JPS63191004A - Fine dimension measurement - Google Patents

Fine dimension measurement

Info

Publication number
JPS63191004A
JPS63191004A JP2298287A JP2298287A JPS63191004A JP S63191004 A JPS63191004 A JP S63191004A JP 2298287 A JP2298287 A JP 2298287A JP 2298287 A JP2298287 A JP 2298287A JP S63191004 A JPS63191004 A JP S63191004A
Authority
JP
Japan
Prior art keywords
light
reflected light
intensity
dimensions
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2298287A
Other languages
Japanese (ja)
Inventor
Hiroo Fujita
宏夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2298287A priority Critical patent/JPS63191004A/en
Publication of JPS63191004A publication Critical patent/JPS63191004A/en
Priority to US07/436,923 priority patent/US4994990A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure small dimensions at a high accuracy with a high stability, by adjusting the degree of overlap of two light beams using a laser to analyze a reflected light intensity pattern. CONSTITUTION:Two light beams 15 having a Gauss's intensity distribution, separated at a close distance from each other, are condensed to a fine spot diameter, and with it the surface of an object to be measured is irradiated and scanned. Here, when there is a difference in the reflection state between a base material section 31 and a dimensions measuring section 30 of an object being measured, a reflected light intensity pattern is obtained in the integrated form of the Gauss's distribution corresponding to the difference while the intensity level of the reflected light intensity pattern changes relying on dimensions of the object being measured. Thus, dimensions can be determined by analyzing the reflected light intensity pattern.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はサブミクロン領域の微小寸法の計測方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring minute dimensions in the submicron region.

〔発明の背景〕[Background of the invention]

近年の精密加工技術の進歩に伴い被加工物のマイクロ化
が進み、集積回路、磁気ヘッド等の分野においても微細
加工される寸法は1ミクロンメートル(μm)以下のオ
ーダーに達し、それに伴って1μm以下の微小寸法の高
精度計測の必要性が高まってきている。
With recent advances in precision processing technology, workpieces have become increasingly micro-fabricated, and in fields such as integrated circuits and magnetic heads, the dimensions of micro-fabricated products have reached the order of 1 micron meter (μm) or less. There is an increasing need for high-precision measurement of the following minute dimensions.

〔従来の技術〕[Conventional technology]

測定すべき微小な寸法部を照明して顕微鏡で高倍率に拡
大し、拡大像をTVカメラで受光して寸法を測定する方
法が多く用いられている。これはTVカメラによりて発
せられる受光された像のビデオ信号を予め設定されたス
ライスレベルの値で2値化して、2値化された信号の立
ち下がりと立置 ちギがり間にふくまれる画素のピッチを計数して寸法を
求めるものである。
A commonly used method is to illuminate a minute portion to be measured, magnify it to a high magnification using a microscope, and receive the magnified image with a TV camera to measure the size. This process binarizes the video signal of the received image emitted by the TV camera at a preset slice level value, and the pixels included between the falling edge and vertical edge of the binarized signal. The dimensions are determined by counting the pitch.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述したTVカメラを用いた測定法では安定した2値化
処理を行なうために、明暗のS/N比の良いビデオ信号
が得られてスライスレベルの値が安定していることが必
至である。
In the above-mentioned measurement method using a TV camera, in order to perform stable binarization processing, it is necessary to obtain a video signal with a good S/N ratio of brightness and darkness and to have a stable slice level value.

被測定物の寸法を測定すべき部分の凸部あるいは凹部の
エッヂ部と基材部との光学的コントラスト比が悪い場合
は、2値化のためのスライスレベル値が不安定となり測
定精度が低下する。
If the optical contrast ratio between the edge of the convex or concave part of the part where the dimensions of the object to be measured are to be measured and the base material is poor, the slice level value for binarization becomes unstable and the measurement accuracy decreases. do.

また、被測定物の寸法が照明光のスポット径に対して微
小になるに従って微小寸法部から反射される反射光量が
減少するため、単一のスライスレベル値を設定して2値
化処理していたのでは実際の寸法と2値化された寸法が
もはや対応しな(なって高精度な寸法計測を行なうこと
はできな(なって(る。
In addition, as the dimensions of the object to be measured become smaller than the spot diameter of the illumination light, the amount of reflected light reflected from the small dimension part decreases, so a single slice level value is set for binarization processing. If so, the actual dimensions and the binarized dimensions no longer correspond (and therefore highly accurate dimension measurements cannot be performed).

本発明は上述した従来の計測法の問題点を解消させて特
に1ミクロンメートルよりも小さい寸法を高精度、高安
定に計測することが可能な寸法計測方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a dimension measurement method that eliminates the problems of the conventional measurement methods described above and is capable of measuring dimensions smaller than 1 micrometer with high accuracy and stability.

〔問題点を解決するための手段〕 上記の目的を達成するために本発明は次のような方法か
ら成る。
[Means for Solving the Problems] In order to achieve the above object, the present invention comprises the following method.

レーザ光源から放射されるレーザ光を2本の接近した2
ビーム光に分離せしめ、該2ビーム光を構成する各々の
ビームの強度のピーク間距離を予め定められた距離に設
定せしめて対物レンズにより微小なスポット径に集光し
て寸法が測定される被測定物面上に照射せしめ、前記集
光された2ビーム光を前記被測定物面上を走査させて各
走査状態毎に直流レベルの反射光強度を検出し、走査し
て得られた反射光強度パターン及び該反射光強度パター
ンの予め定められた場所の強度レベルの値から寸法を計
測する。
Two laser beams emitted from a laser light source are placed close together.
The object whose dimensions are to be measured by separating the light beams into two light beams, setting the distance between the intensity peaks of each of the two beams to a predetermined distance, and converging the light into a minute spot diameter with an objective lens. irradiate the surface of the object to be measured, scan the surface of the object with the condensed two-beam light, detect the intensity of the reflected light at the DC level for each scanning state, and detect the reflected light obtained by scanning. The dimensions are measured from the intensity pattern and the intensity level value at a predetermined location of the reflected light intensity pattern.

〔作用〕[Effect]

以上の方法によって寸法を計測するとき、接近した距離
に分離され、ガウス強度分布を有する2ビーム光を、微
小スポット径に集光して、被測定物面上に照射して走査
したとき、被測定物の基材部と、寸法測定部との間に反
射状態の差異が存在すれば、その差異に応じたガウス分
布が、積分された形の反射光強度パターンが得られ、か
つ被測定物の寸法に依存して、反射光強度パターンの強
度レベルが変化するため、反射光強度パターンな解析す
ることによりて、寸法を求めることができる。
When measuring dimensions using the above method, two beams of light separated at a close distance and having a Gaussian intensity distribution are focused on a minute spot diameter and irradiated onto the surface of the object to be measured. If there is a difference in reflection state between the base material part of the object to be measured and the dimension measurement part, a Gaussian distribution according to the difference can be integrated to obtain a reflected light intensity pattern, and Since the intensity level of the reflected light intensity pattern changes depending on the dimensions of the reflected light intensity pattern, the dimensions can be determined by analyzing the reflected light intensity pattern.

〔実施例〕〔Example〕

以下に本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の寸法計測に用いるレーザ光の光強度分
布を示す図で、第1図(イ)は単一ビームの光強度分布
図、第1図(ロ)は2ビーム光の光強度分布図である。
Figure 1 is a diagram showing the light intensity distribution of the laser beam used for dimension measurement of the present invention. Figure 1 (a) is a light intensity distribution diagram of a single beam, and Figure 1 (b) is a diagram of the light intensity distribution of a two-beam light. It is an intensity distribution map.

一般にレーザ光源から放射されるレーザ光の光強度分布
はガウス分布をしている。
Generally, the light intensity distribution of laser light emitted from a laser light source has a Gaussian distribution.

第1図(イ)においてガウス強度分布レーザ光10の強
度最大点11のレーザ光強度をI。とじたとき、Ioの
値の13.5%の強度点12の範囲をガウス分布のレー
ザ光の直径としている。
In FIG. 1(A), the laser light intensity at the maximum intensity point 11 of the Gaussian intensity distribution laser light 10 is I. When closed, the range of the intensity point 12 at 13.5% of the value of Io is defined as the diameter of the Gaussian distributed laser beam.

ガウス強度分布レーザ光10の中心点である強度最大点
11を原点にとり、ビーム径の半径をWとしたとき、原
点から距離rの点のレーザ光強度工は I = I。exp (−2r  / W  )  −
■で表わされる。
When the origin is the maximum intensity point 11, which is the center point of the Gaussian intensity distribution laser beam 10, and the radius of the beam diameter is W, the laser beam intensity at a distance r from the origin is I = I. exp (-2r/W) −
It is represented by ■.

第1図(ロ)は第1図(イ)で示した単一のガウス分布
光を2つ組み合わせた2ビーム光の光強度分布図で、各
々の単一の第1のレーザビーム16及び第2のレーザビ
ーム14のビーム直径をそれぞれDとしたとき、各々の
ビームの第1の強度最大点160及び第2の強度最大点
1400間のピーク間距離CWを測定しようとする被測
定物の寸法に応じた値に設定する。第1図(ロ)ではC
W=0.8Dである。この望ましいピーク間距離CWの
設定については後述する。
FIG. 1(B) is a light intensity distribution diagram of two beams of light that are a combination of two single Gaussian distributed lights shown in FIG. When the beam diameters of the two laser beams 14 are each D, the dimensions of the object to be measured are the peak-to-peak distance CW between the first maximum intensity point 160 and the second maximum intensity point 1400 of each beam. Set the value accordingly. In Figure 1 (b), C
W=0.8D. Setting of this desirable inter-peak distance CW will be described later.

このようにして設定された2ビーム光15を寸法計測用
のプローブ光として寸法が測定される被測定物面上に照
射する。
The two-beam light 15 set in this manner is irradiated as a probe light for dimension measurement onto the surface of the object whose dimension is to be measured.

第2図に第1図(ロ)に述べた2ビーム光15の発生の
方法の実施例を示す。
FIG. 2 shows an embodiment of the method for generating the two-beam light 15 described in FIG. 1(b).

20は音響光学素子(以下にAOと略す)、21はAO
20に入射されろ入射レーザ光、22及び26はA02
0によって発せられる2ビーム光のそれぞれのビーム光
、24は対物レンズ、25は交流発振器、26は音響光
学素子ドライバ−(AOドライバー)である。
20 is an acousto-optic element (hereinafter abbreviated as AO), 21 is AO
The incident laser beam is incident on 20, 22 and 26 are A02
24 is an objective lens, 25 is an AC oscillator, and 26 is an acousto-optic element driver (AO driver).

27は直流電圧源でAO20の光偏向動作を制御するた
めのものである。A020は光と超音波の相互作用によ
り光の変調を行なうもので光偏向、光強度変調、光周波
数シフト等の動作を行なわせることができる。
27 is a DC voltage source for controlling the optical deflection operation of the AO 20. A020 modulates light through the interaction of light and ultrasonic waves, and can perform operations such as light deflection, light intensity modulation, and light frequency shift.

交流発振器25によりfmなる周波数を有する交流信号
をAOドライバー26に印加する。AOドライバー26
の構成は各種の構成例が考えられるが、例えばf、なる
周波数の高周波信号発生源が内蔵されて、2つの周波数
成分子m及びfaの信号をAM変調させればf a +
 f mの2周波数成分のAO駆動信号がAOドライバ
ー26により作成できる。
The AC oscillator 25 applies an AC signal having a frequency fm to the AO driver 26 . AO driver 26
Although various configuration examples can be considered, for example, if a high-frequency signal generation source with a frequency of f is built-in and the signals of two frequency components m and fa are AM-modulated, f a +
An AO drive signal having two frequency components f m can be created by the AO driver 26 .

この2周波数成分の信号を超音波トランスデユーサ−に
より超音波に変換してA020内部に伝播させると、超
音波進行波の疎密波がA020を構成する媒質の光弾性
効果により媒質中に屈折率の周期的変動を生じさせて光
に対する回折格子として作用する。
When the signal of these two frequency components is converted into an ultrasonic wave by an ultrasonic transducer and propagated inside A020, the compression wave of the ultrasonic traveling wave is created by the refractive index of the medium due to the photoelastic effect of the medium constituting A020. It causes periodic fluctuations in the amount of light and acts as a diffraction grating for light.

入射レーザ光21がブラック角度θdでAO20に入射
されると回折により1次回折光の中の+1次回折光22
であるビーム光22と同じ(−1次回折光であるビーム
光26が発生する。
When the incident laser beam 21 enters the AO 20 at a black angle θd, it is diffracted into +1st-order diffracted light 22 among the 1st-order diffracted lights.
A beam light 26 which is the same (-1st order diffracted light) as the beam light 22 is generated.

このときの2ビーム光22及び26は光周波数シフトを
受け、入射レーザ光210周波数なf。
At this time, the two beams of light 22 and 26 undergo an optical frequency shift, and the frequency of the incident laser light 210 is f.

とするとビーム光22の光波はf o + f −+ 
f m 。
Then, the light wave of the beam light 22 is f o + f −+
f m.

ビーム光26の光波はfo−1−fa−frnなる周波
数を有する。
The light wave of the beam light 26 has a frequency of fo-1-fa-frn.

また、2ビーム光22及び26の間のなす角度θmは θm=λ−2fm/V、        ■で与えられ
る。ここでλは光波長 V 、はAO媒質中を伝播する
超音波進行波の速度、fmは前述した交流の周波数であ
る。
Further, the angle θm between the two beams 22 and 26 is given by θm=λ−2fm/V, (2). Here, λ is the optical wavelength, V is the speed of the ultrasonic traveling wave propagating in the AO medium, and fm is the frequency of the above-mentioned alternating current.

従って2ビーム光22及び26の間のなす角度θmはf
mなる周波数によってリニアーに変化する。
Therefore, the angle θm between the two beams 22 and 26 is f
It changes linearly depending on the frequency m.

前述したAO20の動作についてはオプトロニクス誌1
982年8月号に詳述されている。
Regarding the operation of the AO20 mentioned above, see Optronics Magazine 1.
It is detailed in the August 1982 issue.

24は対物レンズで2ビーム光22及び26を微小スポ
ット径に集光する。
An objective lens 24 focuses the two beams 22 and 26 into a minute spot diameter.

このとき2ビーム光の間のピーク間距離CWは対物レン
ズ24の集魚距離及び前述の角度θmによって定めるこ
とができ、光学系が決まれば前述した如く交流発振器2
50周波数制御で容易に可変することができる。
At this time, the peak-to-peak distance CW between the two beams can be determined by the collection distance of the objective lens 24 and the above-mentioned angle θm, and once the optical system is decided, the AC oscillator 2
It can be easily varied with 50 frequency control.

なお、前述した光周波数シフトされた2ビーム光22.
26を干渉させて、干渉信号の交流成分を検出すると光
ヘテロダイン干渉となる。
Note that the above-mentioned two-beam light 22.
26 and detecting the alternating current component of the interference signal results in optical heterodyne interference.

第3図に2ビーム光を寸法を測定する被測定物面上に照
射して2ビーム光を走査するときの状態図を示す。
FIG. 3 shows a state diagram when the two-beam light is irradiated onto the surface of the object whose dimensions are to be measured and the two-beam light is scanned.

60は寸法が測定されるべき寸法測定部で、その寸法を
Gとする。61は基材部である。例えば硼気ヘッドの場
合は寸法測定部60がギャップ部、基材部61がトラッ
ク部に相当する。
Reference numeral 60 denotes a dimension measuring section whose dimension is to be measured, and its dimension is designated as G. 61 is a base material portion. For example, in the case of a boron head, the dimension measuring section 60 corresponds to the gap section and the base material section 61 corresponds to the track section.

本発明の微小寸法計測方法は寸法測定部600基材部6
1に対する段差りが照射する2ビーム光15の集魚深度
範囲内にあり、寸法測定部60と基材部610間に反射
率の差異があり、2ビーム光15のビーム径よりも寸法
測定部600寸法Gが小さいときに特に有効である。
The minute dimension measurement method of the present invention includes a dimension measurement section 600 and a base material section 6.
1 is within the fish collection depth range of the irradiated 2-beam light 15, and there is a difference in reflectance between the dimension measurement section 60 and the base material section 610, and the dimension measurement section 600 is smaller than the beam diameter of the 2-beam light 15. This is particularly effective when the dimension G is small.

第3図ビ)は2ビーム光15が寸法測定部60の左側に
あり走査開始前の状態、第3図(ロ)は2ビーム光15
が寸法測定部60にかかっている場合、第3図(ハ)は
2ビーム光15が寸法測定部60の右側にあって走査が
終了した場合で2ビーム光15は(イ)→(ロ)→(ハ
)と走査される。
Figure 3(b) shows the state where the two-beam light 15 is on the left side of the dimension measuring section 60 and before scanning starts, and Figure 3(b) shows the state where the two-beam light 15 is on the left side of the dimension measuring section 60.
is applied to the dimension measuring unit 60, FIG. 3(C) shows the case where the two-beam light 15 is on the right side of the dimension measuring unit 60 and the scanning is completed, and the two-beam light 15 changes from (A) to (B). →(c) is scanned.

なお、2ビーム光の走査は各種の方法で実現できる。第
2図で説明したA020の光偏向を用いれば電気的制御
で容易に2ビーム光15の走査ができる。
Note that scanning with two beams of light can be realized by various methods. If the optical deflection of A020 explained in FIG. 2 is used, scanning of the two-beam light 15 can be easily performed by electrical control.

AOドライバー26で高周波信号の周波数f。The frequency f of the high frequency signal is determined by the AO driver 26.

を発する場合に、周波数f、を可変とすれば、周波数帯
域に応じて2ビーム光22.26を偏向させることが可
能である。
When emitting , if the frequency f is made variable, it is possible to deflect the two beam lights 22 and 26 according to the frequency band.

また、電磁ミラー駆動で走査させてもよ(、更に被測定
物を移動ステージ上に乗せて移動ステージで被測定物を
移動させてもよい。
Alternatively, the scanning may be performed by driving an electromagnetic mirror (or the object to be measured may be placed on a moving stage and moved by the moving stage).

このようにして2ビーム光15が被測定物上を走査され
るときの反射光を検出する。
In this way, the reflected light when the two-beam light 15 scans the object to be measured is detected.

2ビーム光15の光走査はステップ状、あるいは連続的
に行なわせることができるが、走査の各状態毎に反射光
を検出して、第3図(イ)→(ロ)→(ハ)の走査の範
囲で反射光強度パターンのデータを取り込む。
The optical scanning of the two-beam light 15 can be performed stepwise or continuously, but the reflected light is detected in each scanning state and the steps shown in Fig. 3 (A) → (B) → (C) are performed. Capture the data of the reflected light intensity pattern within the scanning range.

なお、反射光の検出は直流レベルの強度を検出する。2
ビーム光を構成する各々のレーザビーム16.14(第
1図図示)の振幅をA1.A2とするとき、強度は各々
A、、A、  となるから、2ビーム光の直流レベルの
強度はA、+A、  となる。
Note that the reflected light is detected by detecting the intensity at the DC level. 2
The amplitude of each laser beam 16.14 (shown in FIG. 1) constituting the beam light is set to A1. When A2, the intensities are A, , A, respectively, so the DC level intensities of the two beam lights are A, +A, and so on.

2ビーム光の走査を行なうと寸法測定部60と基材部6
1とで反射光強度に差異が生じるため、ガウス分布が積
分された形の反射光強度パターンを解析して寸法測定部
600寸法Gを計測する。
When scanning with two beams of light, the dimension measuring section 60 and the base material section 6
Since there is a difference in the intensity of reflected light between 1 and 1, the dimension G of the dimension measurement unit 600 is measured by analyzing the reflected light intensity pattern in the form of an integrated Gaussian distribution.

第4図に第3図に示した2ビーム光15を走査したとき
の反射光強度パターンの第1の計算例を示す。2ビーム
光の振幅はA、=A、とした。
FIG. 4 shows a first calculation example of the reflected light intensity pattern when scanning the two-beam light 15 shown in FIG. 3. The amplitude of the two beams was set to A, =A.

第4図の横軸は2ビーム光を走査した距離である走査量
、たて軸は反射光強度比(至)である。
The horizontal axis in FIG. 4 is the scanning amount, which is the distance scanned by the two beams, and the vertical axis is the reflected light intensity ratio (to).

第3図(イ)及び(ハ)の状態を強度比100%として
いる。基材部31に対する寸法測定部600反射率が0
.5、単一のガウスビーム光の直径を1としたとき、2
ビーム光の強度のピーク間距離CWを0.8Dとして計
算した。41は寸法Gがガウスビ 、−ム径りの直径の
30%、42は同じく50%、46は同じく70%、4
4は同じく90%、45は同じく100%の場合である
The states shown in FIGS. 3(a) and 3(c) are assumed to have an intensity ratio of 100%. The reflectance of the dimension measuring section 600 with respect to the base material section 31 is 0.
.. 5. If the diameter of a single Gaussian beam is 1, then 2
The calculation was performed assuming that the distance CW between the peaks of the intensity of the beam light was 0.8D. For 41, the dimension G is Gaussian, 30% of the diameter of the -mm diameter, for 42 it is also 50%, for 46 it is also 70%, and for 4
4 is also 90%, and 45 is 100%.

この第4図のグラフから明らかな様に、2ビーム光15
のビーム形状が決まれば、寸法Gの大きさに依存して反
射光強度パターンが一義的に決まる。
As is clear from the graph in Fig. 4, the two-beam light 15
Once the beam shape is determined, the reflected light intensity pattern is uniquely determined depending on the size of the dimension G.

寸法測定部600寸法Gが小さいと反射光強度の変化は
小さくてW型のパターンを示し、寸法Gが大きくなるに
従って反射光強度の変化が太き(なってU型のパターン
あるいはV型のパターンを示す。
When the dimension G of the dimension measurement unit 600 is small, the change in the reflected light intensity is small and shows a W-shaped pattern, and as the dimension G becomes larger, the change in the reflected light intensity becomes thicker (becomes a U-shaped pattern or a V-shaped pattern). shows.

このように寸法Gの大きさによって反射光強度パターン
及び反射光強度の極小点46あるいは極大点470強度
レベルが変化する。
In this way, depending on the size of the dimension G, the intensity level of the reflected light intensity pattern and the minimum point 46 or maximum point 470 of the reflected light intensity changes.

第5図に第4図で示した計算例の場合の、反射光強度の
極小点あるいは極大点の強度レベルの寸法Gによる変化
の計算例を示す。
FIG. 5 shows a calculation example of a change in the intensity level of the minimum point or maximum point of the reflected light intensity depending on the dimension G in the case of the calculation example shown in FIG. 4.

グラフの横軸は寸法の相対値、たて軸は最大の強度に対
する強度比である。ここでグラフのたて軸の強度比は2
ビーム光15が基材部61にあるときの反射光強度を基
準としている。
The horizontal axis of the graph is the relative value of the dimensions, and the vertical axis is the intensity ratio to the maximum intensity. Here, the intensity ratio of the vertical axis of the graph is 2
The intensity of reflected light when the beam light 15 is on the base material portion 61 is used as a reference.

第5図で51の曲線は極大部の強度比、520曲線は極
小部の強度比である。560点線で示した曲線は反射光
強度パターンがVWになりて極小部と極大部が一致して
変化する場合である。
In FIG. 5, the curve 51 is the intensity ratio at the maximum part, and the curve 520 is the intensity ratio at the minimum part. The curve indicated by the 560 dotted line is a case where the reflected light intensity pattern becomes VW and changes with the minimum portion and maximum portion coincident.

第5図に示した極小・極大の強度比のデータを基準デー
タとしておき、測定値の極小・極大データと比較すれば
寸法Gが容易に決定される。
The dimension G can be easily determined by using the minimum/maximum intensity ratio data shown in FIG. 5 as reference data and comparing it with the minimum/maximum data of the measured values.

第4図、第5図に示した結果はある特定(CW=0、8
 D )の2ビーム光の形状に対応するものである。
The results shown in Figures 4 and 5 are specific to certain conditions (CW = 0, 8
This corresponds to the shape of the two-beam light shown in D).

比較のために第6図に第2の計算例を示す。A second calculation example is shown in FIG. 6 for comparison.

第6図は2ビーム光の強度ピーク間距離CWがガウス強
度分布レーザ光10の直径と等しい場合で、同じく寸法
測定部300反射率が基材部61の反射率の50%とし
ての計算例である。曲線61は寸法測定部600幅がガ
ウスビーム直径りの30%の場合、曲線62は50%、
曲線66は70%、曲線64は90%、曲線65は10
0%の場合である。
FIG. 6 shows a calculation example in which the distance CW between the intensity peaks of the two beams is equal to the diameter of the Gaussian intensity distribution laser beam 10, and the reflectance of the dimension measuring section 300 is 50% of the reflectance of the base material section 61. be. Curve 61 indicates that the width of the dimension measuring section 600 is 30% of the Gaussian beam diameter, curve 62 indicates that the width is 50%,
Curve 66 is 70%, curve 64 is 90%, and curve 65 is 10%.
This is the case of 0%.

第4図で示したようなW型のパターンが得られるのは同
様であるが、一般には前述の極小部・極大部の強度比は
異なる。
Although a W-shaped pattern as shown in FIG. 4 can be obtained in the same way, the intensity ratio of the minimum portion and maximum portion described above is generally different.

従って計測しようとする寸法に応じた2ビ一ム光150
強度形状、特にガウスビーム直径りとピーク間距離CW
を設定することが重要であるが、例えば第5図に示した
反射光強度パターンの極小部、あるいは極大部の強度比
の寸法Gに対する変化率が大きく、はぼIJ =アーに
変化するような状態に2ビーム光15の形状を定めれば
よい。
Therefore, 2-beam light 150 according to the dimensions to be measured.
Intensity shape, especially Gaussian beam diameter and peak-to-peak distance CW
It is important to set , but for example, if the rate of change of the intensity ratio of the minimum or maximum part of the reflected light intensity pattern shown in Fig. 5 with respect to the dimension G is large, and it changes to IJ = A, The shape of the two-beam light 15 may be determined depending on the state.

また、前述した反射光強度パターンは基材部61に対す
る寸法測定部60の反射率によって変化する。
Further, the above-mentioned reflected light intensity pattern changes depending on the reflectance of the dimension measuring section 60 with respect to the base material section 61.

従って、まず2ビーム光15のスポット径よりも大きい
反射面を有し、同じ材質を用いた基準試料を準備してお
いて、基材部31、寸法測定部60と同じ材質での反射
率を予め計測しておいて基材部61に対する寸法測定部
600反射率を決定しておくと、第5図に示した反射光
強度パターンの極小部、極大部の強度情報から寸法への
変換係数を容易に決定することが可能である。
Therefore, first, prepare a reference sample that has a reflecting surface larger than the spot diameter of the two-beam light 15 and is made of the same material. If the reflectance of the dimension measurement unit 600 with respect to the base material part 61 is determined in advance by measuring it in advance, the conversion coefficient from the intensity information of the minimum and maximum parts of the reflected light intensity pattern shown in FIG. 5 to dimensions can be calculated. It can be easily determined.

このとき2ビーム光の形状が既知の場合は寸法Gを直に
決定することができるが、2ビーム光の形状が未知の場
合は他の手段で予め基準とする試料の寸法を計測してお
き、その寸法値から逆算して2ビーム光15の形状を決
定すれば前述したような通常の計測が行なわれる。
At this time, if the shape of the two-beam light is known, the dimension G can be determined directly, but if the shape of the two-beam light is unknown, measure the dimensions of the reference sample in advance by other means. If the shape of the two-beam light 15 is determined by calculating backward from the dimensional values, the normal measurement as described above can be performed.

反射光強度パターンの解析は強度レベルについて述べた
が、他にもパターンの変化が始まる場所の解析、W型あ
るいはU型、V型曲線の変化率(微分係数)等の解析を
行なうこともできる。
The analysis of the reflected light intensity pattern has been described in terms of the intensity level, but it is also possible to analyze the place where the pattern changes, the rate of change (derivative coefficient) of the W-shaped, U-shaped, or V-shaped curve, etc. .

レーザ光は非常に空間的コヒーレンシーが高く集光性に
すぐれているため、ガウスビーム径は1μm程度まで集
光することができるため、前述の計算結果から明らかな
ように本発明の方法を用いれば0.1μm程度までの微
小な領域の寸法計測が可能である。
Laser light has extremely high spatial coherency and excellent focusing ability, and can be focused to a Gaussian beam diameter of approximately 1 μm. It is possible to measure dimensions of minute areas down to about 0.1 μm.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかな如く、集光性が良くて安定した光
強度分布を有するレーザ光を用いて、2ビーム光の重ね
合わせの度合いを調整し、被測定物の種類、寸法によっ
て固有に発生する反射光強度パターンの解析によって高
安定、高精度の寸法計測が可能となる。
As is clear from the above explanation, by using a laser beam with good convergence and a stable light intensity distribution, the degree of superposition of the two beams is adjusted, and the Analysis of the reflected light intensity pattern enables highly stable and highly accurate dimensional measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図は本発明に係わる実施例であり、第1
図(イ)はレーザ光のガウス強度分布図、第1図(ロ)
は2ビーム光の強度分布図、第2図は音響光学素子を用
いた2ビーム光の発生を説明するブロック図、第3図(
イ)、(ロ)、(ハ)は被測定物面上で2ビーム光を走
査させる状態の説明図、第4図は2ビーム光を走査させ
たときの反射光強度・くターンの第1の計算例を示すグ
ラフ、第5図は第4図で示した第1の計算例から強度レ
ベルの変化を計算した強度比−寸法グラフ、第6図は2
ビーム光を走査させたときの反射光強度パターンの第2
の計算例を示すグラフである。 10・・・・・・ガウスビーム光、 15・・・・・・2ビーム光、 20・・・・・・音響光学素子、 25・・・・・・交流発振器、 60・・・・・・寸法測定部、 61・・・・・・基材部。 第 1 図 (/i) (ロ) 距離(r) 第 3 図 第5(
FIGS. 1 to 6 show embodiments of the present invention, and the first
Figure (a) is a Gaussian intensity distribution diagram of laser light, Figure 1 (b)
is an intensity distribution diagram of two-beam light, Fig. 2 is a block diagram explaining the generation of two-beam light using an acousto-optic element, and Fig. 3 (
A), (B), and (C) are explanatory diagrams of the state in which two beams of light are scanned on the surface of the object to be measured, and Fig. 4 shows the first reflected light intensity and turn when two beams of light are scanned. Figure 5 is an intensity ratio-dimension graph that calculates the change in intensity level from the first calculation example shown in Figure 4, Figure 6 is a graph showing a calculation example of 2.
The second reflected light intensity pattern when scanning the beam light
It is a graph showing an example of calculation. 10... Gaussian beam light, 15... 2 beam light, 20... Acousto-optic element, 25... AC oscillator, 60... Dimension measurement section, 61...Base material section. Figure 1 (/i) (b) Distance (r) Figure 3 Figure 5 (

Claims (1)

【特許請求の範囲】[Claims] レーザ光源から放射されたレーザ光を2本の接近した2
ビーム光に分離せしめ、該2ビーム光を構成する各々の
ビームの強度のピーク間距離を予め定められた距離に設
定せしめて対物レンズにより微小なスポット径に集光し
て寸法が測定される被測定物上に照射せしめ、該集光さ
れた2ビーム光を前記被測定物面上を走査せしめ各走査
状態毎に直流レベルの反射光強度を検出し、前記2ビー
ム光を走査して得られた反射光強度パターン及び該反射
光強度パターンの予め定められた場所の強度レベルから
寸法を計測することを特徴とする微小寸法計測方法。
Two laser beams emitted from a laser light source are placed close together.
The object whose dimensions are to be measured by separating the light beams into two light beams, setting the distance between the intensity peaks of each of the two beams to a predetermined distance, and converging the light into a minute spot diameter with an objective lens. irradiate the object to be measured, scan the surface of the object with the condensed two beams, detect the reflected light intensity at the DC level for each scanning state, and scan the two beams. A method for measuring minute dimensions, characterized in that dimensions are measured from a reflected light intensity pattern and an intensity level at a predetermined location of the reflected light intensity pattern.
JP2298287A 1987-02-03 1987-02-03 Fine dimension measurement Pending JPS63191004A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2298287A JPS63191004A (en) 1987-02-03 1987-02-03 Fine dimension measurement
US07/436,923 US4994990A (en) 1987-02-03 1989-11-06 Micro-dimensional measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2298287A JPS63191004A (en) 1987-02-03 1987-02-03 Fine dimension measurement

Publications (1)

Publication Number Publication Date
JPS63191004A true JPS63191004A (en) 1988-08-08

Family

ID=12097754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2298287A Pending JPS63191004A (en) 1987-02-03 1987-02-03 Fine dimension measurement

Country Status (1)

Country Link
JP (1) JPS63191004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223587A (en) * 1988-11-08 1990-09-05 Dai Ichi Seiyaku Co Ltd Carbapenem derivative

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223587A (en) * 1988-11-08 1990-09-05 Dai Ichi Seiyaku Co Ltd Carbapenem derivative

Similar Documents

Publication Publication Date Title
CA1300369C (en) Distance measuring device
US4160598A (en) Apparatus for the determination of focused spot size and structure
US5208451A (en) Method and apparatus for automated focusing of an interferometric optical system
JPH0694596A (en) Particle route determination device
NL8302228A (en) MEASURING SYSTEM FOR USING A TRIANGULAR PRINCIPLE, CONTACT-FREE MEASURING A DISTANCE GIVEN BY A SURFACE CONTOUR TO AN OBJECTIVE LEVEL.
US7209238B2 (en) Interferometer arrangement and interferometric measuring method
US5481360A (en) Optical device for measuring surface shape
US7002695B2 (en) Dual-spot phase-sensitive detection
US5202740A (en) Method of and device for determining the position of a surface
US20030210402A1 (en) Apparatus and method for dual spot inspection of repetitive patterns
JP3333236B2 (en) Optical surface profile measuring device
JPH09297014A (en) Laser radar 3-d form measurement device
JPS63191004A (en) Fine dimension measurement
JP2520431B2 (en) Minute dimension measurement method using laser light
JP3310022B2 (en) Surface profile measuring device
JPH08122026A (en) Measuring method for very small difference in level
JP2566569B2 (en) Micro Dimension Measurement Method
US4601581A (en) Method and apparatus of determining the true edge length of a body
JPH10293010A (en) Dimension measurement method and device using 2-beam optical scanning
JPH0781829B2 (en) Minute dimension measurement method
JPS62194402A (en) Measurement of minute dimension
SU1747899A1 (en) Surface microgeometry testing method
JPS60224044A (en) Surface inspecting device by light heterodyne interference method
AU596306C (en) Distance measuring device
SU1017919A1 (en) Device for continuous measuring of lengthy object length