JPH0631284Y2 - Square multi-tube once-through boiler - Google Patents

Square multi-tube once-through boiler

Info

Publication number
JPH0631284Y2
JPH0631284Y2 JP7781189U JP7781189U JPH0631284Y2 JP H0631284 Y2 JPH0631284 Y2 JP H0631284Y2 JP 7781189 U JP7781189 U JP 7781189U JP 7781189 U JP7781189 U JP 7781189U JP H0631284 Y2 JPH0631284 Y2 JP H0631284Y2
Authority
JP
Japan
Prior art keywords
water pipe
water
boiler
water pipes
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7781189U
Other languages
Japanese (ja)
Other versions
JPH0321602U (en
Inventor
誠二 田井
英治 音井
昇 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP7781189U priority Critical patent/JPH0631284Y2/en
Publication of JPH0321602U publication Critical patent/JPH0321602U/ja
Application granted granted Critical
Publication of JPH0631284Y2 publication Critical patent/JPH0631284Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Combustion Of Fluid Fuel (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、縦列配置した水管群に対して燃焼ガスを交
叉線方向に流動させる形式の缶体の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an improvement of a can body of a type in which combustion gas is allowed to flow in a direction intersecting with a group of water tubes arranged in tandem.

〔従来の技術〕[Conventional technology]

近年の多管式貫流ボイラーにおいては、ボイラー自体の
小型化、省スペース化のため、所謂角型缶体構造をベー
スとしたものが、種々提案されているが、この種の角型
多管式貫流ボイラーは、水管を長円状、あるいは矩形形
状に配置したもので、比較的広い空間を燃焼室として保
有する構造であることから、缶体の小型化に制限があ
り、一層の省スペース化を図ることが困難である。
In recent years, in the multi-tube type once-through boiler, various types based on a so-called rectangular can body structure have been proposed in order to reduce the size of the boiler itself and save space. The once-through boiler has water tubes arranged in an oval or rectangular shape and has a structure that has a relatively large space as a combustion chamber.Therefore, there is a limit to the miniaturization of the can body and further space saving. Is difficult to achieve.

そこで、出願人は、上記の如き課題を解決するものとし
て、複数本の水管を実質上平行に縦列に近接配置し、こ
れらの水管に対して交叉方向に燃焼ガスを流通させる形
式の多管式貫流ボイラーを提案している(実願昭63−
107336号)〔実開昭2−28902号〕。
Therefore, as a solution to the above-mentioned problems, the applicant has arranged a plurality of water pipes in parallel and in close proximity to each other in a column, and a multi-tube type in which combustion gas is circulated in a crossing direction with respect to these water pipes. Proposing a once-through boiler (Practical application Sho 63-
No. 107336) [Jitsukai Sho 2-28902].

〔考案が解決しようとする課題〕[Problems to be solved by the device]

前掲の角型多管式貫流ボイラーは、第4図に示すよう
に、燃焼バーナ(1)の直前に所定の距離をおいて、第1
の水管列(A)を配置し、これと他の後列(B),(C)…の水管
(2)と間隙、並びに、左右の水管相互の間隙を水管直径
dと略等しいか、それ以下に設定して、それら水管列
(A),(B),(C)…を燃焼ガスの流れ方向に配列したもので
ある。
As shown in Fig. 4, the above-mentioned square multi-tube once-through boiler has a first distance from the combustion burner (1) at a predetermined distance.
Arrange the water pipe row (A) of this, and the water pipes of this and other rear rows (B), (C)…
(2) and the gap and the gap between the left and right water pipes are set to be substantially equal to or smaller than the water pipe diameter d, and the water pipe rows are set.
(A), (B), (C) ... are arranged in the flow direction of the combustion gas.

しかし、上記の缶体構造をより小容量のボイラーに適用
するために各水管列の水管数を減少させた場合には、次
のような不都合がある。
However, when the number of water tubes in each water tube row is reduced in order to apply the above can body structure to a boiler having a smaller capacity, there are the following disadvantages.

(1)例えば、各列2本の水管列(A),(B)(C)…を水管同志
密接配置して、燃焼ガスの流れ方向に2列の水管壁を形
成し、その間に燃焼ガスを流通させるようにした場合、
第5図に示すように、互いに接触する水管同志の間に、
燃焼ガスが渦流となって滞留する略扇形の領域(以下、
止水域と称す)αが形成される。この領域内では、燃焼
ガス流が渦流となることにより、上記の水管間の燃焼ガ
スの流通経路に比べ、ガス流速が低下しているため、燃
焼ガスから水管への熱伝達率が低く、これにより、ボイ
ラー全体としての熱効率向上の支障となっている。
(1) For example, two water pipe rows (A), (B), (C), etc. are arranged in close contact with each other to form two rows of water pipe walls in the flow direction of the combustion gas, and combustion is performed between them. When the gas is made to flow,
As shown in FIG. 5, between the water pipes contacting each other,
A substantially fan-shaped region (hereinafter,
Α) is formed. In this region, the combustion gas flow becomes a swirl flow, so that the gas flow velocity is lower than that of the above-mentioned flow path of the combustion gas between the water pipes, so that the heat transfer coefficient from the combustion gas to the water pipe is low, This hinders the improvement of the thermal efficiency of the boiler as a whole.

(2)更に、上記(1)項の問題を解決するため、両水管壁間
の間隔を挟め、燃焼ガスの流通経路を狭くして流速を上
げると、今度は圧力損失が大きくなり、強力な送風能力
を有するファンを用いる必要や、これに対応するバーナ
を用いる必要があり、このことは、小型・小容量のボイ
ラーを製作する上で外形上の支障となる。
(2) Furthermore, in order to solve the problem of (1) above, if the space between both water pipe walls is sandwiched and the flow path of the combustion gas is narrowed to increase the flow velocity, this time the pressure loss becomes large and the It is necessary to use a fan having a high air blowing capacity and a burner corresponding to this, which is an obstacle to the outer shape when manufacturing a small-sized and small-capacity boiler.

〔課題を解決するための手段〕[Means for Solving the Problems]

この考案は、上記課題を解決するためになされたもの
で、複数本の水管を実質上平行に縦列に配置し、これら
の水管に対して交叉方向に燃焼ガスを流通させる形式の
多管式貫流ボイラーであって、複数の水管を密接状態で
配列して1組の水管壁を形成し、それら水管壁を、相対
する水管が互いに千鳥状配列となり、かつ、近接する水
管同志の間隔が、水管の直径以下となるように略平行に
配置し、1組の上記水管壁の一端側中央に燃焼バーナを
近接配置するとともに、それら水管壁間を燃焼ガスの流
通路とし、上記水管壁の他端側から、燃焼ガスの流通方
向に沿って複数の水管を縦列配置した水管列を配置した
角型多管式貫流ボイラーである。
The present invention has been made to solve the above problems, and is a multi-tube flow-through type in which a plurality of water pipes are arranged substantially in parallel in a column and combustion gas is circulated in a cross direction with respect to these water pipes. It is a boiler, and a plurality of water pipes are arranged in close contact to form a set of water pipe walls, and the water pipe walls are arranged in a staggered arrangement with respect to each other, and the distance between adjacent water pipes is small. , The pipes are arranged substantially parallel to each other so as to have a diameter not larger than the diameter of the water pipe, a combustion burner is arranged close to the center of one end of one set of the water pipe walls, and a combustion gas flow passage is provided between the water pipe walls, This is a square multi-tube once-through boiler in which a plurality of water pipes are arranged in a row from the other end of the pipe wall along the flow direction of the combustion gas.

〔作用〕[Action]

この考案に係る角型多管式貫流ボイラーによれば、各水
管壁における水管谷間の略扇形の領域にも燃焼ガスを作
用させ、この領域の水管表面との熱交換を促進すること
ができるため、伝熱に寄与しない止水域が減少し、熱回
収量を増加させることができる。
According to the square multi-tube once-through boiler according to the present invention, the combustion gas can be made to act on the substantially fan-shaped region between the water pipe valleys in each water pipe wall, and heat exchange with the water pipe surface in this region can be promoted. Therefore, the water stoppage area that does not contribute to heat transfer is reduced, and the heat recovery amount can be increased.

〔実施例〕〔Example〕

第1図は、この考案に係る角型多管式貫流ボイラーの一
実施例を示すものである。
FIG. 1 shows an embodiment of a square multitubular once-through boiler according to the present invention.

図面において、(10),(10′)は水管壁、(20)は水管列、
(30)はバーナを示す。
In the drawing, (10) and (10 ') are water pipe walls, (20) is a water pipe row,
(30) indicates a burner.

水管壁(10),(10′)の夫々は、複数本(この実施例では
4本)の水管(11)を密接状態で直列配置して構成したも
のである。これらの両水管壁(10),(10′)は、両者が互
いに略平行をなし、相対する各水管(11)が千鳥状配列と
なるように、缶体の両側に配置してある。尚、両水管壁
(10),(10′)の間隔は、各水管壁(10),(10′)を構成する
水管(11)のうち、近接するもの同志の表面間距離()
が、水管直径d以下(より好ましくは1/2d以下)に設定
してある。
Each of the water pipe walls (10) and (10 ') is formed by arranging a plurality of water pipes (11 in this embodiment) in series in close contact with each other. These water pipe walls (10) and (10 ') are arranged on both sides of the can body so that they are substantially parallel to each other and the opposing water pipes (11) are in a staggered arrangement. Both water pipe walls
The distance between (10) and (10 ') is the distance between adjacent surfaces of the water pipes (11) that make up each water pipe wall (10) and (10') ().
However, the water pipe diameter is set to d or less (more preferably 1 / 2d or less).

上記水管列(20)は、上記の水管壁(10),(10′)の水管の
配列方向と同方向にエロフィン水管(21)を直列配置して
なり、図示するものにおいては、エロフィン水管(21)の
配列ピッチが、隣り合うエロフィン水管(21)のフィン(2
2)同志で接触する状態となっている。
The water pipe row (20) is formed by arranging the erotic fin water pipes (21) in series in the same direction as the arrangement direction of the water pipes of the water pipe walls (10) and (10 '). The array pitch of (21) is the same as the fins (2
2) They are in contact with each other.

そのような水管列(20)の両側には、隔壁(25),(25)を設
けてある。これら隔壁(25),(25)は、上記の各エロフィ
ン水管(21)のフィン(22)外周縁と略接触状態で取付けて
あり、各隔壁(25),(25)の一方の端部は、前述の各水管
壁(10),(10′)の最後方の水管(11)に密接させてある。
Partitions (25), (25) are provided on both sides of such a water pipe array (20). These partition walls (25), (25) are attached in a state of substantially contacting the outer peripheral edge of the fin (22) of each of the above-mentioned erotic fin water pipes (21), and one end of each partition wall (25), (25) is , The water pipe walls (10), (10 ') described above are in close contact with the rearmost water pipe (11).

上記バーナ(30)としては、例えば、空気比を1以上に設
定した全一次空気式の予混合バーナを用いるのが好まし
いが、このバーナは、上記水管壁(10),(10′)の前方端
側間に配置する。
As the burner (30), it is preferable to use, for example, an all-primary air type premixing burner in which the air ratio is set to 1 or more, but this burner uses the water pipe walls (10) and (10 '). Place it between the front ends.

以上の構成において、燃焼バーナ(30)からの燃焼ガス
は、水管壁(10),(10′)間、隔壁(25),(25)間を略直線状
に通過する。
In the above configuration, the combustion gas from the combustion burner (30) passes between the water pipe walls (10) and (10 ') and between the partition walls (25) and (25) in a substantially straight line.

そして、この間に水管壁(10),(10′)の各水管(11)並び
に水管列(20)の各エロフィン管(21)への伝熱を行う。
During this time, heat is transferred to the water pipes (11) of the water pipe walls (10) and (10 ') and to the erotic fin pipes (21) of the water pipe array (20).

この際、上記水管壁(10),(10′)の各水管(11)は、互い
に千鳥状配列となっており、各水管壁(10),(10′)の水
管(11)の近接するもの同志の間隔を上述の如く設定して
あるため、燃焼ガスが、この水管壁(10),(10′)間を通
過する際には、第2図に示すように、各水管(10)に沿っ
て蛇行しながら通過する。従って、各水管壁(10),(1
0′)の隣り合う水管(11),(11)間に形成され、伝熱にほ
とんど寄与しない止水域αが極めて小さくなる。換言す
れば、燃焼ガスが、高速で接触する水管(11)の表面領域
が拡大するため、熱伝達量が増加する。更に、燃焼ガス
の流通路は、蛇行状に形成されるため、水管壁(10),(1
0′)の間隔を挟めても、従来のボイラーのように極めて
高い圧損を生じることがなく、これによる送風機の変更
は不要である。
At this time, the water pipes (11) of the water pipe walls (10) and (10 ′) are arranged in a zigzag pattern, and the water pipes (11) of the water pipe walls (10) and (10 ′) are Since the distance between adjacent water pipes is set as described above, when the combustion gas passes between the water pipe walls (10) and (10 '), as shown in FIG. Pass along meandering along (10). Therefore, each water pipe wall (10), (1
The water shut-off area α formed between the adjacent water pipes (11) and (11) of (0 ′) and making almost no contribution to heat transfer is extremely small. In other words, the surface area of the water pipe (11), which the combustion gas comes into contact with at high speed, is expanded, so that the heat transfer amount is increased. Furthermore, since the flow path of the combustion gas is formed in a meandering shape, the water pipe walls (10), (1
Even if the space of 0 ') is sandwiched, a very high pressure loss does not occur unlike the conventional boiler, and it is not necessary to change the blower.

次に、燃焼ガスが、水管壁(10),(10′)間を通過し、隔
壁(25),(25)間に流入した時点では、これまでの過程
で、水管(11)に熱を与えているため、保有熱量は減少し
ているが、この隔壁(25)間の水管列(20)の水管(21)は、
水管壁(10),(10′)の水管(21)に比べ、1本当たりの伝
熱面密度の大きいエロフィン水管であるため、この温度
低下した燃焼ガスからも有効に熱回収が行われる。
Next, when the combustion gas passes between the water pipe walls (10) and (10 ') and flows into the partition walls (25) and (25), heat is generated in the water pipe (11) in the process so far. Therefore, the amount of heat retained is reduced, but the water pipes (21) of the water pipe array (20) between the partition walls (25) are
Compared with the water pipes (21) of the water pipe walls (10) and (10 '), since each one is an erofin water pipe having a higher heat transfer surface density, heat can be effectively recovered from the combustion gas whose temperature has dropped. .

このように、この考案によれば、伝熱に寄与しない止水
域を減少させ、熱の回収を向上させることができ、これ
によるボイラー缶体の圧力損失を増加させることなく、
缶体の小型化が可能である。
As described above, according to the present invention, it is possible to reduce the water blocking area that does not contribute to heat transfer and improve heat recovery, without increasing the pressure loss of the boiler can body due to this.
The can body can be miniaturized.

以上の説明においては、各水管壁(10),(10′)及び水管
列(20)の水管数を4本としたが、この考案では上記の実
施例に限らず、水管数は任意であり、例えば第3図に示
すように、夫々6本の水管を用いたものでもよい。更
に、各水管壁(10),(10′)と水管列(20)の水管数が異な
っていてもよく、更にまた、各水管壁(10),(10′)の水
管数も同数としなくてもよい。
In the above description, the number of water pipes in each of the water pipe walls (10), (10 ') and the water pipe row (20) is four, but the present invention is not limited to the above embodiment, and the number of water pipes is arbitrary. For example, as shown in FIG. 3, six water pipes each may be used. Furthermore, the number of water pipes in each water pipe wall (10), (10 ') and the water pipe array (20) may be different, and the number of water pipes in each water pipe wall (10), (10') is also the same. You don't have to.

更に、上記水管壁(10),(10′)間に新たに、複数の水管
を配置し、これらの水管と、水管壁(10),(10′)の水管
(11)が互いに千鳥状となるようにしたものであってもよ
い。
Further, a plurality of water pipes are newly arranged between the water pipe walls (10) and (10 ′), and these water pipes and the water pipes of the water pipe walls (10) and (10 ′) are arranged.
The (11) may be staggered with respect to each other.

〔考案の効果〕[Effect of device]

叙上のように、この考案に係る角型多管式貫流ボイラー
によれば、各水管壁における隣り合う水管間に形成され
る略扇形の部分にも燃焼ガスを流通させ、この部分の水
管表面にも燃焼ガスを接触させることができるため、在
来のものに比べ、伝熱に寄与しない止水域が減少し、熱
回収率の向上が図れる。
As described above, according to the square multi-tube through-flow boiler according to the present invention, the combustion gas is also circulated in the substantially fan-shaped portion formed between the adjacent water pipes in each water pipe wall, and the water pipe in this portion is Since the combustion gas can be brought into contact with the surface as well, the water shutoff area that does not contribute to heat transfer can be reduced and the heat recovery rate can be improved compared to the conventional one.

更に、前述の如く、水管壁は、水管が千鳥状となるよう
に、近接配置したものであるから、缶体の厚みを極めて
薄くすることができる。このことは、厚みが薄く、設置
スペースの小さいボイラーが実現されることを意味し、
特に、このようなボイラーを壁面に沿わせて配置すれ
ば、壁面からの突出量も小さく、スペースの有効利用を
図ることができる。
Further, as described above, since the water pipe walls are closely arranged so that the water pipes have a zigzag shape, the thickness of the can body can be made extremely thin. This means that a boiler with a small thickness and a small installation space will be realized,
In particular, if such a boiler is arranged along the wall surface, the amount of protrusion from the wall surface is small and the space can be effectively used.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この考案に係る角型多管式貫流ボイラーの一
実施例を示す水管配列図、第2図は、水管壁における燃
焼ガスの伝熱状況を説明するための概略平面図、第3図
はこの考案に係る他の実施例を示す水管配列図である。
第4図はこの考案の前提となる従来の角型多管式貫流ボ
イラーの水管配列図、第5図は、第4図のボイラーの水
管壁における燃焼ガスからの伝熱状況を説明するための
概略平面図である。 (10)(10′)……水管壁、(11)……水管 (20)……水管列、(21)……エロフィン水管 (25)……隔壁、(30)……バーナ
FIG. 1 is a water pipe array diagram showing an embodiment of a square multi-tube type once-through boiler according to the present invention, and FIG. 2 is a schematic plan view for explaining a heat transfer state of combustion gas on a water pipe wall, FIG. 3 is a water pipe array diagram showing another embodiment of the present invention.
FIG. 4 is a water pipe array diagram of a conventional square multi-tube type once-through boiler, which is the premise of the present invention, and FIG. 5 is for explaining a heat transfer condition from combustion gas in a water pipe wall of the boiler of FIG. 2 is a schematic plan view of FIG. (10) (10 ′) …… Water pipe wall, (11) …… Water pipe (20) …… Water pipe row, (21) …… Erophin water pipe (25) …… Differential wall, (30) …… Burner

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】複数本の水管を実質上平行に縦列に配置
し、これらの水管に対して交叉方向に燃焼ガスを流通さ
せる形式の多管式貫流ボイラーであって、 複数の水管(11)を密接状態で配列して1組の水管壁(1
0),(10′)を形成し、 これら水管壁(10)(10′)を、相対する水管(11)が互いに
千鳥状配列となり、かつ、近接する水管(11)同志の間隔
()が、水管(11)の直径d以下となるように略平行に
配置し、 1組の上記水管壁(10)(10′)の一端側中央に燃焼バーナ
(30)を近接配置するとともに、それら水管壁(10)(10′)
間を燃焼ガスの流通路とし、 上記水管壁(10)(10′)の他端側から、燃焼ガスの流通方
向に沿って複数の水管(21)を縦列配置した水管列(20)を
配置したことを特徴とする角型多管式貫流ボイラー。
1. A multi-tube once-through boiler of a type in which a plurality of water pipes are arranged in parallel substantially in parallel and a combustion gas is circulated in the water pipes in a crossing direction, the plurality of water pipes (11). Are arranged in close contact and a pair of water pipe walls (1
0) and (10 ') are formed, and these water pipe walls (10) and (10') are arranged in a zigzag arrangement with the water pipes (11) facing each other, and the water pipes (11) adjacent to each other have a space (). Are arranged substantially parallel to each other so that the diameter of the water pipe (11) is less than or equal to d, and the combustion burner is provided at the center of one end of one set of the water pipe walls (10) and (10 ').
The water pipe walls (10) and (10 ') are placed close to each other (30).
Between them as a flow path for the combustion gas, and a water pipe array (20) in which a plurality of water pipes (21) are arranged in a row along the flow direction of the combustion gas from the other end of the water pipe walls (10), (10 '). Square type multi-tube once-through boiler characterized by being arranged.
JP7781189U 1989-06-30 1989-06-30 Square multi-tube once-through boiler Expired - Lifetime JPH0631284Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7781189U JPH0631284Y2 (en) 1989-06-30 1989-06-30 Square multi-tube once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7781189U JPH0631284Y2 (en) 1989-06-30 1989-06-30 Square multi-tube once-through boiler

Publications (2)

Publication Number Publication Date
JPH0321602U JPH0321602U (en) 1991-03-05
JPH0631284Y2 true JPH0631284Y2 (en) 1994-08-22

Family

ID=31620535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7781189U Expired - Lifetime JPH0631284Y2 (en) 1989-06-30 1989-06-30 Square multi-tube once-through boiler

Country Status (1)

Country Link
JP (1) JPH0631284Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026456A1 (en) * 1997-11-13 1999-05-27 Teijin Limited Planar heater and planar heat-generating body
JP2006064762A (en) * 2004-08-24 2006-03-09 Sony Corp Case for imaging apparatus
JP4729382B2 (en) * 2005-10-27 2011-07-20 株式会社タクマ Multi-pipe once-through boiler
KR200452000Y1 (en) * 2008-12-24 2011-01-26 (주)중앙티앤씨 a pouch for mobile phone

Also Published As

Publication number Publication date
JPH0321602U (en) 1991-03-05

Similar Documents

Publication Publication Date Title
JPH05695Y2 (en)
GB2023798B (en) Fin-tube heat exchanger
GB2042708A (en) Finned-tube heat exchanger
JPH0631284Y2 (en) Square multi-tube once-through boiler
JPH11294973A (en) Heat exchanger of absorption water cooler/heater
JP3423207B2 (en) Heat exchanger coil structure
JPH0926279A (en) Heat transfer tube with internal surface groove
JPS616590A (en) Finned heat exchanger
JPS62112997A (en) Heat exchanger
KR100213140B1 (en) Fin type heat exchanger
JP2673306B2 (en) Square multi-tube once-through boiler
JPS63197887A (en) Heat exchanger
JPH0631283Y2 (en) In-line type multi-tube once-through boiler
JPS6133432Y2 (en)
JPS61217695A (en) Cross fin tube type heat exchanger
JPH0412327Y2 (en)
JPS60194292A (en) Heat exchanger equipped with fin
JP2003302190A (en) Corrugated fin type heat exchanger
JPH0129439Y2 (en)
JP3872585B2 (en) Fin structure of water tube in boiler with water tube group
KR0164643B1 (en) Heat exchanger fin
JPS63197884A (en) Finned heat exchanger
JPH06300207A (en) Multitubular type once-through boiler
JPH0692874B2 (en) Heat exchanger
JPH0363456A (en) Heat exchanger