JPS63173902A - Method for measuring minute dimension - Google Patents

Method for measuring minute dimension

Info

Publication number
JPS63173902A
JPS63173902A JP62005790A JP579087A JPS63173902A JP S63173902 A JPS63173902 A JP S63173902A JP 62005790 A JP62005790 A JP 62005790A JP 579087 A JP579087 A JP 579087A JP S63173902 A JPS63173902 A JP S63173902A
Authority
JP
Japan
Prior art keywords
light
beams
voltage
phase
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62005790A
Other languages
Japanese (ja)
Other versions
JPH0781829B2 (en
Inventor
Hiroo Fujita
宏夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP62005790A priority Critical patent/JPH0781829B2/en
Publication of JPS63173902A publication Critical patent/JPS63173902A/en
Publication of JPH0781829B2 publication Critical patent/JPH0781829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To detect an edge position with high accuracy even when the difference in level at an edge part is the wavelength of beam or less, by detecting the change in the length of the beam path at the difference-in-level part of an edge by an optical heterodyne interference method. CONSTITUTION:The laser beam from a laser beam source 10 is projected on an acousto-optical element AO 11 which is, in turn, excited at the modulated frequency fd+fm of the frequency (fa) in an AO driver 12 and the frequency fm of an external AC power source 14 and, therefore, the laser beam is divided into beams of two frequencies to be projected on a beam splitter 151. The beam reflected by the beam splitter 151 becomes a reference signal 180 and the transmitted beam from said splitter 151 is reflected from an object to be measured to become an object reflected beam signal 170. When the beam paths of two beams on the measuring surface are different, phase shift is generated by optical heterodyne interference and, therefore, by comparing said phase shift with the phase of the reference beam signal 180, an edge part is detected. The direction of beam is changed by changing the voltage Vd of a DC voltage source 13 and an edge position is detected from the voltage obtained when the edge part is detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 〔発明の背景〕 近年の精密機械工業の進歩により被加工物のマイクロ化
及び高精度化が進み、集積回路、磁気ヘッドの分野にお
いても微細加工が行なわれ、その微細加工される寸法は
1ミクロン≠〒−V # 、(μmm:りのオーダに達
し、サブミクロンメートル以下の精度で寸法を計測する
必要性が高まってきている。
[Detailed Description of the Invention] [Industrial Field of Application] [Background of the Invention] With the recent progress in the precision machinery industry, workpieces have become increasingly micro-sized and highly precise. Processing is performed, and the finely machined dimensions reach the order of 1 micron≠〒-V# (μmm: ri), and there is an increasing need to measure dimensions with an accuracy of submicron meters or less.

〔従来の技術〕[Conventional technology]

従来技術の1つの方法として、微小な寸法を有する被測
定物を照明して顕微鏡で数千倍の倍率に拡大して、拡大
された像をイメージセンサ−で受光して寸法を測定する
方法が多く用いられている。
One method in the prior art is to illuminate an object to be measured with minute dimensions, magnify it several thousand times with a microscope, and measure the dimensions by receiving the magnified image with an image sensor. It is often used.

これはイメージセンサ−によって発せられる受光された
像のビデオ信号を予め設定されたスライスレベルの値で
2値化して、2値化された信号の立ち下がりと立ち上が
り間にふくまれるイメージセンサ−の画素のピッチを計
数して寸法を求めるものである。
This process binarizes the video signal of the received image emitted by the image sensor at a preset slice level value, and processes the pixels of the image sensor that are included between the falling and rising edges of the binarized signal. The dimensions are determined by counting the pitch.

従来技術の他の方法として、微小なスポット径に集光し
たレーザ光を被測定物に照射し、音響光学素子(A・0
)の光偏向作用を用いて被測定物の2つのエッヂ部の間
の面上でレーザ光を電気的制御によりスキャンさせ、特
に2つのエッヂ部付近からの反射光の強度変化を解析し
てエッヂ位置を検出し、2つのエッヂの間の光偏向に要
した音響光学素子の偏向量から寸法を計測する技術があ
る。この技術は本願発明者からの特許出願の特開昭58
−170762号公報及び特開昭59−79772号公
報に詳述されている。
Another method of the prior art is to irradiate the object to be measured with a laser beam focused on a minute spot diameter, and use an acousto-optic element (A.
) is used to electrically scan the laser beam on the surface between the two edges of the object to be measured, and in particular analyze the intensity changes of the reflected light from near the two edges. There is a technique that detects the position and measures the dimensions from the amount of deflection of the acousto-optic element required to deflect light between two edges. This technology was applied for a patent by the inventor of the present application in Japanese Patent Application Laid-Open No. 58.
This is detailed in Japanese Patent Application Laid-open No. 170762 and Japanese Patent Application Laid-Open No. 59-79772.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術の前者で述べたイメージセンサ−による2値化
処理方法は安定した2値化処理を行なうために4明暗の
S/N比のよいコントラストが得られてスライスレベル
の値が安定していることが必要であるが、被測定物の寸
法を測定すべき部分の凸部あるいは凹部と基材部とのコ
ントラスト比が悪い場合は2値化のためのスライスレベ
ル値が不安定となり測定精度が低下する。
The binarization processing method using an image sensor described in the former part of the conventional technology achieves a good contrast with a good S/N ratio of 4 bright and dark areas and stabilizes slice level values in order to perform stable binarization processing. However, if the contrast ratio between the protrusions or depressions of the part where the dimensions of the object to be measured are to be measured and the base material is poor, the slice level value for binarization will become unstable and the measurement accuracy will deteriorate. descend.

従来技術の後者で述べた音響光学素子の光偏向を利用す
る方法は被測定物の寸法を測定すべき部分の凸部あるい
は凹部を構成するエッヂ部と基材部の段差(高さ)が小
さくて、照射する集光されたレーザ光の焦点深度内であ
る場合には、エッヂ部からの反射光と基材部からの反射
光の強度変化が少なくなりエッヂ位置を精度よく検出す
ることができず寸法測定精度が低下する。
The method using the optical deflection of an acousto-optic element mentioned in the latter part of the conventional technology has a small step (height) between the edge part that constitutes the convex part or the concave part of the part where the dimension of the object to be measured is to be measured and the base material part. If the depth of focus is within the focal depth of the focused laser beam to be irradiated, the change in the intensity of the reflected light from the edge portion and the reflected light from the base material portion will be reduced, making it possible to accurately detect the edge position. This will reduce the accuracy of dimensional measurement.

本発明は上述した従来の計測法の問題点を解消させて、
特に寸法を測定する部分のコントラスト比が悪い場合、
エッヂ部と基材部の段差が小さい場合に高精度で微小な
寸法を安定して計測することが可能な微小寸法測定方法
を提供することを目的とする。
The present invention solves the problems of the conventional measurement method described above, and
Especially if the contrast ratio of the area where the dimensions are measured is poor,
It is an object of the present invention to provide a method for measuring minute dimensions that can stably measure minute dimensions with high precision when the step difference between an edge part and a base material part is small.

〔問題点を解決するための手段〕[Means for solving problems]

レーザ光源から発せられるレーザ光を音響光学素子に入
射し、直流電圧と交流電圧を人力とすることによって動
作せられる音響光学素子ドライバーで前記の音響光学素
子の光学動作を制御せしめて該音響光学素子から互いに
異なる周波数を有し、互いに異なる方向に進行する2ビ
ーム光を発生せしめ、該2ビーム光の進行方向を互いに
異なる2つの方向に分離せしめて、分離せられた一方の
2ビーム光を集光して寸法が測定される被測定物の面上
に照射せしめて該被測定物からの反射光を受光して物体
反射光信号を作成すると共に、前記の分離せられた他方
の2ビーム光は直接に受光して参照光信号を作成すると
き、前記の音響光学素子ドライバーに入力する交流電圧
信号の周波数を制御して前記の2ビーム光の間のなす角
度を制御すると共に、前記の音響光学素子ドライバーに
入力する直流電圧信号の電圧を制御して前記の分離せら
れた一方の2ビーム光を前記の被測定物の面上で予め定
められた距離毎に光偏向せしめ、各々の光偏向状態毎に
前記の物体反射光信号と前記の参照光信号との間の位相
を検出せしめ、前記の光偏向を行なわせる直流電圧の関
数となる前記の位相データから前記の被測定物の2−ノ
のエッヂに対応する位相の間を光偏向させた前記の直流
電圧の電圧差から寸法を算出するものである。
Laser light emitted from a laser light source is incident on an acousto-optic element, and the optical operation of the acousto-optic element is controlled by an acousto-optic element driver operated by applying direct current voltage and alternating current voltage to the acousto-optic element. generates two beams of light having mutually different frequencies and traveling in mutually different directions, separates the traveling directions of the two beams into two different directions, and focuses the separated two beams of light. The light beam is irradiated onto the surface of the object to be measured, the dimensions of which are to be measured, and the reflected light from the object is received to create an object reflected light signal. When directly receiving light to create a reference optical signal, the frequency of the AC voltage signal input to the acousto-optic element driver is controlled to control the angle formed between the two beams, and the acoustic By controlling the voltage of the DC voltage signal input to the optical element driver, one of the two separated beams is deflected by a predetermined distance on the surface of the object to be measured, and each beam is The phase between the object reflected light signal and the reference light signal is detected for each deflection state, and the phase data of the object to be measured is determined from the phase data that is a function of the DC voltage that causes the light deflection to be performed. The dimensions are calculated from the voltage difference between the DC voltages that are used to deflect light between the phases corresponding to the edges of -.

〔作用〕[Effect]

以上の方法によって微小寸法測定を行なうとき、音響光
学素子の有する光偏向動作及び光周波数シフト動作を用
いて、微小なスポット径に集光して接近した距離にある
2本のレーザ光を被測定物面上で光偏向させながら光ヘ
テロゲイン干渉を行なわせる。被測定物のエッヂ部分に
2ビーム光が照射されると、エッヂ部の段差により2ビ
ーム光の間の光路長が変化するため、光ヘテロダイン干
渉により位相の変化が起こり、電気的に位相の変化を検
出する。2つのエッヂ部に相当する位相の間を光偏向さ
せた電圧差から寸法を求めるものである。
When performing minute dimension measurements using the above method, the optical deflection operation and optical frequency shift operation of the acousto-optic element are used to focus two laser beams at a close distance to a minute spot diameter to be measured. Optical heterogain interference is performed while deflecting light on the object surface. When two beams of light are irradiated onto the edge of the object to be measured, the optical path length between the two beams changes due to the step at the edge, causing a phase change due to optical heterodyne interference, which causes an electrical phase change. Detect. The dimensions are determined from the voltage difference when light is deflected between phases corresponding to two edge portions.

〔実施例〕〔Example〕

以下に本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の微小寸法測定方法を説明するシステム
ブロック図である。
FIG. 1 is a system block diagram illustrating the minute dimension measurement method of the present invention.

10はレーザ光源で例えばHe −N e ’v−ザ発
振を行なってレーザ光100を放射する。11は音響光
学素子(以下にA・0と略記する)、12はA−011
の光学動作を制御するための音響光学素子ドライバー(
以下にA・0ドライバーと略記する)、16はA−0ド
ライバー12に直流電圧を入力させる直流電圧源で例え
ばO〜1ボルトの範囲の直流電圧Vdを発生させる。1
4はA・0ドライバー12に交流電圧を入力させる交流
電圧源で周波数fmの交流信号を発生させる。ここでA
・0ドライバー12は電圧制御発振器(以下vCOと略
記する)、ダブルバランスミキサー、高周波電力増幅器
等の要素から構成されるもので、米国イントラアクショ
ン社から例えば商品名DE−40Mとして販売されてい
る。A・0ドライバー12は直流電圧源13から直流電
圧Vdを印加するとA・0ドライバー12を構成するv
COにより周波数fdの高周波信号が発せられ、交流電
圧源14から印加される周波数fmの交流信号とダブル
バランスミキサーでA−M変調されて周波数fd±fm
の2周波成分を持つ交流信号が作成され、高周波電力増
幅器にて増幅されてA・011にf d :f:f m
周波数成分の高周波信号が印加される。A・011は前
述の2周波成分を持つ交流信号fd±fmを有するA・
0駆動信号121により駆動されて周波数が異なり、か
つ進行方向も異なる2ビーム光101.102を発生す
る。
A laser light source 10 emits a laser beam 100 by performing, for example, He-N e 'v-laser oscillation. 11 is an acousto-optic element (hereinafter abbreviated as A.0), 12 is A-011
an acousto-optic driver (
(hereinafter abbreviated as A-0 driver), 16 is a DC voltage source that inputs DC voltage to the A-0 driver 12, and generates a DC voltage Vd in the range of 0 to 1 volt, for example. 1
Reference numeral 4 denotes an AC voltage source that inputs an AC voltage to the A.0 driver 12 and generates an AC signal with a frequency fm. Here A
- The 0 driver 12 is composed of elements such as a voltage controlled oscillator (hereinafter abbreviated as vCO), a double balance mixer, a high frequency power amplifier, etc., and is sold by Intraaction, Inc. of the United States under the trade name DE-40M, for example. The A.0 driver 12 forms the A.0 driver 12 when DC voltage Vd is applied from the DC voltage source 13.
A high frequency signal with a frequency fd is emitted by the CO, which is A-M modulated by a double balance mixer with an AC signal with a frequency fm applied from the AC voltage source 14 to obtain a frequency fd±fm.
An alternating current signal with two frequency components is created, amplified by a high frequency power amplifier, and outputted to A.011 as f d :f:f m
A high frequency signal of frequency components is applied. A.011 has the above-mentioned AC signal fd±fm with two frequency components.
It is driven by a zero drive signal 121 to generate two beams of light 101 and 102 having different frequencies and different traveling directions.

A・011に入射するレーザ光の周波数をf。とじたと
き2ビーム光101及び102は各々fo +f d+
f m−fo +f df mの周波数を持つことにな
る。このときA−011から発せられる2ビーム光10
1,102の進行方向を直流電圧源16からの直流電圧
で制御し、2ビーム光101.102の間のなす角度θ
mを交流電圧源14の周波数で制御することができる。
The frequency of the laser beam incident on A.011 is f. When closed, the two beams of light 101 and 102 each become fo +f d+
It has a frequency of f m - fo + f df m. At this time, two beams of light 10 emitted from A-011
1,102 is controlled by the DC voltage from the DC voltage source 16, and the angle θ formed between the two beams 101 and 102 is
m can be controlled by the frequency of the AC voltage source 14.

15はA・011を含む光学系で、A・011によって
発せられた2ビーム光101.102の進行方向をビー
ムスプリッタ−151により互いに異なる2つの方向に
分離する。分離された一方の2ビーム光はビーム光10
6及びビーム光104として進行し、対物レンズ152
により集光され寸法が測定される被測定物16に照射さ
れる。被測定物16による反射光を再びビームスプリッ
タ−151で進路を変え、物体反射光107及び108
として取り出し第1の光電変換部17で受光して電流−
電圧変換を行ない物体反射光信号170を作る。ビーム
スプリッタ−151で分離された他方の2ビーム光は1
05及び106として進行し第2の光電変換部18で受
光され電流−電圧変換を行ない参照光信号180を作る
Reference numeral 15 denotes an optical system including A.011, in which the traveling directions of two beams of light 101 and 102 emitted by A.011 are separated into two different directions by a beam splitter 151. One of the two separated beams is beam light 10.
6 and beam light 104, and passes through the objective lens 152.
The light is focused and irradiated onto the object 16 whose dimensions are to be measured. The reflected light from the object to be measured 16 is again diverted by the beam splitter 151 and becomes the object reflected light 107 and 108.
The light is taken out and received by the first photoelectric conversion unit 17, and the current -
Voltage conversion is performed to create an object reflected light signal 170. The other two beams separated by the beam splitter 151 are 1
05 and 106, the light is received by the second photoelectric converter 18, current-voltage conversion is performed, and a reference optical signal 180 is generated.

前述した如く、周波数の異なる2つの光波を干渉させる
と光ヘテロダイン干渉が起こる。光ヘテロダイン干渉に
ついては参考文献 光学9.5(1980)  P26
6に詳述されている。干渉される2ビーム光の周波数を
f。+fd+fm。
As mentioned above, optical heterodyne interference occurs when two light waves with different frequencies are made to interfere. For information on optical heterodyne interference, refer to Optics 9.5 (1980) P26
6. The frequency of the two beams of light to be interfered with is f. +fd+fm.

fo+fd  fmとすると各々の光の電界E1、E、
は、 E1=At eXp(i ・2ff(fo +f d+
fm) t+φ、) ・・・■Ex =A4 eXI)
(i ・27r(fo +f d−fm) t+φ、)
’−・・■で表わされる。ここでA、 、A、は光波の
振幅。
If fo+fd fm, the electric fields of each light E1, E,
is E1=At eXp(i ・2ff(fo +f d+
fm) t+φ,) ...■Ex =A4 eXI)
(i ・27r(fo +f d-fm) t+φ,)
'−...It is represented by ■. Here, A, , A, is the amplitude of the light wave.

φ8、φ、は位相である。電界E1の光波と電界E2の
光波を干渉させて光検出器で光電変換をしたときの光強
度工は I =A1” +A2” +2A、A、 C03(2π
Δft+Δφ)・・・■但しΔf=2fm、Δφ=φ1
−φ2である。
φ8 and φ are phases. When light waves in electric field E1 and light waves in electric field E2 are caused to interfere and photoelectric conversion is performed by a photodetector, the light intensity is I = A1" + A2" +2A, A, C03 (2π
Δft+Δφ)...■ However, Δf=2fm, Δφ=φ1
−φ2.

このように光ヘテロダイン干渉によって光波の持つ差の
周波数の電気的なビート信号が作成され、その位相差Δ
φを測定することにより電界C1の光波、電界E、の光
波に含まれる光の領域での情報を検出することができる
In this way, optical heterodyne interference creates an electrical beat signal with a frequency difference between the light waves, and the phase difference Δ
By measuring φ, information in the region of light included in the light waves of the electric field C1 and the light waves of the electric field E can be detected.

ここで参照光信号180と物体反射光信号170とは同
じ2fmなる周波数のビート信号で位相が異なる。参照
光信号180は2ビーム光105.106が時間的には
同じ位相状態に保たれるため第2の光電変換部18で干
渉させたときの位相項(■式のΔφ)は常に一定値φr
である。
Here, the reference optical signal 180 and the object reflected optical signal 170 are beat signals having the same frequency of 2 fm, but have different phases. Since the two beams 105 and 106 of the reference optical signal 180 are kept in the same phase state temporally, the phase term (Δφ in the equation ■) when they are interfered with in the second photoelectric converter 18 is always a constant value φr.
It is.

これに対して物体反射光信号170は2ビーム光107
.108が被測定物16の凹凸によりて光路差を変える
ために位相項が変化する。物体反射光信号170による
位相を一般的にφSで表わす。
On the other hand, the object reflected light signal 170 is the two-beam light 107
.. Since 108 changes the optical path difference due to the unevenness of the object to be measured 16, the phase term changes. The phase of the object reflected light signal 170 is generally expressed as φS.

19は位相比較器で参照光信号180と物体反射光信号
170の間の位相を比較する。
A phase comparator 19 compares the phases between the reference optical signal 180 and the object reflected optical signal 170.

■式で明らかな如く干渉された光強度工を表わす電気信
号は直流成分がA、”+A2% 、交流成分が2A、A
、C03(2TΔft+Δφ)となり、位相検出は直流
成分をカットして交流成分で行なうのが望ましい。また
位相はφr、φSの単独では意味をなさず、位相の差の
絶対値1φr−φslが意味を持つ。
■As is clear from the formula, the electrical signal representing the interfered light intensity has a DC component of A, ``+A2%, and an AC component of 2A, A.
, C03 (2TΔft+Δφ), and it is desirable to cut the DC component and perform phase detection using the AC component. Further, the phase does not have any meaning when φr and φS alone, but the absolute value of the phase difference 1φr−φsl has meaning.

20は光量検出部で物体反射光信号170の直流成分の
A−+A2” 、あるいは交流成分の振幅2AIA、を
検出する。このとき被測定物16のエッヂ間を2ビーム
光103,104が光偏向されて各光偏向された状態毎
で、物体反射光信号170の光量が(Px、Pt・・・
・・・、Pn)の光量データ(Pi)、位相差が(φS
、−φr、φSt−φr・・、・・・・φSn−φr)
のデータ(φi)が得られる。但しnは光偏向を行なわ
せる回数である。
20 is a light amount detection unit that detects the DC component A-+A2" or the AC component amplitude 2AIA of the object reflected light signal 170. At this time, two beams of light 103 and 104 are optically deflected between the edges of the object to be measured 16. For each state in which the light is deflected, the amount of light of the object reflected light signal 170 is (Px, Pt...
..., Pn), the light amount data (Pi), the phase difference is (φS
, -φr, φSt-φr...φSn-φr)
The data (φi) is obtained. However, n is the number of times the light is deflected.

21は寸法算出部で、位相データ(φi)と光量データ
(Pi)から被測定物16のエッヂ、μ置を判定して、
そのエッヂの間を光偏向するのに要した直流電圧源13
の電圧差から被測定物16のエッヂ間距離即ち寸法を算
出する。さらには直流電圧源16、交流電圧源14の制
御も行なわせる。
21 is a dimension calculation unit that determines the edge and μ position of the object to be measured 16 from the phase data (φi) and the light amount data (Pi),
DC voltage source 13 required to deflect light between the edges
The distance between the edges, that is, the dimension of the object to be measured 16 is calculated from the voltage difference. Furthermore, the DC voltage source 16 and the AC voltage source 14 are also controlled.

ここでエッヂ位置を判定するメインとする情報は位相デ
ータ(φi)であり、光量データ(Pi)はチェック用
に用いるため被測定物16によっては必ずしも光量デー
タ(Pi)は必要としない。
Here, the main information for determining the edge position is the phase data (φi), and the light amount data (Pi) is used for checking, so depending on the object to be measured 16, the light amount data (Pi) is not necessarily required.

第2図に被測定物上で2ビーム光を光偏向させるときの
状態図を示す。第2図において被測定物16の上部平面
部を161、下部平面部を162、左側エッヂを16,
6、右側エッヂを164で表わし上部平面部161と下
部平面部1620段差をΔhで表わし、左右のエッヂ間
距離10を測定するものとする。
FIG. 2 shows a state diagram when two beams of light are optically deflected on an object to be measured. In FIG. 2, the upper plane part of the object to be measured 16 is 161, the lower plane part is 162, the left edge is 16,
6. The right edge is represented by 164, the step difference between the upper flat part 161 and the lower flat part 1620 is represented by Δh, and the distance 10 between the left and right edges is measured.

2ビーム光103.104の間の距離りは交流電圧源1
4からの周波数fm及び光学系15の対物レンズ152
の焦点距離等によって決めることができ、照射される各
々のビームスポット径程度の値に設定するのが望ましい
。2ビーム光の光偏向を((イ)→(ロ)→e1→に)
→(ホ)の順に行なわせる。このとき直流電圧源16か
ら発せられる電圧はステップ状に変化させる。光偏向の
ステップは2ビーム光の各々のビームスポット径よりも
細かいステップで行なうのがよい。
The distance between the two beams 103 and 104 is the AC voltage source 1
Frequency fm from 4 and objective lens 152 of optical system 15
It can be determined by the focal length of the beam, etc., and is preferably set to a value approximately equal to the diameter of each beam spot to be irradiated. Optical deflection of two beam light ((a)→(b)→e1→)
Have them do it in the order of →(e). At this time, the voltage emitted from the DC voltage source 16 is changed stepwise. It is preferable that the light deflection step be performed in steps smaller than the beam spot diameter of each of the two beams of light.

(イ)、(ハ)、(ホ)の状態では2ビーム光の間に光
路差が無いが、(ロ)、に)の場合はエッヂ166と1
64によって2ビーム光の間に光路差が存在するように
なる。
In the states (a), (c), and (e), there is no optical path difference between the two beams, but in the cases (b) and (b), the edges 166 and 1
64, an optical path difference exists between the two beams of light.

2ビーム光の波長をλ、光路差(段差)をΔh、測定さ
れた位相差をφとすれば Δh=λ°φ 4 T         ”’■ で表わされる。He −N eレーザの場合はλ=0.
63μmであるから位相差φが1°当りで8.8オング
ストロームの光路差に相当する。位相差は電気的に検出
されるが位相差として±Eの領↓ 域で検出される場合は1Δh1≦1”=i0.16μm
であるが、±Tを超える位相角になる光路差の場。
If the wavelength of the two beams is λ, the optical path difference (step) is Δh, and the measured phase difference is φ, it is expressed as Δh=λ°φ 4 T "'■. In the case of a He-N e laser, λ= 0.
Since it is 63 μm, the phase difference φ corresponds to an optical path difference of 8.8 angstroms per 1°. The phase difference is electrically detected, but if the phase difference is detected in the ±E region↓ then 1Δh1≦1”=i0.16μm
However, the field of optical path difference results in a phase angle exceeding ±T.

合でも、位相角だけの情報ではなく、反射光の反射角度
変化や反射光量を同時に測定することによって位相角を
補正することができる。
Even in the case where the phase angle is not the only information, the phase angle can be corrected by simultaneously measuring the change in the reflection angle of the reflected light and the amount of reflected light.

第3図に第2図に示した光偏向を行なわせたときの位相
の波形図を示す。
FIG. 3 shows a phase waveform diagram when the optical deflection shown in FIG. 2 is performed.

前述した如く位相差はエッヂ部で大きく変化し、第2図
の(ロ)とに)の場合では位相角の変化の符号が反転す
る。従って第2図の(ロ)に対応するエッヂ部163で
は波形31に示すように位相差が上に凸、第2図のに)
に対応するエッヂ部164では波形62に示すように位
相差が下に凸で最大値を示す。
As described above, the phase difference changes greatly at the edge portion, and in the case (b) and (b) of FIG. 2, the sign of the change in phase angle is reversed. Therefore, in the edge portion 163 corresponding to (b) in Fig. 2, the phase difference is convex upward as shown in the waveform 31, (in Fig. 2)
At the edge portion 164 corresponding to the waveform 62, the phase difference is convex downward and exhibits the maximum value.

他の部分では位相差がゼロである。この位相差は前述の
如く(φS−φr)で与えられるが平面部での位相差が
ゼロになるように、例えば参照光信号の位相φrを調整
すればよい。この位相差が最大となる波形31と波形3
2の2点での光偏向電圧Vl、Vrの電圧差ΔVeから
寸法を算出する。
In other parts, the phase difference is zero. As described above, this phase difference is given by (φS - φr), but for example, the phase φr of the reference optical signal may be adjusted so that the phase difference in the plane portion becomes zero. Waveform 31 and waveform 3 where this phase difference is maximum
The dimensions are calculated from the voltage difference ΔVe between the optical deflection voltages Vl and Vr at the two points of 2.

これには予め寸法が既知の被測定物について本発明の方
法により前述のΔVeを測定しておき、ΔVeと寸法と
の間の相関係数を算出しておけばよい。
For this purpose, the above-mentioned ΔVe may be measured in advance using the method of the present invention for an object to be measured whose dimensions are known, and the correlation coefficient between ΔVe and the dimensions may be calculated.

第2図と第3図で述べた例ではエッヂ部での段、λ 差Δhか1よりも小さくて、位相差の角度がlff+を
超えないために位相差のピークが直接に得られた例であ
った。この場合はまた上部平面部161と下部平面部1
62が同じ程度の反射率を持つ材質から構成されている
場合は光偏向を行なわせても各点での反射光の光強度の
変化は殆ど起らない。
In the example described in Figures 2 and 3, the peak of the phase difference was directly obtained because the stage at the edge, the λ difference Δh, was smaller than 1 and the angle of the phase difference did not exceed lff+. Met. In this case, the upper plane part 161 and the lower plane part 1
If 62 is made of a material having a similar reflectance, there will be almost no change in the light intensity of the reflected light at each point even if the light is deflected.

(Δhが0.16μmより小さいため照射されるレーザ
光の焦点深度内にあるためである。)特にこのような場
合の寸法計測に本発明の方法は有効である。第4図にエ
ッヂ部の段差Δhによる位相差が0式に対応して11を
超える場合の位相差検出の例を示す。
(This is because Δh is smaller than 0.16 μm, which is within the depth of focus of the irradiated laser beam.) The method of the present invention is particularly effective for dimension measurement in such cases. FIG. 4 shows an example of phase difference detection when the phase difference due to the step difference Δh at the edge exceeds 11, corresponding to equation 0.

第4図(イ)は位相角とΔhの関係を示したものである
。位相角を±rで測定する場合は、例えば0、A、Pl
の状態で01の位相角(θ、〈7′r)の場合には2ビ
ーム光103と104の間で、例えばビーム104が光
路長が長い状態、01C1P、の状態で位相角θ2 (
−π〈θ2くO)の場合には同じくビーム106の光路
長が長い状態に対応するが、(第2図、第3図での実施
例は前述の場合である)例えばθ2の位相角に対応する
状態でΔhがInを超えて0、C,B、P、の位相角θ
1−2Tの状態になっても実際に測定される位相角はθ
、であるため、位相が連続せず位相角の符号と大きさの
ジャンプが起こる。
FIG. 4(A) shows the relationship between the phase angle and Δh. When measuring the phase angle at ±r, for example, 0, A, Pl
In the case of a phase angle (θ, <7'r) of 01 in the state of , the phase angle θ2 (
The case of −π〈θ2×O) similarly corresponds to a state in which the optical path length of the beam 106 is long, but (the embodiments in FIGS. 2 and 3 are the above-mentioned cases), for example, the phase angle of θ2 In the corresponding state, Δh exceeds In and the phase angle θ of 0, C, B, P,
Even in the state of 1-2T, the phase angle actually measured is θ
, the phase is not continuous and a jump occurs in the sign and magnitude of the phase angle.

第4図(ロ)は第3図に対応してΔhが太き(なったと
きの位相角の変化を表わす図である。位相角は前述の(
φS−φr)で測定されるから、今φr=0とおくと2
ビーム光の間の位相差が直接に観測される。Δhによる
位相差がTを超えるとき波形41は位相差がπの状態で
あるから、Tを超えると急に位相のジャ、ンプが起こり
符号が反転された波形42の状態となる。波形43の位
相状態がエッヂ位置163であるが、波形42から波形
46までは位相の絶対値が減少する方向に変化する。従
って位相波形としては波形460位相状態を中心として
左右対称な波形が得られる。さらにエッヂ位置164で
は位相の符号が反転された波形が得られる。本実施例の
場合は位相の急激なジャンプが起こる領域内での位相の
絶対値の最小値を検出してエッヂ位置を判定できる。
FIG. 4 (b) is a diagram showing the change in phase angle when Δh becomes thick (corresponding to FIG. 3).
Since it is measured by φS - φr), if we set φr = 0, then 2
The phase difference between the beams of light is directly observed. When the phase difference due to Δh exceeds T, the waveform 41 is in a state where the phase difference is π, so when it exceeds T, a sudden phase jump occurs and the waveform 42 becomes the state in which the sign is inverted. The phase state of the waveform 43 is at the edge position 163, but from the waveform 42 to the waveform 46, the absolute value of the phase changes in the direction of decreasing. Therefore, as a phase waveform, a waveform that is symmetrical with respect to the waveform 460 phase state can be obtained. Further, at the edge position 164, a waveform whose phase sign is inverted is obtained. In the case of this embodiment, the edge position can be determined by detecting the minimum value of the absolute value of the phase within a region where a sudden jump in phase occurs.

次にΔhが更に大きくなりIn7N(n>2)の位相角
度以上になると位相変化は更に複雑な波形となる。この
ような場合は2ビーム光の間の光路差が更に大きくなる
ため反射光の光量変化が現われるようになる。
Next, when Δh becomes larger and becomes equal to or greater than the phase angle of In7N (n>2), the phase change becomes a more complicated waveform. In such a case, the optical path difference between the two beams of light becomes even larger, so that a change in the amount of reflected light appears.

第4図(/′1に反射光量の変化を示す。上部平面部1
61に照射する2ビーム光の焦点を合わせておけば、下
部平面部162では焦点の位置ズレが起こるために反射
光量が減少する。当然この反射光量変化の起こる領域d
、 、d、にエッヂ位置が存在することになる。このと
きの位相角の変化は複雑なパターンを示すため、定めら
れた領域内での位相変化の最大値あるいは最小値からエ
ッヂの判定は困難であるから、第4図に)に示すように
前述の領域dl、d、付近において位相角の変化の大き
さにあるスレショールドレベルを設けておキ位相変化を
2値化処理し、例えば矩形波44及び矩形波45に示す
ように2値化された位相の中央部間を光偏向させた電圧
差ΔVeを求めて寸法を計測すればよい。この場合も前
述の場合と同じ(寸法と光偏向電圧差ΔVeの関係につ
いての変換係数を求めておく必要がある。本実施例の場
合は位相角の細かい変動を処理する必要はなく、光量変
化!−タ(P i )と連動して各々のエッヂ毎ニスレ
ジl−ルドとなる位相角の変化の始めと終りを検出すれ
ばよい。またΔhが小さくて、上部平面部161と下部
平面部162にコントラストがつく場合にも(Pi)は
有効である。
Figure 4 (/'1 shows the change in the amount of reflected light. Upper flat part 1
If the focus of the two beams of light irradiated onto the lower plane portion 162 is adjusted, the amount of reflected light will decrease because the focal point will be shifted on the lower plane portion 162. Naturally, this area d where this change in the amount of reflected light occurs
There will be an edge position at , ,d. Since the change in phase angle at this time shows a complicated pattern, it is difficult to determine the edge from the maximum or minimum value of the phase change within a predetermined area. A threshold level is set for the magnitude of the change in phase angle near the regions dl and d, and the phase change is binarized, for example, as shown in the rectangular wave 44 and the rectangular wave 45. The dimensions may be measured by determining the voltage difference ΔVe between the center portions of the phase. This case is also the same as the previous case (it is necessary to calculate the conversion coefficient for the relationship between the dimensions and the optical deflection voltage difference ΔVe. In the case of this example, there is no need to process fine fluctuations in the phase angle, and changes in the amount of light It is only necessary to detect the beginning and end of the change in the phase angle that becomes the varnish register for each edge in conjunction with the ! (Pi) is also effective when there is contrast.

第5図と2ビーム光を発生させ被測定物16の面上に集
光して照射するときの光学系の光路図の構成例を示す。
FIG. 5 shows an example of the configuration of an optical path diagram of an optical system when two beams of light are generated and focused and irradiated onto the surface of the object 16 to be measured.

第5図(イ)は光のビーム形状を示す図、第5図(ロ)
は光路を示す図である。第5図で51及び54は焦点距
離がl、のシリンドリカルレンズ、52及び53は焦点
距離がl、の凸レンズ、55は焦点距離が!、の凸レン
ズ、151は偏向ビームスプリッタ−156は1波長板
、152は焦点距離が10の対物レンズである。
Figure 5 (a) is a diagram showing the beam shape of light, Figure 5 (b)
is a diagram showing an optical path. In FIG. 5, 51 and 54 are cylindrical lenses with a focal length of l, 52 and 53 are convex lenses with a focal length of l, and 55 is a focal length of ! , 151 is a polarizing beam splitter, 156 is a one-wavelength plate, and 152 is an objective lens having a focal length of 10.

A・011は光と超音波の相互作用により光波の各種の
変調を行なうもので、相互作用時間を多くする必要から
A・011に入射する光はビーム径が広いことが望まし
いため、シリンドリカルレンズ51と凸レンズ52の組
み合せにより、レーザ光源10から発せられる円形状の
ビーム形状をほぼ1次元的に広がった扇形状の形状に変
換する。
A-011 performs various modulations of light waves through the interaction of light and ultrasonic waves, and since it is necessary to increase the interaction time, it is desirable that the light incident on A-011 has a wide beam diameter, so the cylindrical lens 51 The combination of the convex lens 52 and the convex lens 52 converts the circular beam shape emitted from the laser light source 10 into a substantially one-dimensionally expanded fan-like shape.

A−011からの出射光のビーム形状を再び円形のビー
ム形状に変換するために凸レンズ53とシー) yトリ
カルレンズ54を用いる。このとき入射される光ビーム
に対してシリンドリカルレンズ54の屈折作用を有する
面はシリンドリカルレンズ51とは異なる方向に設定す
る。次に凸レンズ55を用いて拡大された径となる円形
状の平行光を作成して対物レンズ152により集光する
A convex lens 53 and a trigonal lens 54 are used to convert the beam shape of the emitted light from A-011 into a circular beam shape again. At this time, the surface of the cylindrical lens 54 having a refractive effect on the incident light beam is set in a direction different from that of the cylindrical lens 51. Next, circular parallel light having an enlarged diameter is created using the convex lens 55 and condensed by the objective lens 152 .

以上の光学系の構成において被測定物16の面上に照射
されるビームスポット径は特に凸レンズ55及び対物レ
ンズ152の焦点距離の大きさを選ぶことで容易に変え
ることができる。また光偏向される量は、光偏向角度な
θとしたとき(0ボルトから1ボルトの範囲での偏向角
度)12 ・io  ・θ/is    となる。
In the above optical system configuration, the diameter of the beam spot irradiated onto the surface of the object to be measured 16 can be easily changed by particularly selecting the focal lengths of the convex lens 55 and the objective lens 152. Further, the amount of light deflection is 12 .io .theta./is (deflection angle in the range of 0 volts to 1 volt), where θ is the light deflection angle.

また、2ビーム光の間の距離は lt”lo”θm/is    となる。Also, the distance between the two beams is lt"lo"θm/is.

今、第5図(イ)の光ビーム形状を示す図において2ビ
ーム光の分離の状態は示していないが、実際には微小距
離に分離されている。
Now, although the state of separation of the two beams of light is not shown in the diagram showing the shape of the light beam in FIG. 5(a), they are actually separated by a minute distance.

更に、第5図(ロ)の光路を示す図で0次回折光は計測
には用いないためにカットする必要がある。
Furthermore, in the diagram showing the optical path in FIG. 5(b), the 0th order diffracted light must be cut off because it is not used for measurement.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかな如(、周波数の異なる2ビーム光
を被測定物に照射して、エッヂによる段差部での光路長
変化を光ヘテロダイン干渉法により検出することで、エ
ッヂ部の段差が光の波長程度以下の場合でもエッヂ位置
の高精度な検出が可能となり、安定した光偏向を行なわ
せることで高精度の寸法計測が可能となる。
As is clear from the above explanation (by irradiating the measured object with two beams of light with different frequencies and detecting the change in optical path length at the step due to the edge using optical heterodyne interferometry, the step at the edge can be It is possible to detect the edge position with high accuracy even when the wavelength is below the wavelength of , and by performing stable optical deflection, highly accurate dimensional measurement is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の微小寸法測定方法を説明するシステム
ブロック図、第2図は寸法測定を行なう被測定物での光
偏向を説明する説明図、第3図は施例を示す光路図であ
る。 10・・・・・・レーザ光源、  11・・・・・・音
響光学素子、12・・・・・・音響光学素子ドライバー
、  13・・・・・・直流電圧源、  14・・・・
・・交流電圧源、 15・・・・・・光学系、  16
・・・・・・被測定物、  19・・・・・・位相比較
第2図 第3図 vl        vr 第4図
Figure 1 is a system block diagram explaining the minute dimension measurement method of the present invention, Figure 2 is an explanatory diagram explaining light deflection at the object to be measured, and Figure 3 is an optical path diagram showing an example. be. 10... Laser light source, 11... Acousto-optic element, 12... Acousto-optic element driver, 13... DC voltage source, 14...
...AC voltage source, 15...Optical system, 16
...Object to be measured, 19...Phase comparison Fig. 2 Fig. 3 vl vr Fig. 4

Claims (1)

【特許請求の範囲】[Claims] レーザ光源から発せられるレーザ光を音響光学素子に入
射し、直流電圧と交流電圧を入力とすることによって動
作せられる音響光学素子ドライバーで前記の音響光学素
子の光学動作を制御せしめて、該音響光学素子から互い
に異なる周波数を有すると共に互いに異なる方向に進行
する2ビーム光を発生せしめ、該2ビーム光の進行方向
を互いに異なる2つの方向に分離せしめ、分離せられた
一方の2ビーム光は集光して寸法が測定される被測定物
の面上に照射せしめて該被測定物からの反射光を受光し
て物体反射光信号を作成すると共に前記の分離せられた
他方の2ビーム光は直接に受光して参照光信号を作成せ
しめるとき、前記の音響光学素子ドライバーに入力する
前記の交流電圧信号の周波数を制御して前記の2ビーム
光の間のなす角度を制御すると共に、前記の音響光学素
子ドライバーに入力する直流電圧信号の電圧を変化せし
めて前記の分離せられた一方の2ビーム光を前記の被測
定物の面上で予め定められた距離毎に光偏向せしめ、各
々の光偏向状態毎に前記の物体反射光信号と前記の参照
光信号との間の位相を検出せしめ、前記の光偏向を制御
する前記の直流電圧の関数となる前記の位相データから
、前記の被測定物の2つのエッヂ部に対応する位相の間
を光偏向せしめた前記の直流電圧の電圧差から寸法を算
出することを特徴とする微小寸法測定方法。
Laser light emitted from a laser light source is incident on an acousto-optic element, and the optical operation of the acousto-optic element is controlled by an acousto-optic element driver that is operated by inputting DC voltage and AC voltage. Two beams of light having different frequencies and traveling in different directions are generated from the element, the traveling directions of the two beams are separated into two different directions, and one of the separated two beams is focused. The beam is irradiated onto the surface of the object whose dimensions are to be measured, and the reflected light from the object is received to create an object reflected light signal, and the other two separated beams are directly When receiving light to create a reference light signal, the frequency of the AC voltage signal input to the acousto-optic element driver is controlled to control the angle formed between the two beams, and the acoustic By changing the voltage of the DC voltage signal input to the optical element driver, one of the two separated beams is deflected by a predetermined distance on the surface of the object to be measured, and each beam is The phase between the object reflected light signal and the reference light signal is detected for each deflection state, and the measured object is detected from the phase data that is a function of the DC voltage that controls the light deflection. A method for measuring microscopic dimensions, characterized in that dimensions are calculated from the voltage difference between the DC voltages that cause light to be deflected between phases corresponding to two edges of an object.
JP62005790A 1987-01-13 1987-01-13 Minute dimension measurement method Expired - Fee Related JPH0781829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62005790A JPH0781829B2 (en) 1987-01-13 1987-01-13 Minute dimension measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62005790A JPH0781829B2 (en) 1987-01-13 1987-01-13 Minute dimension measurement method

Publications (2)

Publication Number Publication Date
JPS63173902A true JPS63173902A (en) 1988-07-18
JPH0781829B2 JPH0781829B2 (en) 1995-09-06

Family

ID=11620884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62005790A Expired - Fee Related JPH0781829B2 (en) 1987-01-13 1987-01-13 Minute dimension measurement method

Country Status (1)

Country Link
JP (1) JPH0781829B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224801A (en) * 2013-03-15 2014-12-04 キヤノン株式会社 Device of generating interference fringe pattern and method thereof
CN106482633A (en) * 2015-08-24 2017-03-08 南京理工大学 A kind of multiple-beam interference phase extraction method based on π/4 phase shift

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224801A (en) * 2013-03-15 2014-12-04 キヤノン株式会社 Device of generating interference fringe pattern and method thereof
CN106482633A (en) * 2015-08-24 2017-03-08 南京理工大学 A kind of multiple-beam interference phase extraction method based on π/4 phase shift

Also Published As

Publication number Publication date
JPH0781829B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US4650330A (en) Surface condition measurement apparatus
US5481360A (en) Optical device for measuring surface shape
JP2746446B2 (en) Optical measuring device
JP3333236B2 (en) Optical surface profile measuring device
JPS63173902A (en) Method for measuring minute dimension
JP4843789B2 (en) Nanometer displacement measuring method and apparatus by laser speckle
JPH10293019A (en) Height shape measurement method and device using optical heterodyne interference
JPH0344243B2 (en)
US4994990A (en) Micro-dimensional measurement apparatus
JP3310022B2 (en) Surface profile measuring device
JPS62194402A (en) Measurement of minute dimension
JP2566569B2 (en) Micro Dimension Measurement Method
JPH05157533A (en) Measuring apparatus for pattern defect
JP6501307B2 (en) Heterodyne interference device
JPH0536727B2 (en)
JPH0339563B2 (en)
JPH10293010A (en) Dimension measurement method and device using 2-beam optical scanning
JPH07225195A (en) Flaw measuring method for minute pattern
JP2582107B2 (en) Micro-dimension measuring device using laser light
JPS6199805A (en) Step measuring instrument
JP2520431B2 (en) Minute dimension measurement method using laser light
JPS63191004A (en) Fine dimension measurement
KR100270365B1 (en) High Speed Scanning Interferometer System
JPS60224001A (en) Microsize measuring instrument
JPH05288523A (en) Optical surface shape measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees