JPH0926279A - Heat transfer tube with internal surface groove - Google Patents

Heat transfer tube with internal surface groove

Info

Publication number
JPH0926279A
JPH0926279A JP7179254A JP17925495A JPH0926279A JP H0926279 A JPH0926279 A JP H0926279A JP 7179254 A JP7179254 A JP 7179254A JP 17925495 A JP17925495 A JP 17925495A JP H0926279 A JPH0926279 A JP H0926279A
Authority
JP
Japan
Prior art keywords
heat transfer
fins
transfer tube
tube
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7179254A
Other languages
Japanese (ja)
Other versions
JP2842810B2 (en
Inventor
Masayoshi Takiura
正義 滝浦
Seizou Masukawa
清慥 桝川
Haruo Kono
晴夫 幸野
俊▲緑▼ ▲すくも▼田
Toshitsuka Sukumoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16062641&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0926279(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP17925495A priority Critical patent/JP2842810B2/en
Priority to US08/680,215 priority patent/US5791405A/en
Priority to KR1019960028156A priority patent/KR100260112B1/en
Priority to DE19628280A priority patent/DE19628280C3/en
Priority to CN96113213A priority patent/CN1150645A/en
Publication of JPH0926279A publication Critical patent/JPH0926279A/en
Priority to US09/063,722 priority patent/US5934128A/en
Publication of JP2842810B2 publication Critical patent/JP2842810B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a heat transfer tube with internal surface groove capable of improving heat exchange performance without increasing pressure drop. SOLUTION: An internal peripheral surface of a metal tube is divided into regions R1 to R4 of two or more in the periperal direction, and many fins 2 are formed in each region, arranged axially of the heat transfer tube 1. The fins 2 contained in the odd numbered regions R1, R3 are inclined by 10 to 25 degree with respect to the heat transfer tube axial line while the fins 2 contained in the even numbered regions R2, R4 are inclined by -10 to -25 degree with respect to the heat transfer tube axial line. Further, a gap 4A is formed between the fins 2 adjoining peripherally.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空調装置や冷却装
置の熱交換器等に用いられる内面溝付伝熱管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner grooved heat transfer tube used for a heat exchanger of an air conditioner or a cooling device.

【0002】[0002]

【従来の技術】この種の内面溝付伝熱管は、空調装置や
冷却装置の熱交換器等において蒸発管または凝縮管とし
て主に使用されるもので、最近では内面の全面に亙って
螺旋状のフィンを形成した伝熱管が広く市販されてい
る。
2. Description of the Related Art A heat transfer tube with an inner groove of this kind is mainly used as an evaporation tube or a condensation tube in a heat exchanger of an air conditioner or a cooling device, and recently, it has a spiral shape over the entire inner surface. A heat transfer tube having a fin shape is widely available on the market.

【0003】現在主流となっている伝熱管は、引き抜き
または押し出し加工により得られたシームレス(継ぎ目
のない)管の内部に、外周面に螺旋溝が形成されたフロ
ーティングプラグを通すことにより、金属管の内周面の
全面に亙ってフィンを転造する方法により製造されてお
り、一般に使用されている外径10mm程度の伝熱管で
は、フィンの高さは0.15〜0.20mm、フィンの
ピッチ(隣接するフィンの頂点間の距離)は0.45〜
0.55mm、フィン間に形成された溝の底幅は0.2
0〜0.30mm程度とされている。
The heat transfer tube, which is currently the mainstream, is a metal tube obtained by passing a floating plug having a spiral groove formed on the outer peripheral surface inside a seamless (seamless) tube obtained by drawing or extruding. The fins are manufactured by a method of rolling the fins over the entire inner peripheral surface of the, and in a commonly used heat transfer tube having an outer diameter of about 10 mm, the fin height is 0.15 to 0.20 mm. Pitch (distance between vertices of adjacent fins) is 0.45
0.55 mm, the bottom width of the groove formed between the fins is 0.2
It is about 0 to 0.30 mm.

【0004】このような螺旋状フィンを形成した内面溝
付伝熱管では、伝熱管の内部下側に溜まる熱媒液体が、
管内を流れる蒸気流に吹き流されて螺旋状フィンに沿っ
て巻き上げられ、管内周面の全面に広がる。この作用に
より、管内周面の全面がほぼ均一に濡れるから、熱媒液
体を気化するための蒸発管として使用した場合には、沸
騰の生じる領域の面積を増して沸騰効率を高めることが
できる。また、熱媒気体を液化するための凝縮管として
使用した場合には、フィン先端が液面から露出すること
により金属面と熱媒気体との接触効率を高め、凝縮効率
を高めることができる。
[0004] In such a heat transfer tube with an inner surface groove formed with a spiral fin, the heat transfer liquid accumulated in the lower portion inside the heat transfer tube is
It is blown by the steam flow flowing in the pipe, is wound up along the spiral fins, and spreads over the entire inner peripheral surface of the pipe. By this action, the entire inner peripheral surface of the pipe is almost uniformly wetted. Therefore, when the pipe is used as an evaporating pipe for evaporating the heating medium liquid, the area of the region where boiling occurs can be increased to increase the boiling efficiency. When used as a condensing tube for liquefying the heat transfer medium gas, the fin tips are exposed from the liquid surface, so that the contact efficiency between the metal surface and the heat transfer medium gas can be increased and the condensation efficiency can be increased.

【0005】[0005]

【発明が解決しようとする課題】ところで、本発明者ら
は、伝熱管の溝の展開形状を様々に変化させて多種類の
内面溝付伝熱管を作成し、これらの性能を比較した結
果、伝熱管内面に周方向へジグザグに延びる多数のフィ
ンを形成した場合、他の溝形状に比して高い熱交換性能
が得られることを見いだした。
SUMMARY OF THE INVENTION By the way, the inventors of the present invention produced various kinds of inner grooved heat transfer tubes by variously changing the developed shape of the grooves of the heat transfer tube, and as a result of comparing these performances, It was found that when a large number of fins extending in a zigzag pattern in the circumferential direction are formed on the inner surface of the heat transfer tube, higher heat exchange performance can be obtained compared to other groove shapes.

【0006】しかし同時に、この場合には、内面溝付伝
熱管内を流れる熱媒体の圧力損失が増し、熱媒体の循環
装置に負担がかかるため、高い熱交換性能にも拘わらず
現実には使用困難であることが判明した。そこで、本発
明者らはさらに検討を重ねた結果、ジグザグ形状のフィ
ンの各屈折部に間隙を形成することにより、圧力損失を
増大することなしに熱交換性能を高めることができるこ
とを見いだすに至った。
However, at the same time, in this case, the pressure loss of the heat medium flowing in the inner surface grooved heat transfer tube increases, and a load is placed on the heat medium circulating device, so that it is actually used despite the high heat exchange performance. It turned out to be difficult. Therefore, as a result of further studies by the present inventors, it was found that the heat exchange performance can be improved without increasing the pressure loss by forming a gap in each bent portion of the zigzag-shaped fin. It was

【0007】[0007]

【課題を解決するための手段】本発明に係る内面溝付伝
熱管は、金属管の内周面がその周方向において2以上の
領域に区分され、これら各領域のそれぞれには伝熱管の
軸線方向に並ぶ多数のフィンが形成され、いずれか1つ
の領域から数えて奇数番の領域に含まれるフィンは伝熱
管の軸線に対して10〜25゜傾斜させられているとと
もに、前記1の領域から数えて偶数番の領域に含まれる
フィンは伝熱管の軸線に対して−10〜−25゜傾斜し
ており、さらに、周方向に隣接するフィンの端部同士の
間には間隙が形成されていることを特徴としている。
In the heat transfer tube with inner groove according to the present invention, the inner peripheral surface of the metal tube is divided into two or more regions in the circumferential direction, and the axial line of the heat transfer tube is provided in each of these regions. A large number of fins arranged in the same direction are formed, and the fins included in the odd-numbered region counting from any one region are inclined by 10 to 25 ° with respect to the axis of the heat transfer tube, and The fins included in the even-numbered region are inclined at −10 to −25 ° with respect to the axis of the heat transfer tube, and a gap is formed between the end portions of the fins adjacent in the circumferential direction. It is characterized by being.

【0008】[0008]

【発明の実施の形態】図1は、本発明に係る内面溝付伝
熱管の第1の実施形態を示す一部展開した平面図であ
る。この内面溝付伝熱管1の内周面は、その周方向90
゜毎に4つの領域R1〜R4に区分され、これら領域R
1〜R4のそれぞれには、伝熱管1の軸線方向に並ぶ多
数のフィン2が互いに平行に形成され、平行なフィン2
同士の間は溝部3とされている。
1 is a partially developed plan view showing a first embodiment of a heat transfer tube with an inner groove according to the present invention. The inner peripheral surface of the heat transfer tube 1 with inner groove has a circumferential direction 90
It is divided into four regions R1 to R4 for each degree.
A large number of fins 2 arranged in the axial direction of the heat transfer tube 1 are formed in parallel with each other in each of 1 to R4.
A groove portion 3 is formed between the adjacent portions.

【0009】本発明の内面溝付伝熱管1は、フィン2の
配置に主たる特徴を有する。すなわち、この伝熱管1で
は、いずれか1つの領域(この場合R1)から数えて奇
数番の領域R1,R3に含まれるフィン2が、伝熱管軸
線に対して10〜25゜の角度αをなすように形成され
る一方、偶数番の領域R2,R4に含まれるフィン2
は、伝熱管軸線に対して−10〜−25゜の角度βをな
すように形成されている。フィン2の傾斜角度α,βの
絶対値が25゜を越えるとフィン2が流れに対して垂直
に近くなり、流れを遮って圧力損失が大きくなるため好
ましくない。また、フィン2の傾斜角度α,βの絶対値
が10゜未満であると、フィン2が流れに対して平行に
近くなり、フィン2による乱流発生効果が低下する。
The inner grooved heat transfer tube 1 of the present invention is characterized mainly by the arrangement of the fins 2. That is, in this heat transfer tube 1, the fins 2 included in odd-numbered areas R1 and R3 counting from any one area (R1 in this case) form an angle α of 10 to 25 ° with respect to the heat transfer tube axis. Fins 2 included in the even-numbered regions R2 and R4 while being formed as described above.
Are formed to form an angle β of −10 to −25 ° with respect to the heat transfer tube axis. If the absolute values of the inclination angles α and β of the fins 2 exceed 25 °, the fins 2 become nearly perpendicular to the flow, which interrupts the flow and increases the pressure loss, which is not preferable. If the absolute values of the inclination angles α and β of the fins 2 are less than 10 °, the fins 2 become nearly parallel to the flow, and the effect of turbulent flow generation by the fins 2 decreases.

【0010】傾斜角度α,βの正負は逆であってもよ
く、要は、フィン2が全体としてジグザク状に配列され
るように、周方向へ隣接するフィン2が伝熱管軸線に対
し交互に逆方向へ傾斜していればよい。この実施形態で
は、隣接するフィン2の端部が周方向に揃えられてい
る。また、図1では、同じ領域内のフィン2が互いに平
行にされているが、これらは必ずしも平行でなくてもよ
く、前記範囲内でフィン毎に傾斜角度を異ならせてもよ
い。
The positive and negative inclination angles α and β may be reversed. In short, the fins 2 adjacent to each other in the circumferential direction are alternately arranged with respect to the heat transfer tube axis so that the fins 2 are arranged in a zigzag shape as a whole. It may be inclined in the opposite direction. In this embodiment, the ends of the adjacent fins 2 are aligned in the circumferential direction. Further, in FIG. 1, the fins 2 in the same region are parallel to each other, but they may not necessarily be parallel, and the inclination angle may be different for each fin within the above range.

【0011】各領域R1〜R4の境界には、伝熱管1の
長手方向に連続する溝部4が形成されており、これによ
り、周方向に隣接するフィン2同士の間には、それぞれ
一定の間隙4Aが形成されている。溝部4の底面は溝部
3の底面と同一高さであってもよいし、溝部3より若干
高くてもよい。外径が1cm程度の汎用伝熱管の場合に
は、間隙4Aの幅C1は0.05〜0.5mm、特に
0.1〜0.3mmであることが好ましい。幅C1が
0.05〜0.5mmの範囲であると、圧力損失と熱交
換効率とのバランスが良好である。但し、本発明は上記
範囲のみに限定されるものではなく、他の値も採用でき
るのは勿論である。
Grooves 4 which are continuous in the longitudinal direction of the heat transfer tube 1 are formed at the boundaries of the respective regions R1 to R4, whereby a constant gap is provided between the fins 2 adjacent in the circumferential direction. 4A is formed. The bottom surface of the groove portion 4 may be flush with the bottom surface of the groove portion 3, or may be slightly higher than the groove portion 3. In the case of a general-purpose heat transfer tube having an outer diameter of about 1 cm, the width C1 of the gap 4A is preferably 0.05 to 0.5 mm, particularly 0.1 to 0.3 mm. When the width C1 is in the range of 0.05 to 0.5 mm, the balance between pressure loss and heat exchange efficiency is good. However, the present invention is not limited to the above range, and it goes without saying that other values can be adopted.

【0012】フィン2の断面形状は必ずしも限定される
ものではないが、本発明では図2に示すように、同じ領
域内のフィン2のピッチPが0.3〜0.4mm、フィ
ン2の金属管内周面からの高さHが0.15〜0.30
mmであることが好適である。このように従来よりも背
の高いフィン形状を採用した場合には、乱流発生効果が
良好であり、特殊なフィン配置による効果と相まって、
伝熱管1の熱交換効率がいっそう向上できる。また、こ
のように細く高いフィン2によれば、金属管1の内面が
熱媒液体で覆われた際にも、フィン2の先端部における
排液性が良好になるから、凝縮管として使用した場合に
フィン2の先端金属面が熱媒気体と直接接触しやすく、
良好な凝縮性能を得ることができる。
Although the cross-sectional shape of the fins 2 is not necessarily limited, in the present invention, as shown in FIG. 2, the pitch P of the fins 2 in the same region is 0.3 to 0.4 mm and the fins 2 are made of metal. Height H from the inner peripheral surface of the pipe is 0.15 to 0.30
It is preferably mm. In this way, when the fin shape that is taller than the conventional one is adopted, the turbulent flow generation effect is good, and in combination with the effect of the special fin arrangement,
The heat exchange efficiency of the heat transfer tube 1 can be further improved. In addition, since the fin 2 having such a thin shape has a good drainage property at the tip of the fin 2 even when the inner surface of the metal tube 1 is covered with the heat medium liquid, it is used as a condenser tube. In this case, the tip metal surface of the fin 2 is likely to come into direct contact with the heat transfer gas,
Good condensing performance can be obtained.

【0013】フィン2の両側面のなす角度γ(頂角)
は、必ずしも限定されるものではないが、より好ましく
は10〜25゜とされる。このようにフィン2の頂角が
小さい場合には、フィン2の側面が管内周面からほぼ垂
直に起立するため、伝熱管1内を流れる熱媒気体の風圧
によって熱媒液体がフィン2上へ吹き上げられることが
少ない。このため、フィン2により熱媒液体の流れを規
制して乱流を引き起こす効果が増すだけでなく、この伝
熱管1を凝縮管として使用した場合には、個々のフィン
2の先端部が露出する傾向が高くなり、熱媒気体と金属
面との接触面積を増して、高い凝縮効率を得ることがで
きる。また、図示の例ではフィン2の頂点が断面半円状
にされているが、本発明は断面台形状としても、断面三
角形状としてもよい。
An angle γ (vertical angle) formed by both side surfaces of the fin 2
Is not necessarily limited, but is more preferably 10 to 25 °. When the apex angle of the fins 2 is small as described above, the side surfaces of the fins 2 stand upright almost vertically from the inner peripheral surface of the tube, so that the heat transfer medium flows onto the fins 2 due to the wind pressure of the heat transfer gas flowing in the heat transfer tube 1. Less often blown up. For this reason, not only the effect of restricting the flow of the heat medium liquid by the fins 2 to cause turbulent flow is increased, but also when the heat transfer pipe 1 is used as a condensing pipe, the tips of the individual fins 2 are exposed. The tendency becomes higher, the contact area between the heat medium gas and the metal surface is increased, and high condensation efficiency can be obtained. In the illustrated example, the apexes of the fins 2 are semicircular in cross section, but the present invention may have a trapezoidal cross section or a triangular cross section.

【0014】伝熱管1の外径、肉厚、長さ等の寸法は限
定されず、従来から使用されているいかなる寸法の伝熱
管にも本発明は適用可能である。伝熱管1の材質として
は一般に銅または銅合金が使用されるが、本発明はそれ
に限定されることなく、アルミニウムを始めとする各種
金属も使用可能である。なお、この実施形態では伝熱管
1の断面形状が円形であるが、本発明は断面円形に限ら
ず、必要に応じて断面楕円形や偏平管状等としてもよ
い。さらに、ヒートパイプの本体として使用することも
有効である。
The dimensions such as the outer diameter, the wall thickness, and the length of the heat transfer tube 1 are not limited, and the present invention can be applied to any heat transfer tube of any size conventionally used. Copper or a copper alloy is generally used as a material of the heat transfer tube 1, but the present invention is not limited thereto, and various metals such as aluminum can be used. Although the heat transfer tube 1 has a circular cross section in this embodiment, the present invention is not limited to the circular cross section, and may have an elliptical cross section, a flat tubular shape, or the like as necessary. Further, it is also effective to use the heat pipe as a main body.

【0015】このような内面溝付伝熱管を製造するに
は、以下のような方法が採用できる。まず、帯状の金属
板条材を用意し、この板条材を、フィン2、溝部3、お
よび溝部4とそれぞれ相補形状をなす断面を有する圧延
ロールおよび受けロールの間に通して圧延することによ
り、板条材の表面にフィン2、溝部3、および溝部4を
同時に形成する。前記圧延ロールとしては、フィン2と
溝部3を形成するための螺旋溝付き圧延ロールと、溝部
4を形成するための円板状ロールとを交互に重ねた積層
ロールを使用することもでき、その場合には、積層する
各ロールを交換することにより、各部の形状を任意に設
定することが可能となる。
In order to manufacture such a heat transfer tube with an inner surface groove, the following method can be adopted. First, a strip-shaped metal sheet material is prepared, and the sheet material is rolled by passing it between a rolling roll and a receiving roll having a cross section complementary to the fin 2, the groove portion 3, and the groove portion 4, respectively. The fins 2, the groove portions 3, and the groove portions 4 are simultaneously formed on the surface of the strip material. As the rolling roll, it is also possible to use a laminated roll in which a rolling roll with a spiral groove for forming the fin 2 and the groove portion 3 and a disc-shaped roll for forming the groove portion 4 are alternately stacked. In this case, by exchanging the rolls to be laminated, the shape of each part can be set arbitrarily.

【0016】次に、フィン2、溝部3,4が転写された
金属板条材を、その溝形成面を内面側に向けた状態で電
縫装置にセットし、多段階に成形ロールの間を通して板
条材を幅方向に丸め、最後に突き合わせた両側縁部5を
溶接し円管形に成形し、内面溝付伝熱管とする。電縫装
置は通常使用されているものでよく、電縫条件も通常の
加工と同じでよい。その後、伝熱管の外周面において溶
接部を整形したうえ、伝熱管をロール状に巻きとるか所
定の長さで切断する。
Next, the metal sheet material to which the fins 2 and the groove portions 3 and 4 have been transferred is set in an electric sewing machine with the groove forming surface facing the inner surface side, and is passed between the forming rolls in multiple stages. The sheet material is rounded in the width direction, and the two edge portions 5 that are finally butted are welded to each other to form a circular tube shape to obtain a heat transfer tube with an inner groove. The electric sewing machine may be one that is normally used, and the electric sewing conditions may be the same as in normal processing. Then, after shaping the welded portion on the outer peripheral surface of the heat transfer tube, the heat transfer tube is wound into a roll or cut into a predetermined length.

【0017】上記構成からなる内面溝付伝熱管1によれ
ば、内面に形成されているフィン2が、いずれの向きに
流れる熱媒体に対しても、流れの上流に向けて開く2対
のV字を構成するように配置されているので、各フィン
2の側面により集められた熱媒体はV字の突き合わせ部
分で衝突して合流し、さらにフィン2同士の間隙4Aを
通り抜ける。この過程において、熱媒体は攪拌されて不
規則な乱流が発生するため、熱媒体の流れの中に温度勾
配が生じることが防止でき、熱媒と伝熱管金属面との熱
交換を促進して伝熱効率を高めることが可能である。特
に、混合熱媒(複数の熱媒を混合したもの)を使用した
場合には、熱媒成分の分離を防ぐことができ、混合熱媒
本来の性能を引き出すことができる。
According to the heat transfer tube 1 with the inner surface groove having the above-described structure, the fins 2 formed on the inner surface are provided with two pairs of Vs which are opened toward the upstream of the flow of the heat medium flowing in any direction. Since they are arranged so as to form a character, the heat medium collected by the side surface of each fin 2 collides and merges at the V-shaped abutting portion, and further passes through the gap 4A between the fins 2. In this process, the heat medium is agitated and irregular turbulence is generated, so that a temperature gradient can be prevented from being generated in the flow of the heat medium, and heat exchange between the heat medium and the metal surface of the heat transfer tube is promoted. It is possible to increase the heat transfer efficiency. In particular, when a mixed heat medium (a mixture of a plurality of heat media) is used, separation of the heat medium components can be prevented, and the original performance of the mixed heat medium can be brought out.

【0018】また、フィン2同士の端部間には間隙4A
が形成されているので、これら間隙4Aを通って熱媒流
体を逃すことができ、高い伝熱効率の向上率にも拘わら
ず伝熱管1内を流れる圧力損失を小さく抑えることがで
きる。このように、伝熱効率の向上と、圧力損失の低下
という相反する2つの効果を両立させることができる点
が、本発明の重要な効果である。
A gap 4A is provided between the ends of the fins 2.
Since the heat transfer fluid is allowed to escape through these gaps 4A, the pressure loss flowing in the heat transfer tube 1 can be suppressed to be small despite the high rate of improvement in heat transfer efficiency. Thus, it is an important effect of the present invention that the two contradictory effects of improving the heat transfer efficiency and reducing the pressure loss can be achieved at the same time.

【0019】[第2実施形態]図3は、本発明の第2実
施形態を示している。前記第1実施形態では、周方向に
隣接するフィン2の端部が揃えられていたが、この第2
実施形態では、隣接する領域のフィン2を半ピッチずら
したことを特徴としている。他の構成は第1実施形態と
同様でよい。
[Second Embodiment] FIG. 3 shows a second embodiment of the present invention. In the first embodiment, the ends of the fins 2 adjacent to each other in the circumferential direction are aligned, but this second
The embodiment is characterized in that the fins 2 in the adjacent regions are shifted by a half pitch. Other configurations may be the same as in the first embodiment.

【0020】このように、フィン2を各領域R1〜4で
半ピッチずらしたことにより、溝部4の幅を変えずと
も、周方向に隣接するフィン2同士の間隙4Aが実質的
に拡大できる。また、図中矢印に示すように、熱媒体の
流れが蛇行する傾向を増す。
By thus shifting the fins 2 by a half pitch in each of the regions R1 to R4, the gap 4A between the fins 2 adjacent in the circumferential direction can be substantially expanded without changing the width of the groove portion 4. Further, as shown by the arrow in the figure, the flow of the heat medium tends to meander.

【0021】[第3実施形態]図4は、本発明の第3実
施形態を示している。第1および第2実施形態では、伝
熱管1の内面を周方向に4つの領域R1〜R4に分けて
いたが、この例では、周方向に2つの領域R1,R2の
みに分けたことを特徴としている。このため伝熱管の外
径が同一であれば、前記各実施形態に比してフィン2の
長さが略2倍になる。他の構成に関しては、前記各実施
形態と同様でよい。
[Third Embodiment] FIG. 4 shows a third embodiment of the present invention. In the first and second embodiments, the inner surface of the heat transfer tube 1 is divided into four regions R1 to R4 in the circumferential direction, but in this example, it is divided into only two regions R1 and R2 in the circumferential direction. I am trying. Therefore, if the outer diameters of the heat transfer tubes are the same, the length of the fins 2 is approximately twice as long as that in each of the above embodiments. Other configurations may be the same as in the above embodiments.

【0022】このような第3実施形態によれば、内面に
形成されているフィン2が、いずれの向きに流れる熱媒
体に対しても、流れの上流に向けて開く単一のV字を構
成するように配置され、このV字の谷間に相当する側の
溝部4に熱媒体が集まる特性を有する。この特性を生か
すため、この第3実施形態では、使用態様に応じて伝熱
管1の上下を設定することが好ましい。
According to such a third embodiment, the fins 2 formed on the inner surface form a single V-shape that opens toward the upstream side of the flow of the heat medium flowing in either direction. The heat medium gathers in the groove portion 4 on the side corresponding to the V-shaped valley. In order to make full use of this characteristic, in the third embodiment, it is preferable to set the upper and lower sides of the heat transfer tube 1 according to the usage mode.

【0023】例えば、凝縮管として使用するのであれ
ば、金属面と熱媒気体とを直接接触させることが好まし
いので、蒸気流に対してV字の谷間に相当する側の溝部
4を下向きに配置する。すると、伝熱管1内に溜まって
流れる熱媒液体がフィン2に沿って伝熱管1の内面上側
にまで広がりにくくなるから、前記効果と相まって凝縮
効率を高めることが可能である。なお、この実施形態に
おいても隣接する領域のフィンのピッチをずらすことが
可能である。
For example, when it is used as a condenser tube, it is preferable to directly contact the metal surface with the heating medium gas, so that the groove portion 4 on the side corresponding to the V-shaped valley with respect to the vapor flow is arranged downward. To do. Then, the heat medium liquid that collects and flows in the heat transfer tube 1 is less likely to spread to the upper side of the inner surface of the heat transfer tube 1 along the fins 2, and it is possible to enhance the condensation efficiency in combination with the above effect. Also in this embodiment, it is possible to shift the pitch of the fins in the adjacent regions.

【0024】[第4実施形態]図5は、本発明の第4実
施形態を示している。この例では、伝熱管1の内周面を
周方向に6つの領域R1〜R6に分けたことを特徴とし
ており、これら領域R1〜R6のそれぞれに、伝熱管1
の軸線方向に並ぶ多数のフィン2が互いに平行に形成さ
れている。他の構成は第1実施形態と同様であるから同
一符号を付して説明を省略する。
[Fourth Embodiment] FIG. 5 shows a fourth embodiment of the present invention. This example is characterized in that the inner peripheral surface of the heat transfer tube 1 is divided into six regions R1 to R6 in the circumferential direction, and the heat transfer tube 1 is provided in each of these regions R1 to R6.
A large number of fins 2 arranged in the axial direction are formed in parallel with each other. The other configuration is the same as that of the first embodiment, and the same reference numerals are given and the description is omitted.

【0025】このような構成からなる内面溝付伝熱管1
によっても、第1実施形態と同様の優れた効果が得られ
る。
Heat transfer tube 1 with internal groove having the above structure
Also, the same excellent effect as that of the first embodiment can be obtained.

【0026】[第5実施形態]図6は、本発明の第5実
施形態を示している。この例では、伝熱管1の内周面を
周方向に4つに区画している点が第1実施形態と同様で
あるが、各領域の境界部に溝部4を形成しておらず、そ
の代わりに、フィン2を各領域R1〜4で半ピッチずら
して相互の間に間隙6を形成したことを特徴としてい
る。外径が1cm程度の汎用伝熱管の場合、伝熱管軸線
方向における間隙6の幅C2は0.05〜0.5mm、
特に0.1〜0.3mmであることが好ましい。幅C2
が0.05〜0.5mmの範囲であると、圧力損失と熱
交換効率とのバランスが特に良好である。但し、本発明
は上記範囲のみに限定されるものではなく、他の値も採
用できるのは勿論である。
[Fifth Embodiment] FIG. 6 shows a fifth embodiment of the present invention. This example is similar to the first embodiment in that the inner peripheral surface of the heat transfer tube 1 is divided into four in the circumferential direction, but the groove portion 4 is not formed at the boundary of each region, and Instead, the fins 2 are shifted by a half pitch in each of the regions R1 to R4 to form a gap 6 therebetween. In the case of a general-purpose heat transfer tube having an outer diameter of about 1 cm, the width C2 of the gap 6 in the heat transfer tube axial direction is 0.05 to 0.5 mm,
In particular, it is preferably 0.1 to 0.3 mm. Width C2
Is in the range of 0.05 to 0.5 mm, the balance between pressure loss and heat exchange efficiency is particularly good. However, the present invention is not limited to the above range, and it goes without saying that other values can be adopted.

【0027】このような構成によっても、伝熱管内面に
形成されているフィン2が、いずれの向きに流れる熱媒
体に対しても、流れの上流に向けて開く2対のV字(y
字)を構成するように配置されているので、各フィン2
の側面により集められた熱媒体はV字の突き合わせ部分
で衝突して合流し、さらにフィン2同士の間隙6を通り
抜ける。この過程において、熱媒流体は攪拌されて不規
則な乱流が発生するため、熱媒液体の流れの中に温度勾
配が生じることが防止でき、熱媒と伝熱管金属面との熱
交換を促進して伝熱効率を高めることが可能である。ま
た、フィン2同士の端部間に間隙6が形成されているの
で、これら間隙6を通して熱媒流体を逃すことができ、
高い伝熱効率の向上率にも拘わらず伝熱管1内を流れる
圧力損失を小さく抑えることができるという優れた効果
を奏する。
With this structure as well, the fins 2 formed on the inner surface of the heat transfer tube have two pairs of V-shapes (y) that open toward the upstream of the heat medium flowing in any direction.
The fins 2 are arranged so that each fin 2
The heat mediums collected by the side surfaces of the fins collide with each other at the V-shaped butting portions and merge with each other, and further pass through the gap 6 between the fins 2. In this process, the heat transfer fluid is agitated to generate an irregular turbulent flow, so that it is possible to prevent a temperature gradient from occurring in the flow of the heat transfer fluid, and to perform heat exchange between the heat transfer medium and the metal surface of the heat transfer tube. It is possible to promote and improve heat transfer efficiency. Further, since the gap 6 is formed between the ends of the fins 2, the heat transfer fluid can escape through these gaps 6,
It has an excellent effect that the pressure loss flowing in the heat transfer tube 1 can be suppressed to a small level, despite the high improvement rate of the heat transfer efficiency.

【0028】なお、本発明に係る内面溝付伝熱管は、上
記各実施形態に限定されるものではなく、その他にも種
々の構成が可能である。例えば、伝熱管の外径が大きい
場合には、伝熱管の内周面を8つ以上の領域に区画する
ことも可能であるし、必要であれば各フィンを円弧状に
形成することも可能である。さらに、各フィン2の中央
部等に凹部や切り込みを別途形成してもよい。
The inner surface grooved heat transfer tube according to the present invention is not limited to the above-mentioned embodiments, but various other structures are possible. For example, when the outer diameter of the heat transfer tube is large, the inner peripheral surface of the heat transfer tube can be divided into eight or more regions, and if necessary, each fin can be formed in an arc shape. It is. Further, a concave portion or a notch may be separately formed in the central portion or the like of each fin 2.

【0029】[0029]

【実施例】次に、実施例を挙げて本発明の効果を実証す
る。フィンの形状のみが異なる下記8通りの伝熱管をそ
れぞれ形成し、これら伝熱管について、伝熱効率と圧力
損失を比較した。
EXAMPLES Next, the effects of the present invention will be demonstrated with reference to examples. The following eight different heat transfer tubes having different fin shapes were formed, and the heat transfer efficiency and the pressure loss of these heat transfer tubes were compared.

【0030】a1型:内面に螺旋状の溝を形成した伝熱
管(比較例1) b1型:内面に単一のV字状をなすように2列のフィン
が形成されているが、周方向に隣接するフィン間に間隙
が形成されていない伝熱管(比較例2) c1型:内面に2対のV字状をなすように4列のフィン
が形成されているが、周方向に隣接するフィン間に間隙
が形成されていない伝熱管(比較例3) d1型:内面に3対のV字状をなすように6列のフィン
が形成されているが、周方向に隣接するフィン間に間隙
が形成されていない伝熱管(比較例4) c2型:内面に2対のV字状をなすように4列のフィン
が形成され、周方向に隣接するフィン間に間隙が形成さ
れている伝熱管(実施例1):図1 d2型:内面に3対のV字状をなすように6列のフィン
が形成され、周方向に隣接するフィン間に間隙が形成さ
れている(実施例2):図5 c3型:内面に2対のV字状をなすように4列のフィン
が形成され、周方向に隣接するフィンが互いに半ピッチ
ずらされて間隙が形成されている伝熱管(実施例3):
図6 d3型:内面に3対のV字状をなすように6列のフィン
が形成され、周方向に隣接するフィンが互いに半ピッチ
ずらされて間隙が形成されている伝熱管(実施例4)
A1 type: heat transfer tube having spiral grooves formed on the inner surface (Comparative Example 1) b1 type: two rows of fins are formed on the inner surface so as to form a single V-shape, but in the circumferential direction Transfer tube in which no gap is formed between the fins adjacent to each other (Comparative Example 2) c1 type: four rows of fins are formed on the inner surface so as to form two pairs of V-shapes, but they are adjacent in the circumferential direction Heat Transfer Tube with No Gap Between Fins (Comparative Example 3) d1 type: Six rows of fins are formed on the inner surface so as to form three pairs of V-shapes, but between fins adjacent in the circumferential direction. Heat Transfer Tube with No Gap (Comparative Example 4) c2 type: Four rows of fins are formed on the inner surface so as to form two pairs of V-shapes, and gaps are formed between the fins adjacent in the circumferential direction. Heat transfer tube (Example 1): FIG. 1 d2 type: Six rows of fins are formed on the inner surface to form three pairs of V-shapes. A gap is formed between the fins adjacent to each other in the circumferential direction (Example 2): FIG. 5 c3 type: Four rows of fins are formed on the inner surface so as to form two pairs of V-shapes, and the fins are adjacent to each other in the circumferential direction. Heat transfer tubes in which the fins are displaced by a half pitch from each other to form a gap (Example 3):
FIG. 6 d3 type: Heat transfer tube in which six rows of fins are formed on the inner surface so as to form three pairs of V-shapes, and the fins adjacent to each other in the circumferential direction are displaced from each other by a half pitch to form a gap (Example 4). )

【0031】なお、以下の寸法に関しては、いずれの伝
熱管でも共通とした。 フィンのピッチP=0.36mm フィンの高さH=0.24mm フィンの両側面のなす角度γ=17゜ (管軸に対して直角な断面でのフィン断面角度=20
゜) フィン間の溝幅=0.22mm (管軸方向での溝幅=0.85mm) さらに、伝熱管の軸線に対するフィンの傾斜角度は、a
1型の伝熱管では15゜、それ以外の伝熱管では全て1
5゜および−15゜とした。c2型およびd2型の伝熱
管における間隙量C1は0.2mm、c3型およびd3
型の伝熱管におけるずれ量C2も0.2mmとした。
The following dimensions are common to all heat transfer tubes. Fin pitch P = 0.36 mm Fin height H = 0.24 mm Angle between both sides of the fin γ = 17 ° (fin cross-section angle in cross section perpendicular to tube axis = 20
°) Groove width between fins = 0.22 mm (groove width in tube axial direction = 0.85 mm) Furthermore, the fin inclination angle with respect to the axis of the heat transfer tube is a
15 degrees for Type 1 heat transfer tubes, 1 for all other heat transfer tubes
The angles were 5 ° and -15 °. The gap amount C1 in the c2 type and d2 type heat transfer tubes is 0.2 mm,
The shift amount C2 in the mold heat transfer tube was also set to 0.2 mm.

【0032】次に、得られた各伝熱管について、図7お
よび図8に示す装置を用いて伝熱性能(蒸発性能、凝縮
性能)を測定した。測定に際しては、図中「測定部」に
各伝熱管をセットし、下記の評価方法により蒸発性能お
よび凝縮性能を測定した。併せて、その際の圧力損失を
測定した。評価条件は以下の通りである。
Next, the heat transfer performance (evaporation performance, condensation performance) of each of the obtained heat transfer tubes was measured using the apparatus shown in FIGS. 7 and 8. At the time of measurement, each heat transfer tube was set in the "measurement section" in the figure, and the evaporation performance and the condensation performance were measured by the following evaluation methods. At the same time, the pressure loss at that time was measured. The evaluation conditions are as follows.

【0033】[評価方法] 対向流二重管方式 水流速:1.5m/s 伝熱管の全長:3.5m 蒸発時飽和温度:5℃ 過熱度3deg 蒸発時飽和温度:45℃ 過冷度5deg 熱媒:フロン「R−22」[Evaluation method] Counterflow double tube system Water velocity: 1.5 m / s Total length of heat transfer tube: 3.5 m Saturation temperature at evaporation: 5 ° C Superheat degree 3 deg Saturation temperature at evaporation: 45 ° C Supercooling degree 5 deg Heat medium: Freon "R-22"

【0034】上記実験により得られた蒸発性能、凝縮性
能、および圧力損失を、a1型の伝熱管に対する比で表
した結果を図9および図10に示す。これらのグラフか
ら明らかなように、本発明に係るc2型,c3型,d2
型,およびd3型の各伝熱管では、圧力損失がa1型の
単純溝付管と同程度でありながら、高い伝熱性能を示し
た。
FIGS. 9 and 10 show the results of the evaporation performance, the condensation performance, and the pressure loss obtained by the above experiment expressed as a ratio to the a1 type heat transfer tube. As is clear from these graphs, the c2 type, c3 type, d2 according to the present invention
The type 3 and type d3 heat transfer tubes exhibited high heat transfer performance, although the pressure loss was about the same as that of the a1 type simple grooved tube.

【0035】[0035]

【発明の効果】以上説明したように、本発明の内面溝付
伝熱管によれば、内面に形成されているフィンが、熱媒
流体の流れの上流側に開く1対以上のV字を構成するよ
うに配置されているので、各フィンの側面に沿って流れ
る熱媒流体はV字の突き合わせ部分で衝突して合流し、
さらにフィン同士の間隙を通り抜ける。この過程におい
て、熱媒流体は攪拌されて不規則な乱流が発生するた
め、熱媒体の流れの中に温度勾配が生じることが防止で
き、熱媒と金属面との熱交換を促進して伝熱効率を高め
ることが可能である。
As described above, according to the inner surface grooved heat transfer tube of the present invention, the fins formed on the inner surface form one or more pairs of V-shapes that open upstream of the flow of the heat transfer fluid. The heat transfer fluid flowing along the side surface of each fin collides and joins at the V-shaped abutting portion,
Furthermore, it passes through the gap between the fins. In this process, the heat medium fluid is agitated to generate irregular turbulence, so that it is possible to prevent a temperature gradient from occurring in the flow of the heat medium and to promote heat exchange between the heat medium and the metal surface. It is possible to improve heat transfer efficiency.

【0036】また、フィン同士の端部間には間隙が形成
されているので、この間隙を通って熱媒流体を逃すこと
ができ、高い伝熱効率の向上率にも拘わらず圧力損失を
小さく抑えることができる。
Further, since a gap is formed between the end portions of the fins, the heat transfer fluid can escape through this gap, and the pressure loss can be suppressed to a small level in spite of the high improvement rate of the heat transfer efficiency. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る内面溝付伝熱管の第1の実施形態
を示す一部展開した平面図である。
FIG. 1 is a partially expanded plan view showing a first embodiment of a heat transfer tube with an inner groove according to the present invention.

【図2】図1中のII−II線断面図である。FIG. 2 is a sectional view taken along line II-II in FIG.

【図3】本発明の第2の実施形態を示す一部展開した平
面図である。
FIG. 3 is a partially expanded plan view showing a second embodiment of the present invention.

【図4】本発明の第3の実施形態を示す一部展開した平
面図である。
FIG. 4 is a partially expanded plan view showing a third embodiment of the present invention.

【図5】本発明の第4の実施形態を示す一部展開した平
面図である。
FIG. 5 is a partially expanded plan view showing a fourth embodiment of the present invention.

【図6】本発明の第5の実施形態を示す一部展開した平
面図である。
FIG. 6 is a partially expanded plan view showing a fifth embodiment of the present invention.

【図7】蒸発性能の測定装置を示す概略図である。FIG. 7 is a schematic view showing an apparatus for measuring evaporation performance.

【図8】凝縮性能の測定装置を示す概略図である。FIG. 8 is a schematic view showing an apparatus for measuring condensation performance.

【図9】蒸発性能、および蒸発時の圧力損失のグラフで
ある。
FIG. 9 is a graph of evaporation performance and pressure loss during evaporation.

【図10】凝縮性能、および凝縮時の圧力損失のグラフ
である。
FIG. 10 is a graph of condensation performance and pressure loss during condensation.

【符号の説明】[Explanation of symbols]

1 内面溝付伝熱管 2 フィン 3,4 溝部 5 突き合わせた側縁部 4A,6 間隙 R1〜R6 区切られた領域 C1,C2 フィン間の間隙量 1 Heat Transfer Tube with Inner Surface Groove 2 Fins 3, 4 Groove 5 Side Edges Abutted 4A, 6 Gap R1 to R6 Areas C1 and C2 Gap between Fins

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲すくも▼田 俊▲緑▼ 福島県会津若松市扇町128の7 三菱伸銅 株式会社若松製作所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor ▲ Sukumo ▼ Shun Tad ▲ Green ▼ 128-7 Ogimachi, Aizu-Wakamatsu City, Fukushima Prefecture Wakamatsu Works, Mitsubishi Shindoh Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属管の内周面がその周方向において2
以上の領域に区分され、これら各領域のそれぞれには伝
熱管の軸線方向に並ぶ多数のフィンが形成され、いずれ
か1つの領域から数えて奇数番の領域に含まれるフィン
は伝熱管の軸線に対して10〜25゜傾斜させられてい
るとともに、前記1の領域から数えて偶数番の領域に含
まれるフィンは伝熱管の軸線に対して−10〜−25゜
傾斜しており、さらに、周方向に隣接する前記フィンの
端部同士の間には間隙が形成されていることを特徴とす
る内面溝付伝熱管。
1. The inner peripheral surface of the metal tube is 2 in the circumferential direction.
The fins are divided into the above areas, and a large number of fins arranged in the axial direction of the heat transfer tube are formed in each of these areas. The fins included in the even-numbered areas counting from the area 1 are inclined by -10 to -25 degrees with respect to the axis of the heat transfer tube, and further, are inclined by 10 to 25 degrees. A heat transfer tube with an inner groove, wherein a gap is formed between the ends of the fins that are adjacent to each other in the direction.
【請求項2】 同一の領域に含まれるフィンは互いに平
行にされていることを特徴とする請求項1記載の内面溝
付伝熱管。
2. The heat transfer tube with internal groove according to claim 1, wherein the fins included in the same region are parallel to each other.
【請求項3】 互いに隣接する領域に含まれるフィン
は、これら領域の境界線を境として線対称に形成され、
前記間隙の幅は0.05〜0.5mmとされていること
を特徴とする請求項1または2記載の内面溝付伝熱管。
3. The fins included in the regions adjacent to each other are formed line-symmetrically with respect to the boundary line between these regions,
The heat transfer tube with an inner surface groove according to claim 1 or 2, wherein the width of the gap is 0.05 to 0.5 mm.
【請求項4】 互いに隣接する領域に含まれるフィン
は、伝熱管軸線方向に互いにピッチがずれるように形成
され、前記間隙の幅は0.05〜0.5mmとされてい
ることを特徴とする請求項1または2記載の内面溝付伝
熱管。
4. The fins included in the regions adjacent to each other are formed so that their pitches are displaced from each other in the axial direction of the heat transfer tube, and the width of the gap is 0.05 to 0.5 mm. The heat transfer tube with an inner groove according to claim 1 or 2.
【請求項5】 同じ領域に含まれるフィンのピッチは
0.3〜0.4mm、前記フィンの金属管内周面からの
高さは0.15〜0.30mm、前記フィンの両側面の
なす角度は10〜25゜とされていることを特徴とする
請求項1〜4のいずれかに記載の内面溝付伝熱管。
5. The pitch of fins included in the same region is 0.3 to 0.4 mm, the height of the fin from the inner peripheral surface of the metal tube is 0.15 to 0.30 mm, and the angle formed by both side surfaces of the fin. Is 10 to 25 degrees, The heat transfer tube with an inner groove according to any one of claims 1 to 4, wherein
【請求項6】 前記領域の数は、2,4,6のいずれか
であることを特徴とする請求項1〜5のいずれかに記載
の内面溝付伝熱管。
6. The inner surface grooved heat transfer tube according to claim 1, wherein the number of the regions is 2, 4, or 6.
JP17925495A 1995-07-14 1995-07-14 Heat transfer tube with internal groove Expired - Fee Related JP2842810B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP17925495A JP2842810B2 (en) 1995-07-14 1995-07-14 Heat transfer tube with internal groove
US08/680,215 US5791405A (en) 1995-07-14 1996-07-11 Heat transfer tube having grooved inner surface
KR1019960028156A KR100260112B1 (en) 1995-07-14 1996-07-12 Heat transferring pipe having internal groone
DE19628280A DE19628280C3 (en) 1995-07-14 1996-07-12 Heat transfer tube with a grooved inner surface
CN96113213A CN1150645A (en) 1995-07-14 1996-07-13 Heat-transfer pipe with internal groove
US09/063,722 US5934128A (en) 1995-07-14 1998-04-21 Heat transfer tube having grooved inner surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17925495A JP2842810B2 (en) 1995-07-14 1995-07-14 Heat transfer tube with internal groove

Publications (2)

Publication Number Publication Date
JPH0926279A true JPH0926279A (en) 1997-01-28
JP2842810B2 JP2842810B2 (en) 1999-01-06

Family

ID=16062641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17925495A Expired - Fee Related JP2842810B2 (en) 1995-07-14 1995-07-14 Heat transfer tube with internal groove

Country Status (1)

Country Link
JP (1) JP2842810B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233479A (en) * 2004-02-18 2005-09-02 Tokyo Radiator Mfg Co Ltd Heat transfer pipe for heat exchanger
JP2006063984A (en) * 2004-08-26 2006-03-09 General Electric Co <Ge> Combustor cooling method using segmented slope
JP2006514733A (en) * 2003-05-10 2006-05-11 チンファ ユニバーシティ Enhanced heat exchanger tube with discontinuous bi-directionally inclined internal ribs
JP2007182777A (en) * 2006-01-05 2007-07-19 Mitsubishi Heavy Ind Ltd Cooling blade
JP2010151332A (en) * 2008-12-24 2010-07-08 Toshiba Carrier Corp Heat exchanger and heat pump type water heater
KR20160121583A (en) * 2014-02-27 2016-10-19 가부시키가이샤 고베 세이코쇼 Base panel material for use as heat exchange plate and method for manufacturing such base panel material
EP3696487A4 (en) * 2017-10-12 2021-06-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Metal base plate material for use in heat exchange plate
CN114370777A (en) * 2021-11-30 2022-04-19 中国船舶重工集团公司第七一九研究所 Heat exchange channel structure of printed circuit board heat exchanger and printed circuit board heat exchanger

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514733A (en) * 2003-05-10 2006-05-11 チンファ ユニバーシティ Enhanced heat exchanger tube with discontinuous bi-directionally inclined internal ribs
JP2005233479A (en) * 2004-02-18 2005-09-02 Tokyo Radiator Mfg Co Ltd Heat transfer pipe for heat exchanger
JP2006063984A (en) * 2004-08-26 2006-03-09 General Electric Co <Ge> Combustor cooling method using segmented slope
JP2007182777A (en) * 2006-01-05 2007-07-19 Mitsubishi Heavy Ind Ltd Cooling blade
JP2010151332A (en) * 2008-12-24 2010-07-08 Toshiba Carrier Corp Heat exchanger and heat pump type water heater
KR20160121583A (en) * 2014-02-27 2016-10-19 가부시키가이샤 고베 세이코쇼 Base panel material for use as heat exchange plate and method for manufacturing such base panel material
EP3696487A4 (en) * 2017-10-12 2021-06-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Metal base plate material for use in heat exchange plate
CN114370777A (en) * 2021-11-30 2022-04-19 中国船舶重工集团公司第七一九研究所 Heat exchange channel structure of printed circuit board heat exchanger and printed circuit board heat exchanger
CN114370777B (en) * 2021-11-30 2023-09-22 中国船舶重工集团公司第七一九研究所 Heat exchange channel structure of printed circuit board heat exchanger and printed circuit board heat exchanger

Also Published As

Publication number Publication date
JP2842810B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US5791405A (en) Heat transfer tube having grooved inner surface
US6298909B1 (en) Heat exchange tube having a grooved inner surface
JP3751393B2 (en) Tube inner surface grooved heat transfer tube
JP2842810B2 (en) Heat transfer tube with internal groove
US20050269070A1 (en) High-performance and high-efficiency rolled fin tube and forming disk therefor
JP3145277B2 (en) Heat transfer tube with internal groove
JPH09101093A (en) Heat transfer pipe with inner surface groove
JP2580353B2 (en) ERW heat transfer tube and its manufacturing method
JP2922824B2 (en) Heat transfer tube with internal groove
JPS6029594A (en) Heat-transmitting pipe and manufacture thereof
JPH085278A (en) Heat transfer tube with inner surface grooves
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP3286171B2 (en) Heat transfer tube with internal groove
JP3199636B2 (en) Heat transfer tube with internal groove
JP2000310495A (en) Heat transfer pipe with inner surface grooves
JP2001153580A (en) Heat transfer pipe
JPH1163878A (en) Internal surface grooved heat transfer pipe
JPH1163879A (en) Internal surface grooved heat transfer pipe
JP4020678B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JPH10122779A (en) Heat transfer tube with inner surface groove
JPH1054686A (en) Heat transfer tube with grooved inner surface and roll for manufacturing the same
JPH11108579A (en) Pipe with grooved inner face
JPH08145584A (en) Heat transfer tube with groove on inner surface thereof
JPH10300379A (en) Heat exchanger tube having groove in internal surface
JP2000205781A (en) Inner surface grooved heat transfer tube

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980922

LAPS Cancellation because of no payment of annual fees