JPH09297014A - Laser radar 3-d form measurement device - Google Patents

Laser radar 3-d form measurement device

Info

Publication number
JPH09297014A
JPH09297014A JP11382196A JP11382196A JPH09297014A JP H09297014 A JPH09297014 A JP H09297014A JP 11382196 A JP11382196 A JP 11382196A JP 11382196 A JP11382196 A JP 11382196A JP H09297014 A JPH09297014 A JP H09297014A
Authority
JP
Japan
Prior art keywords
laser
measurement target
distance
dimensional shape
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11382196A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Baba
智義 馬場
Yoshihiro Deguchi
祥啓 出口
Hirohisa Yoshida
博久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11382196A priority Critical patent/JPH09297014A/en
Publication of JPH09297014A publication Critical patent/JPH09297014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser radar 3-D form measurement device which can precisely measure even from a distant place and whose resolution in distance direction is easily raised. SOLUTION: Two laser beams 100 of different wavelengths are generated from a laser generation device 1, and the same point of a sample 10 is irradiated with the two laser beams 100 through an optical branching device 2 and a deflection device 3 at the same time, for scanning of the sample 10, and two reflected laser beams 101 from the sample 10 are made incident to a photodetector 4 for detection of synthesized optical signal. An output signal of the photodetector 4 is processed with a frequency analyzer 5 and a distance information calculator 6 to calculate a distance information, and then, a 3-D form of the sample 10 is, with a 3-D form calculator 8, found from the distance information and an angle information from the two laser beams 100 for the sample 10, which is processed with an angle information processor 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光を用いて
物体の三次元形状を計測するレーザレーダ三次元形状計
測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser radar three-dimensional shape measuring apparatus for measuring the three-dimensional shape of an object using laser light.

【0002】[0002]

【従来の技術】従来から、例えば船殻部材あるいは橋梁
の大型鋼鉄構造物などの物体の三次元形状を計測する場
合、レーザ光を用いて光学的に計測対象までの距離など
を測定して、計測対象の三次元形状を検出するレーザレ
ーダ三次元形状計測装置が用いられる。
2. Description of the Related Art Conventionally, for example, when measuring the three-dimensional shape of an object such as a hull member or a large steel structure of a bridge, the distance to the object to be measured is optically measured using laser light, A laser radar three-dimensional shape measuring device that detects a three-dimensional shape of a measurement target is used.

【0003】従来のレーザレーダ三次元形状計測装置で
は、計測対象に対してレーザ光を照射しつつ計測対象を
走査し、計測対象からの反射レーザ光を検出して、照射
したレーザ光と反射レーザ光とに基づいて計測対象まで
の距離を算出すると共に計測対象に照射したレーザ光の
方向から角度を算出し、これら距離および角度に基づい
て計測対象の三次元的形状を求めていた。
In a conventional laser radar three-dimensional shape measuring apparatus, a laser beam is radiated onto the object to be measured, the object to be scanned is scanned, and the reflected laser beam from the object to be measured is detected. The distance to the measurement target is calculated based on the light and the angle is calculated from the direction of the laser light with which the measurement target is irradiated, and the three-dimensional shape of the measurement target is obtained based on the distance and the angle.

【0004】ここで、従来のレーザレーダ三次元形状計
測装置には、パルス方式(例えば特開平7−13992
3号公報記載)および位相差方式(例えば特開平7−1
39925号公報記載)の二つの計測方式があり、これ
らはそれぞれ計測対象までの距離の算出方法が異なって
いる。
Here, the conventional laser radar three-dimensional shape measuring apparatus has a pulse method (for example, Japanese Patent Laid-Open No. 7-13992).
3) and a phase difference method (for example, Japanese Patent Laid-Open No. 7-1).
There are two measurement methods (described in Japanese Patent No. 39925), and each of them has a different method of calculating the distance to the measurement target.

【0005】パルス方式では、所定のクロックパルスに
応じたパルス状のレーザ光を照射し、このレーザ光と計
測対象からの反射レーザ光との時間差を測定して、この
時間差から計測対象までの距離を算出する。
In the pulse method, a pulsed laser beam corresponding to a predetermined clock pulse is irradiated, the time difference between this laser beam and the reflected laser beam from the measurement object is measured, and the distance from this time difference to the measurement object is measured. To calculate.

【0006】一方、位相差方式では、所定の変調信号に
よって強度変調されたレーザ光を照射し、このレーザ光
と計測対象からの反射レーザ光との間の位相差を測定し
て、この位相差から計測対象までの距離を算出する。
On the other hand, in the phase difference method, laser light whose intensity is modulated by a predetermined modulation signal is irradiated, the phase difference between this laser light and the reflected laser light from the measuring object is measured, and this phase difference is measured. Calculate the distance from to the measurement target.

【0007】[0007]

【発明が解決しようとする課題】上述したように、従来
のレーザレーダ三次元形状計測装置は、大別してパルス
方式および位相差方式の二つの計測方法があるが、計測
対象までの距離が遠い場合、パルス方式および位相差方
式のいずれの計測方式でも距離情報を精密に求めること
が困難で、計測精度が低下するという問題があった。
As described above, the conventional laser radar three-dimensional shape measuring apparatus is roughly classified into two measuring methods, a pulse method and a phase difference method. However, there is a problem that it is difficult to accurately obtain the distance information by any of the pulse method and the phase difference method, and the measurement accuracy is deteriorated.

【0008】さらに、距離方向の分解能を上げようとす
る場合、パルス方式ではパルス幅の狭い高速なクロック
パルスを用いる必要があり、また、位相差方式では変調
周波数を上げる必要があるため、回路の高速化、広帯域
化により、装置の複雑化、高価格化を招くという問題が
あった。
Further, in order to increase the resolution in the distance direction, it is necessary to use a high-speed clock pulse having a narrow pulse width in the pulse system, and it is necessary to increase the modulation frequency in the phase difference system. There is a problem in that the device becomes complicated and the cost is increased due to the increase in speed and the increase in bandwidth.

【0009】本発明は、遠距離からでも精密な計測がで
き、しかも容易に距離方向の分解能を上げることのでき
るレーザレーダ三次元形状計測装置を提供することを目
的とする。
An object of the present invention is to provide a laser radar three-dimensional shape measuring apparatus capable of performing precise measurement even from a long distance and easily improving the resolution in the distance direction.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
本発明は、波長の異なる複数のレーザ光を計測対象の同
一箇所に同時に照射しつつ計測対象を走査するレーザ走
査手段と、計測対象からの複数の反射レーザ光の合成光
信号を検出する光検出手段と、この光検出手段の出力信
号を処理して計測対象の三次元形状を求める信号処理手
段とを備えている。
In order to solve the above problems, the present invention provides a laser scanning means for scanning a measurement target while simultaneously irradiating a plurality of laser beams having different wavelengths to the same position on the measurement target, and a laser scanning means. And a signal processing unit for processing an output signal of the light detection unit to obtain a three-dimensional shape of a measurement target.

【0011】このように構成されたレーザレーダ三次元
形状計測装置では、波長の異なる複数の反射レーザ光の
位相関係は計測対象までの距離によって異なり、これら
に伴い光検出手段から出力される合成光信号の信号波形
も計測対象までの距離によって変化するため、この信号
波形を分析することで計測対象の三次元形状が求まる。
In the laser radar three-dimensional shape measuring apparatus configured as described above, the phase relationship between a plurality of reflected laser beams having different wavelengths differs depending on the distance to the object to be measured, and accordingly, the combined light output from the photodetection means. Since the signal waveform of the signal also changes depending on the distance to the measurement target, the three-dimensional shape of the measurement target can be obtained by analyzing this signal waveform.

【0012】具体的には、例えば信号処理手段において
光検出手段の出力信号を周波数分析し、この分析結果を
計測対象の距離情報に変換して、この距離情報および複
数のレーザ光の角度情報から計測対象の三次元形状を求
めるようにすれば、距離情報は走査に伴う計測対象まで
の距離の相対的な変化として求まり、この距離情報は実
際の計測対象までの距離の影響を受けないので、遠距離
からでも計測精度が変わらない。
Specifically, for example, in the signal processing means, the output signal of the light detecting means is subjected to frequency analysis, the analysis result is converted into distance information of the measurement object, and this distance information and the angle information of a plurality of laser beams are used. If the three-dimensional shape of the measurement target is obtained, the distance information is obtained as a relative change in the distance to the measurement target due to scanning, and this distance information is not affected by the distance to the actual measurement target. Measurement accuracy does not change from a long distance.

【0013】また、計測対象に照射する複数のレーザ光
の波長を変化させると光検出手段の出力信号の周波数が
変化するため、これに対応して距離方向の分解能も変化
する。
Further, when the wavelengths of a plurality of laser beams irradiating the object to be measured are changed, the frequency of the output signal of the light detecting means is changed, and accordingly, the resolution in the distance direction is also changed.

【0014】[0014]

【発明の実施の形態】図1は、本発明の一実施形態に係
るレーザレーダ三次元形状計測装置の概略構成を示す図
である。このレーザレーダ三次元形状計測装置は、レー
ザ発生装置1、光分岐器2、偏向装置3、光検出器4、
周波数分析器5、距離情報算出器6、角度情報処理器
7、三次元形状算出器8、表示装置9により構成され、
計測対象10の三次元形状を計測するものである。
1 is a diagram showing a schematic configuration of a laser radar three-dimensional shape measuring apparatus according to an embodiment of the present invention. This laser radar three-dimensional shape measuring apparatus includes a laser generator 1, an optical branching device 2, a deflecting device 3, a photodetector 4,
It is composed of a frequency analyzer 5, a distance information calculator 6, an angle information processor 7, a three-dimensional shape calculator 8, and a display device 9,
The three-dimensional shape of the measurement target 10 is measured.

【0015】レーザ発生装置1は、波長の近接した二つ
のレーザ光100を発生するものであり、本実施形態で
は波長780.0nm〜780.18nmのレーザ光を
波長0.00018nm毎に1000等分して、例えば
波長780.0nmおよび780.00018mm,波
長780.0nmおよび780.00036nm,波長
780.0nmおよび780.00052nm,…,波
長780.0nmおよび780.18nmのように二つ
の波長のレーザ光を選択的に発生する。二つの波長は、
後述する距離方向の分解能に応じて選択される。
The laser generator 1 generates two laser lights 100 having wavelengths close to each other. In this embodiment, the laser light having a wavelength of 780.0 nm to 780.18 nm is divided into 1000 equal parts for every 0.00018 nm. Then, for example, laser light of two wavelengths such as wavelengths 780.0 nm and 780.00018 mm, wavelengths 780.0 nm and 780.00036 nm, wavelengths 780.0 nm and 780.00052 nm, ..., Wavelengths 780.0 nm and 780.18 nm. Occurs selectively. The two wavelengths are
It is selected according to the resolution in the distance direction described later.

【0016】レーザ発生装置1で発生したレーザ光10
0は、光分岐器2を介して偏向装置3に導かれる。偏向
装置3は、モータ等による2軸の回転機構とミラー等の
光反射部材とを組み合わせて構成され、光分岐器2を介
して入射したレーザ光100を偏向させて計測対象10
の同一箇所に同時に照射しつつ、図3に示すように任意
の仰角方向Vおよび方位角方向Uに計測対象10を走査
する。また、偏向装置3はこの走査に伴い、仰角方向V
および方位角方向Uを表す情報を角度情報処理器7に出
力する。なお、以下では計測地点A、Bの順に走査を行
ったものとし、計測対象10においてレーザ光100を
最初に照射した箇所(ここでは計測地点A)を基準地点
と称する。
Laser light 10 generated by the laser generator 1
0 is guided to the deflecting device 3 via the optical branching device 2. The deflecting device 3 is configured by combining a biaxial rotating mechanism such as a motor and a light reflecting member such as a mirror, and deflects the laser light 100 incident through the optical branching device 2 to measure the measurement target 10.
Simultaneously irradiating the same portion of the measurement target 10 with the measurement target 10 in the elevation direction V and the azimuth direction U as shown in FIG. In addition, the deflecting device 3 moves in the elevation angle direction V along with this scanning.
And information indicating the azimuth direction U is output to the angle information processor 7. In the following description, it is assumed that the measurement points A and B are scanned in this order, and the point (here, the measurement point A) where the laser beam 100 is first irradiated on the measurement target 10 is referred to as a reference point.

【0017】偏向装置3で偏向されたレーザ光100は
計測対象10で反射し、二つの反射レーザ光101が発
生する。ここで、計測対象10の計測地点AおよびBに
おける二つのレーザ光100の光強度は図3に示される
ようになる。横軸はレーザ光発生装置1から二つのレー
ザ光100が通過した距離、縦軸は光強度であり、細線
は波長780.0nmおよび780.00018nmの
レーザ光、太線は波長780.17982nmおよび7
80.18nmのレーザ光を表している。
The laser light 100 deflected by the deflecting device 3 is reflected by the measuring object 10 and two reflected laser lights 101 are generated. Here, the light intensities of the two laser lights 100 at the measurement points A and B of the measurement target 10 are as shown in FIG. The horizontal axis represents the distance that the two laser beams 100 have passed from the laser beam generator 1, the vertical axis represents the light intensity, the thin lines represent the laser beams having the wavelengths of 780.0 nm and 780.00018 nm, and the thick lines represent the wavelengths of 780.17982 nm and 7.
This represents a laser beam of 80.18 nm.

【0018】反射レーザ光101は、レーザ光100と
は逆方向に偏向装置3に入射し、光分岐器2で反射して
光検出器5に入射する。光検出器4は、計測対象10か
らの反射レーザ光101を受光し、その合成光強度を検
出して、合成光強度に対応した電気信号を出力する。こ
こで、反射レーザ光101は互いに波長が近接してお
り、計測対象10において反射したレーザ光100の光
強度をI1,I2、計測対象10の反射率をRとする
と、反射レーザ光101の合成光強度Iは以下の式によ
り算出される。
The reflected laser light 101 enters the deflecting device 3 in the opposite direction to the laser light 100, is reflected by the optical splitter 2 and enters the photodetector 5. The photodetector 4 receives the reflected laser light 101 from the measurement target 10, detects the combined light intensity thereof, and outputs an electric signal corresponding to the combined light intensity. Here, the reflected laser light 101 has wavelengths close to each other, and assuming that the light intensities of the laser light 100 reflected by the measurement target 10 are I1 and I2 and the reflectance of the measurement target 10 is R, the reflected laser light 101 is combined. The light intensity I is calculated by the following formula.

【0019】I=R(I1+I2) 図4は、このようにして検出される合成光強度の時間変
化の例である。縦軸は時間、横軸は光強度であり、計測
対象10における計測地点Aからの反射レーザ光101
の合成光強度を表している。さらに、図5は計測地点に
よる合成光強度の違いを示すもので、縦軸は時間、横軸
は光強度、実線および点線はそれぞれ計測地点Aおよび
Bからの反射レーザ光101の合成光強度の時間変化を
表している。このように、計測地点AおよびBのように
計測対象10までの距離が異なるときは合成光強度にず
れが生じる。
I = R (I1 + I2) FIG. 4 shows an example of the time change of the combined light intensity detected in this way. The vertical axis represents time, the horizontal axis represents light intensity, and the reflected laser light 101 from the measurement point A in the measurement target 10 is measured.
Represents the combined light intensity of. Further, FIG. 5 shows the difference in the combined light intensity depending on the measurement points. The vertical axis represents time, the horizontal axis represents the light intensity, and the solid and dotted lines represent the combined light intensity of the reflected laser light 101 from the measurement points A and B, respectively. It represents the change over time. In this way, when the distance to the measurement target 10 is different as in the measurement points A and B, the combined light intensity is displaced.

【0020】周波数分析器5は、光検出器4から出力さ
れる合成光強度に対応した信号を周波数分析し、その分
析結果を距離情報算出部6に出力する。具体的には、周
波数分析器5は光検出器4の出力信号をフーリエ変換し
て基本周波数を求める。このとき、周波数分析器5はま
ず基準地点(ここでは計測地点A)からの反射レーザ光
の合成光強度に対応した信号の基本周波数に対して、他
の計測地点(ここでは計測地点B)からの反射レーザ光
の合成光強度に対応した信号の基本周波数の差を求め
る。例えば、図6に示されるように基準地点である計測
地点Aと計測地点Bとの基本周波数の差はΔνで示され
る。なお、図6において横軸は周波数、縦軸は光強度を
示している。
The frequency analyzer 5 frequency-analyzes the signal corresponding to the combined light intensity output from the photodetector 4, and outputs the analysis result to the distance information calculator 6. Specifically, the frequency analyzer 5 Fourier transforms the output signal of the photodetector 4 to obtain the fundamental frequency. At this time, the frequency analyzer 5 first compares the basic frequency of the signal corresponding to the combined light intensity of the reflected laser light from the reference point (here, the measurement point A) with another measurement point (here, the measurement point B). Then, the difference in the fundamental frequency of the signal corresponding to the combined light intensity of the reflected laser light is obtained. For example, as shown in FIG. 6, the difference in fundamental frequency between the measurement point A and the measurement point B, which are reference points, is indicated by Δν. In FIG. 6, the horizontal axis represents frequency and the vertical axis represents light intensity.

【0021】距離情報算出器6は、周波数分析器5から
出力される分析結果である基本周波数の差Δνを計測対
象10における距離情報に変換して三次元形状算出器8
に出力する。具体的には、レーザ発生装置1から基準地
点(ここでは計測地点A)までの距離とレーザ発生装置
1から他の計測地点(ここでは計測地点B)までの距離
の差ΔRを計測対象10における距離情報として出力す
る。この距離の差ΔRは、上述した基本周波数の差をΔ
ν、光速をcとした場合、以下の式により算出される ΔR=c/2Δν なお、上式に基づいて距離方向の分解能も決定される。
上述したように、本実施形態では波長780.0nm〜
780.18nmまでを1000等分し、この中から二
つの選択した波長のレーザ光を照射するため、距離方向
の最小分解能は波長780.0nmおよび780.18
nmのレーザ光を照射した場合の1.69mmとなり、
計測領域のダイナミックレンジは1690mmとなる。
なお、このときの基本周波数の差Δνは88.74GH
zである。
The distance information calculator 6 converts the difference Δν of the fundamental frequencies, which is the analysis result output from the frequency analyzer 5, into distance information on the measurement object 10, and the three-dimensional shape calculator 8
Output to Specifically, the difference ΔR between the distance from the laser generator 1 to the reference point (here, the measurement point A) and the distance from the laser generator 1 to another measurement point (here, the measurement point B) is measured in the measurement target 10. Output as distance information. This distance difference ΔR is the above-mentioned difference in fundamental frequency Δ
When ν and the speed of light are c, ΔR = c / 2Δν calculated by the following equation. The resolution in the distance direction is also determined based on the above equation.
As described above, in the present embodiment, the wavelength is 780.0 nm
Since 780.18 nm is divided into 1000 equal parts and two selected wavelengths of laser light are irradiated, the minimum resolution in the distance direction is 780.0 nm and 780.18 nm.
It becomes 1.69 mm when irradiated with a laser beam of nm,
The dynamic range of the measurement area is 1690 mm.
The difference Δν of the fundamental frequency at this time is 88.74 GH.
z.

【0022】一方、角度情報処理器7は、計測対象10
の走査に伴い偏向装置3から出力される仰角方向Vおよ
び方位角方向Uを表す情報を処理して計測対象10に対
する角度情報を三次元情報算出器8に出力する。
On the other hand, the angle information processor 7 has a measuring object 10
The information indicating the elevation angle direction V and the azimuth angle direction U output from the deflection device 3 in accordance with the scanning of 1 is processed, and the angle information with respect to the measurement target 10 is output to the three-dimensional information calculator 8.

【0023】三次元形状算出器8は、距離情報算出器6
から出力される計測対象10の距離情報および角度情報
処理器7から出力される計測対象10の角度情報に基づ
いて計測対象10の三次元形状を算出して表示装置9に
出力する。表示装置9は、例えば図7に示されるような
計測対象10の三次元形状を表示する。
The three-dimensional shape calculator 8 is the distance information calculator 6
The three-dimensional shape of the measurement target 10 is calculated based on the distance information of the measurement target 10 output from the angle information and the angle information of the measurement target 10 output from the angle information processor 7, and the result is output to the display device 9. The display device 9 displays the three-dimensional shape of the measurement target 10 as shown in FIG. 7, for example.

【0024】以上説明したように、本実施形態のレーザ
レーダ三次元形状計測装置では、計測対象10に波長の
異なるレーザ光100を照射しつつ計測対象10を走査
し、光検出器4より計測対象10からの反射レーザ光1
01を検出して、この反射レーザ光101の合成光強度
に対応した信号を周波数分析したときの基本周波数に基
づいて計測対象10までの距離情報を求める。
As described above, in the laser radar three-dimensional shape measuring apparatus of the present embodiment, the measuring object 10 is scanned while the measuring object 10 is irradiated with the laser beams 100 having different wavelengths, and the measuring object 10 is measured. Reflected laser light from 10 1
01 is detected, and the distance information to the measurement target 10 is obtained based on the fundamental frequency when the signal corresponding to the combined light intensity of the reflected laser light 101 is subjected to frequency analysis.

【0025】この際、計測対象10においてレーザ光1
00を最初に照射した箇所(本実施形態では計測地点
A)からの反射レーザ光101に基づいた基本周波数を
基準とし、これに対する他の計測地点(本実施形態では
計測地点B)からの反射レーザ光101の合成光強度に
基づいた基本周波数の差を求めることで、距離情報は走
査に伴う計測対象10までの距離の相対的な変化として
得られ、この距離情報は実際の計測対象10までの距離
の影響を受けないので、遠距離からでも精度を変えずに
計測を行うことができる。
At this time, the laser beam 1 on the measuring object 10
00 is the reference frequency based on the reflected laser light 101 from the spot (measurement point A in the present embodiment) first, and the reflection laser from the other measurement point (measurement point B in the present embodiment) to this is the reference frequency. By obtaining the difference between the fundamental frequencies based on the combined light intensity of the light 101, the distance information is obtained as a relative change in the distance to the measurement target 10 due to the scanning, and this distance information is obtained from the actual measurement target 10. Since it is not affected by the distance, it is possible to measure even from a long distance without changing the accuracy.

【0026】また、計測対象10に照射するレーザ光1
00の波長を変えることで、容易に距離方向の分解能を
向上させることができる。なお、上記実施形態において
は、必要とする距離方向の分解能に応じて波長780.
0nm〜780.18nmのうちの二つの波長のレーザ
光を選択的に照射する場合について説明したが、まず波
長780.0nmおよび780.000018nmの二
つのレーザ光を照射し、次に波長780.0nmおよび
780.000036nmの二つのレーザ光を照射し
て、以下、波長780.0nmおよび780.0005
2nm,…,波長780.0nmおよび780.018
nmといった具合に二つのレーザ光の波長の差を大きく
して計測を行い、距離方向の分解能を徐々に上げるよう
にしてもよい。この場合、計測対象10における同一箇
所を走査するようにする。
The laser beam 1 for irradiating the object 10 to be measured
By changing the wavelength of 00, the resolution in the distance direction can be easily improved. In the above embodiment, the wavelength of 780.
The case of selectively irradiating laser light of two wavelengths of 0 nm to 780.18 nm has been described, but first, two laser light of wavelengths 780.0 nm and 780.000018 nm are irradiated, and then the wavelength of 780.0 nm. And 780.000036 nm, and the wavelengths of 780.0 nm and 780.005
2 nm, ..., Wavelength 780.0 nm and 780.18
It is also possible to increase the difference between the wavelengths of the two laser beams such as nm to perform the measurement and gradually increase the resolution in the distance direction. In this case, the same portion of the measurement target 10 is scanned.

【0027】[0027]

【発明の効果】以上説明した通り本発明によれば、計測
対象に複数のレーザ光を照射することで発生する複数の
反射レーザ光の合成光信号に基づいて計測対象の三次元
的形状を求めることで、遠距離からでも精密な計測がで
き、しかも容易に距離方向の分解能を上げることのでき
るレーザレーダ三次元形状計測装置を提供することがで
きる。
As described above, according to the present invention, a three-dimensional shape of a measurement target is obtained based on a combined optical signal of a plurality of reflected laser lights generated by irradiating the measurement target with a plurality of laser lights. As a result, it is possible to provide a laser radar three-dimensional shape measuring apparatus capable of performing accurate measurement from a long distance and easily increasing the resolution in the distance direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係るレーザレーダ三次元
形状計測装置の概略構成を示す図
FIG. 1 is a diagram showing a schematic configuration of a laser radar three-dimensional shape measuring apparatus according to an embodiment of the present invention.

【図2】同実施形態における二つのレーザ光の走査を説
明するための図
FIG. 2 is a diagram for explaining scanning of two laser beams in the same embodiment.

【図3】同実施形態における計測対象までの距離に対す
る二つのレーザ光の光強度を示す図
FIG. 3 is a diagram showing light intensities of two laser lights with respect to a distance to a measurement target in the same embodiment.

【図4】同実施形態における合成光強度の時間変化の例
を示す図
FIG. 4 is a diagram showing an example of a temporal change of combined light intensity in the same embodiment.

【図5】同実施形態における計測地点による合成光強度
の違いを示す図
FIG. 5 is a diagram showing a difference in combined light intensity depending on measurement points in the same embodiment.

【図6】同実施形態における周波数分析の結果の例を示
す図
FIG. 6 is a diagram showing an example of a result of frequency analysis in the same embodiment.

【図7】同実施形態において計測された三次元形状の例
を示す図
FIG. 7 is a diagram showing an example of a three-dimensional shape measured in the same embodiment.

【符号の説明】[Explanation of symbols]

1…レーザ光発生装置 2…光分岐器 3…偏向装置 4…光検出器 5…周波数分析器 6…距離情報算出器 7…角度情報処理器 8…三次元形状算出器 9…表示装置 10…計測対象 DESCRIPTION OF SYMBOLS 1 ... Laser light generator 2 ... Optical branching device 3 ... Deflection device 4 ... Photodetector 5 ... Frequency analyzer 6 ... Distance information calculator 7 ... Angle information processor 8 ... Three-dimensional shape calculator 9 ... Display device 10 ... Target of measurement

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】波長の異なる複数のレーザ光を計測対象の
同一箇所に同時に照射しつつ計測対象を走査するレーザ
走査手段と、 前記計測対象からの複数の反射レーザ光の合成光信号を
検出する光検出手段と、 この光検出手段の出力信号を処理して前記計測対象の三
次元形状を求める信号処理手段とを備えたことを特徴と
するレーザレーダ三次元形状計測装置。
1. A laser scanning unit that scans a measurement target while simultaneously irradiating the same position of the measurement target with a plurality of laser lights having different wavelengths, and detects a combined optical signal of a plurality of reflected laser lights from the measurement target. A laser radar three-dimensional shape measuring device comprising: a light detecting means; and a signal processing means for processing an output signal of the light detecting means to obtain a three-dimensional shape of the measurement target.
【請求項2】前記信号処理手段は、前記光検出手段の出
力信号を周波数分析し、この分析結果を前記計測対象の
距離情報に変換して、この距離情報および前記複数のレ
ーザ光の角度情報から前記計測対象の三次元形状を求め
ることを特徴とする請求項1に記載のレーザレーダ三次
元形状計測装置。
2. The signal processing means frequency-analyzes the output signal of the light detecting means, converts the analysis result into distance information of the measurement object, and the distance information and angle information of the plurality of laser beams. The laser radar three-dimensional shape measuring apparatus according to claim 1, wherein the three-dimensional shape of the measurement target is obtained from the above.
JP11382196A 1996-05-08 1996-05-08 Laser radar 3-d form measurement device Pending JPH09297014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11382196A JPH09297014A (en) 1996-05-08 1996-05-08 Laser radar 3-d form measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11382196A JPH09297014A (en) 1996-05-08 1996-05-08 Laser radar 3-d form measurement device

Publications (1)

Publication Number Publication Date
JPH09297014A true JPH09297014A (en) 1997-11-18

Family

ID=14621898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11382196A Pending JPH09297014A (en) 1996-05-08 1996-05-08 Laser radar 3-d form measurement device

Country Status (1)

Country Link
JP (1) JPH09297014A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518037A (en) * 2003-02-19 2006-08-03 ライカ ジオシステムズ アクチェンゲゼルシャフト Method and apparatus for obtaining geodetic distance data
KR101145132B1 (en) * 2010-10-27 2012-05-14 한국과학기술원 The three-dimensional imaging pulsed laser radar system using geiger-mode avalanche photo-diode focal plane array and auto-focusing method for the same
WO2013176362A1 (en) * 2012-05-22 2013-11-28 한국생산기술연구원 3d scanning system, and method for obtaining 3d images using said system
KR101357051B1 (en) * 2012-05-22 2014-02-04 한국생산기술연구원 Three dimensional scanning system and three dimensional image acqusition method using the same
WO2018035861A1 (en) * 2016-08-26 2018-03-01 SZ DJI Technology Co., Ltd. Optical structure for extending laser radar scanning range of uavs and other objects, and associated systems and methods
KR20190099302A (en) * 2016-12-30 2019-08-26 이노뷰전 아일랜드 리미티드 Multiwavelength Lidar Design
CN110398211A (en) * 2019-05-24 2019-11-01 上海申稷光电科技有限公司 A kind of modeling method and its system and device of large size static object
CN110726382A (en) * 2018-07-17 2020-01-24 卡尔蔡司工业测量技术有限公司 Device and method for detecting the surface of an object by means of an electromagnetic beam
CN115615344A (en) * 2022-12-06 2023-01-17 中国地质环境监测院(自然资源部地质灾害技术指导中心) Surface deformation monitoring method and device, electronic equipment and storage medium
US11927696B2 (en) 2018-02-21 2024-03-12 Innovusion, Inc. LiDAR systems with fiber optic coupling

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518037A (en) * 2003-02-19 2006-08-03 ライカ ジオシステムズ アクチェンゲゼルシャフト Method and apparatus for obtaining geodetic distance data
US7982859B2 (en) 2003-02-19 2011-07-19 Leica Geosystems Ag Method and device for deriving geodetic distance data
KR101145132B1 (en) * 2010-10-27 2012-05-14 한국과학기술원 The three-dimensional imaging pulsed laser radar system using geiger-mode avalanche photo-diode focal plane array and auto-focusing method for the same
US9091535B2 (en) 2012-05-22 2015-07-28 Korea Institute Of Industrial Technology 3D scanning system and method of obtaining 3D image
KR101357051B1 (en) * 2012-05-22 2014-02-04 한국생산기술연구원 Three dimensional scanning system and three dimensional image acqusition method using the same
CN103608696A (en) * 2012-05-22 2014-02-26 韩国生产技术研究院 3D scanning system, and method for obtaining 3D images using said system
WO2013176362A1 (en) * 2012-05-22 2013-11-28 한국생산기술연구원 3d scanning system, and method for obtaining 3d images using said system
WO2018035861A1 (en) * 2016-08-26 2018-03-01 SZ DJI Technology Co., Ltd. Optical structure for extending laser radar scanning range of uavs and other objects, and associated systems and methods
KR20190099302A (en) * 2016-12-30 2019-08-26 이노뷰전 아일랜드 리미티드 Multiwavelength Lidar Design
KR20230093356A (en) * 2016-12-30 2023-06-27 이노뷰전, 인크. Multiwavelength lidar design
US11953601B2 (en) 2016-12-30 2024-04-09 Seyond, Inc. Multiwavelength lidar design
US11927696B2 (en) 2018-02-21 2024-03-12 Innovusion, Inc. LiDAR systems with fiber optic coupling
CN110726382A (en) * 2018-07-17 2020-01-24 卡尔蔡司工业测量技术有限公司 Device and method for detecting the surface of an object by means of an electromagnetic beam
CN110398211A (en) * 2019-05-24 2019-11-01 上海申稷光电科技有限公司 A kind of modeling method and its system and device of large size static object
CN115615344A (en) * 2022-12-06 2023-01-17 中国地质环境监测院(自然资源部地质灾害技术指导中心) Surface deformation monitoring method and device, electronic equipment and storage medium

Similar Documents

Publication Publication Date Title
US10725179B2 (en) Laser tracker
US5141317A (en) Method of optoelectronically measuring distances and angles
US10436572B2 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring probe
JPH09297014A (en) Laser radar 3-d form measurement device
JP4026929B2 (en) Interference measuring device
US5519491A (en) Process for measuring the inclination of boundary areas in an optical system using interferometry to extract reflections from disturbance-generating boundary areas
JPH10332354A (en) Interference measuring device
JP3333236B2 (en) Optical surface profile measuring device
JP2001033209A (en) Range finder
JP2023546169A (en) Technology for automatically adjusting detection threshold in FMCW-LIDAR system
JPH10267624A (en) Measuring apparatus for three-dimensional shape
JPS6371675A (en) Laser distance measuring instrument
JP3236941B2 (en) Distance measurement method for lightwave distance meter
JPH1038536A (en) Three dimensional shape measuring device
JPH10293010A (en) Dimension measurement method and device using 2-beam optical scanning
JP3546126B2 (en) 3D shape measuring device
JPH11304469A (en) Range finder
JP2924754B2 (en) Optical differential velocity meter
JPS6275363A (en) Laser distance measuring apparatus
JP2520431B2 (en) Minute dimension measurement method using laser light
JP3037852B2 (en) Microstructure measuring device
JPH0267986A (en) Optical heterodyne detector
JP2001174240A (en) Method and apparatus for measuring planarity
JPH1038526A (en) Laser scan type dimension measurement device
JPS6348403A (en) Displacement detecting device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030930