ15で集光されて被測定物16
に照射されると共に面上を走査する。被測定物16から
の反射光は第二のBSで一部の強度が反射され受光器1
7で検出される。第二のBS13を透過した反射光は第
一のBS11で反射し、凸レンズ56で集光されてピン
ホールが取り付けられた第三の受光器21で検出され
る。以上の構成の光学系で前述した面内、面外形状の同
時測定が可能になる。
FIG. 5 shows a specific example of the configuration of the optical system of the surface profile measuring apparatus according to the present invention. The laser light emitted from the laser light source 10 passes through the first BS 11, is converted into a sheet beam having a spread in a plane parallel to the paper surface by the combination of the cylindrical lens 50 and the convex lens 51, and is irradiated on the AO 12. A probe light corresponding to the frequency fm is generated from the AO 12 as described above. The probe light emitted from the AO 12 passes through the half-wave plate 125, the convex lens 52, and the cylindrical lens 53, and is converted into a circular beam again.
The probe light traveling as divergent light is 2 at the second BS 13.
Divided into directions. The reflected light having a partial intensity is condensed by the convex lens 54 and detected by the first light receiver 14.
The transmitted light is collimated by the convex lens 55, passes through the quarter-wave plate 135, is condensed by the objective lens 15, and is measured 16
The surface is scanned while being irradiated. Part of the intensity of the reflected light from the DUT 16 is reflected by the second BS, and the light receiver 1
Detected at 7. The reflected light transmitted through the second BS 13 is reflected by the first BS 11, is condensed by the convex lens 56, and is detected by the third light receiver 21 having a pinhole attached. The above-described optical system enables simultaneous measurement of the in-plane and out-of-plane shapes described above.

【0018】[0018]

【発明の効果】上記のごとく本発明は同一の光学装置内
に、光ヘテロダイン干渉機能と共焦点走査顕微鏡機能を
設けたことで、面外形状を1nm精度、面内形状を10
nm精度で同時に測定できる。音響光学素子から発せら
れる2ビーム光はその強度分布が自由に制御できるた
め、測定目的に応じて2ビーム光の状態を設定でき、幅
広い測定が可能になる。反射光強度信号のデータ処理は
簡単な処理でよいため、簡素な構成の演算処理部でリア
ルタイム的な測定が可能である。また物体面に照射する
2ビーム光は互いにほぼ同一の光路をたどるため、外乱
の影響を受けにくく安定した測定が可能で、生産ライン
でのインライン計測に適している。
As described above, according to the present invention, the optical heterodyne interference function and the confocal scanning microscope function are provided in the same optical device, so that the out-of-plane shape is 1 nm accurate and the in-plane shape is 10 nm.
It is possible to measure simultaneously with nm accuracy. Since the intensity distribution of the two-beam light emitted from the acousto-optic device can be freely controlled, the state of the two-beam light can be set according to the measurement purpose, and a wide range of measurements can be performed. Since the data processing of the reflected light intensity signal may be simple processing, real-time measurement is possible with the arithmetic processing unit having a simple configuration. Further, since the two beam lights that irradiate the object surface follow substantially the same optical path, stable measurement is possible without being affected by disturbance, and it is suitable for in-line measurement on a production line.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成と動作を説明するブロック図であ
る。
FIG. 1 is a block diagram illustrating the configuration and operation of the present invention.

【図2】被測定物の例を示す図である。FIG. 2 is a diagram showing an example of an object to be measured.

【図3】2ビーム光の走査を行ったときの、反射光の位
相検出による面外形状測定と、強度検出による面内形状
測定を同時に行うときの検出信号の波形図である。
FIG. 3 is a waveform diagram of a detection signal when performing out-of-plane shape measurement by phase detection of reflected light and in-plane shape measurement by intensity detection when scanning two beams of light.

【図4】1ビーム光の走査を行ったときの、面内形状測
定を行うときに検出される反射光強度信号とその差分処
理を行うときの信号波形図である。
FIG. 4 is a signal waveform diagram when performing a difference processing between a reflected light intensity signal detected when performing in-plane shape measurement when performing scanning with one beam of light.

【図5】光学系の構成の一実施例を示す図である。FIG. 5 is a diagram showing an example of a configuration of an optical system.

【符号の説明】[Explanation of symbols]

10 レーザ光源 11 第一のビームスプリッター 12 音響光学素子 13 第二のビームスプリッター 18 位相比較器 19 面外形状演算部 20 ピンホール 22 面内形状演算部 25 基材部 26 寸法部 10 Laser Light Source 11 First Beam Splitter 12 Acousto-Optical Element 13 Second Beam Splitter 18 Phase Comparator 19 Out-of-Plane Shape Calculator 20 Pinhole 22 In-Plane Shape Calculator 25 Base Material 26 Dimensions

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光源から放射されたレーザ光を第
一のビームスプリッターを透過させて音響光学素子に入
射し、該音響光学素子から周波数の異なる2ビーム光か
らなるプローブ光を発生させて走査させ、第二のビーム
スプリッターで前記プローブ光を2つの方向に分離せし
め、該第二のビームスピリッターで反射し一方の方向に
進行するプローブ光を第一の受光器で検出して参照光ビ
ート信号を作成し、前記第二のビームスプリッターを透
過して進行するプローブ光を対物レンズで微小スポット
に集光して形状が測定される被測定物面上に照射して走
査し、該被測定物からの反射光の一部の強度を前記第二
のビームスプリッターで反射させて第二の受光器で検出
して反射光ビート信号を作成し、該反射光ビート信号と
前記参照光ビート信号の間の位相変化を位相比較器で検
出して前記被測定物の高さ方向の面外形状を演算する面
外形状演算部を設けると共に、前記第二のビームスプリ
ッターを透過した反射光を前記第一のビームスプリッタ
ーで反射させ、反射光強度分布の一部の範囲の強度を第
三の受光器で検出して反射光強度信号を作成し、該反射
光強度信号の強度変化から前記被測定物の面内形状を演
算する面内形状演算部を設け、面外形状と面内形状を同
時に測定することを特徴とする光学式表面形状測定装
置。
1. A laser beam emitted from a laser light source is transmitted through a first beam splitter and is incident on an acousto-optical element, and the acousto-optical element generates probe light composed of two-beam light with different frequencies to perform scanning. The second beam splitter separates the probe light into two directions, and the probe light reflected by the second beam splitter and traveling in one direction is detected by the first light receiver to detect the reference light beat. A signal is created, and the probe light that passes through the second beam splitter and travels is focused on a minute spot by an objective lens to irradiate and scan the surface of the object to be measured whose shape is to be measured. Part of the intensity of the reflected light from the object is reflected by the second beam splitter and detected by the second light receiver to create a reflected light beat signal, and the reflected light beat signal and the reference light beat signal are generated. The out-of-plane shape calculator for calculating the out-of-plane shape in the height direction of the DUT by detecting the phase change between the signals with the phase comparator, and the reflected light transmitted through the second beam splitter. The light is reflected by the first beam splitter, the intensity of a partial range of the reflected light intensity distribution is detected by the third light receiver, and a reflected light intensity signal is created. An optical surface profile measuring apparatus, which is provided with an in-plane profile calculation unit for calculating an in-plane profile of an object to measure an out-of-plane profile and an in-plane profile simultaneously.
【請求項2】 前記被測定物の面外形状と面内形状を別
個に測定する場合で、面外形状を測定する場合は前記音
響光学素子から周波数の異なる2ビーム光を発生させ、
前記第一と第二の受光器で検出した反射光から面外形状
を測定し、面内形状を測定する場合は前記音響光学素子
から前記単一周波数の単一ビームを発生させ、第三の受
光器で検出した反射光から面内形状を測定することを特
徴とする光学式表面形状測定装置。
2. When measuring the out-of-plane shape and the in-plane shape of the object to be measured separately, and when measuring the out-of-plane shape, two beam lights with different frequencies are generated from the acousto-optic element,
The out-of-plane shape is measured from the reflected light detected by the first and second light receivers, and when the in-plane shape is measured, the acousto-optical element generates a single beam of the single frequency, An optical surface profile measuring device characterized by measuring an in-plane profile from reflected light detected by a light receiver.
JP18477792A 1992-06-19 1992-06-19 Optical surface profile measuring device Expired - Fee Related JP3333236B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18477792A JP3333236B2 (en) 1992-06-19 1992-06-19 Optical surface profile measuring device
US08/077,738 US5481360A (en) 1992-06-19 1993-06-18 Optical device for measuring surface shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18477792A JP3333236B2 (en) 1992-06-19 1992-06-19 Optical surface profile measuring device

Publications (2)

Publication Number Publication Date
JPH063128A true JPH063128A (en) 1994-01-11
JP3333236B2 JP3333236B2 (en) 2002-10-15

Family

ID=16159127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18477792A Expired - Fee Related JP3333236B2 (en) 1992-06-19 1992-06-19 Optical surface profile measuring device

Country Status (1)

Country Link
JP (1) JP3333236B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010354A (en) * 2005-06-28 2007-01-18 Opcell Co Ltd Device for observing/measuring surface shape of object
JP2009020448A (en) * 2007-07-13 2009-01-29 Lasertec Corp Surface profile measuring device and surface profile measuring method
JP2013224845A (en) * 2012-04-20 2013-10-31 Astro Design Inc Distance measurement system
JP2014081417A (en) * 2012-10-15 2014-05-08 Astro Design Inc Laser scanning microscope device
CN104006891A (en) * 2014-05-29 2014-08-27 清华大学 Device for measuring nano-scale light field phase distribution
JP2015004643A (en) * 2013-06-24 2015-01-08 アストロデザイン株式会社 Spatial frequency reproducing device
JP2015075340A (en) * 2013-10-07 2015-04-20 アストロデザイン株式会社 Optical distance measuring device
WO2023053238A1 (en) * 2021-09-29 2023-04-06 日本電気株式会社 Shape detecting device, shape detecting system, and shape detecting method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010354A (en) * 2005-06-28 2007-01-18 Opcell Co Ltd Device for observing/measuring surface shape of object
JP2009020448A (en) * 2007-07-13 2009-01-29 Lasertec Corp Surface profile measuring device and surface profile measuring method
JP2013224845A (en) * 2012-04-20 2013-10-31 Astro Design Inc Distance measurement system
JP2014081417A (en) * 2012-10-15 2014-05-08 Astro Design Inc Laser scanning microscope device
JP2015004643A (en) * 2013-06-24 2015-01-08 アストロデザイン株式会社 Spatial frequency reproducing device
JP2015075340A (en) * 2013-10-07 2015-04-20 アストロデザイン株式会社 Optical distance measuring device
CN104006891A (en) * 2014-05-29 2014-08-27 清华大学 Device for measuring nano-scale light field phase distribution
WO2023053238A1 (en) * 2021-09-29 2023-04-06 日本電気株式会社 Shape detecting device, shape detecting system, and shape detecting method

Also Published As

Publication number Publication date
JP3333236B2 (en) 2002-10-15

Similar Documents

Publication Publication Date Title
US5491552A (en) Optical interferometer employing mutually coherent light source and an array detector for imaging in strongly scattered media
US4650330A (en) Surface condition measurement apparatus
US5481360A (en) Optical device for measuring surface shape
JPS6324115A (en) Method and device for measuring flotating quantity of magnetic head
JP3411364B2 (en) Laser scanning microscope with compound measurement function
JP3333236B2 (en) Optical surface profile measuring device
US5139336A (en) Optical measuring apparatus using amplitude modulation of slipt beams
JPH0339605A (en) Optical surface shape measuring instrument
JP6014449B2 (en) Laser scanning microscope equipment
KR20050000751A (en) Apparatus for detecting sub-resonance of actuator for optical pickup
JPH09297014A (en) Laser radar 3-d form measurement device
JP3310022B2 (en) Surface profile measuring device
JPH0344243B2 (en)
JPH10293010A (en) Dimension measurement method and device using 2-beam optical scanning
JP3421309B2 (en) Surface shape measuring method and surface shape measuring instrument
JPH05288523A (en) Optical surface shape measuring device
JPH0339563B2 (en)
JPH1123229A (en) Measuring method for film thickness
JPH0720094A (en) Ultrasonic oscillation measuring apparatus
JPS60224044A (en) Surface inspecting device by light heterodyne interference method
JPS6199805A (en) Step measuring instrument
JPH01320489A (en) Method and instrument for measuring distance
JPS63173902A (en) Method for measuring minute dimension
JPS63191004A (en) Fine dimension measurement
JPH1068603A (en) Space positioning method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees