JPH06310127A - Manufacture of electrode - Google Patents

Manufacture of electrode

Info

Publication number
JPH06310127A
JPH06310127A JP5120583A JP12058393A JPH06310127A JP H06310127 A JPH06310127 A JP H06310127A JP 5120583 A JP5120583 A JP 5120583A JP 12058393 A JP12058393 A JP 12058393A JP H06310127 A JPH06310127 A JP H06310127A
Authority
JP
Japan
Prior art keywords
electrode
solution
sulfur
disulfide compound
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5120583A
Other languages
Japanese (ja)
Inventor
Tadashi Tonomura
正 外邨
Yasushi Uemachi
裕史 上町
Yoshiko Miyamoto
佳子 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5120583A priority Critical patent/JPH06310127A/en
Publication of JPH06310127A publication Critical patent/JPH06310127A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce a deterioration of an electrode using a disulfide compound by the charge and discharge cycle. CONSTITUTION:After a disulfide compound and a conductive material are mixed, it is mixed with a solution polyvinyl pyridine is solved, and then, the solvent is removed to manufacture an electrode. Furthermore, the electrode obtained in such a way, and a solution a polymer electrolyte is solved are mixed, and the solvent is removed so as to form an electrode which can be used in a large current condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池、電気二重層キャ
パシタ、エレクトロクロミック表示素子等の電気化学デ
バイスに用いられる電極の製造法に関する。さらに詳し
くは、電解還元により硫黄ー硫黄結合が開裂し、硫黄ー
金属イオン(プロトンを含む)結合を生成し、電解酸化
により硫黄ー金属イオン結合が元の硫黄ー硫黄結合を再
生する有機イオウ化合物(以後これをジスルフィド化合
物と呼ぶ)と導電性物質を主体とする電極の製造法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing electrodes used in electrochemical devices such as batteries, electric double layer capacitors and electrochromic display devices. More specifically, an organic sulfur compound in which a sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including a proton) bond, and the sulfur-metal ion bond regenerates the original sulfur-sulfur bond by electrolytic oxidation. (Hereinafter referred to as a disulfide compound) and a method of manufacturing an electrode mainly composed of a conductive substance.

【0002】[0002]

【従来の技術】ジスルフィド化合物は、高エネルギー密
度が期待できる有機材料として、例えば米国特許第4,
833,048号にジスルフィドが提案されている。ジ
スルフィド化合物は、最も簡単にはR−S−S−Rと表
される。ここで、Rは脂肪族あるいは芳香族の有機基、
Sは硫黄である。S−S結合は、電解還元により開裂
(脱重合)し、電解浴中のカチオン(M+)とR−S
+で表される塩を生成する。この塩は、電解酸化(重
合)により元のR−S−S−Rに戻る。カチオン
(M+)を供給、捕捉する金属Mとジスルフィド化合物
を組み合わせた金属ーイオウ二次電池が前述の米国特許
に提案されている。この電池は、150wh/kg以上
と、通常の二次電池に匹敵あるいはそれ以上のエネルギ
ー密度が期待できるとされている。
2. Description of the Related Art Disulfide compounds are known as organic materials which can be expected to have high energy density, for example, US Pat.
Disulfides have been proposed in 833,048. The disulfide compound is most simply designated as R-S-S-R. Here, R is an aliphatic or aromatic organic group,
S is sulfur. S-S bond is cleaved (depolymerization) by electrolytic reduction, cations in the electrolyte bath (M +) and R-S chromatography,
This produces a salt represented by M + . This salt returns to the original R-S-S-R by electrolytic oxidation (polymerization). A metal-sulfur secondary battery in which a metal M for supplying and capturing a cation (M + ) and a disulfide compound are combined is proposed in the above-mentioned US patent. This battery is expected to have an energy density of 150 wh / kg or more, which is comparable to or higher than that of an ordinary secondary battery.

【0003】ジスルフィド化合物は、それ自体電子伝導
性に乏しいので、電池等の電極に用いる場合は、米国特
許第4,833,048号の発明者らがジャーナル、エ
レクトロケミカル、ソサイアティー第137巻、第11
91頁(1990)、同第138巻、第1896頁(1
991)で報告しているように、ジスルフィドモノマー
あるいはあらかじめ重合したジスルフィド化合物ポリマ
ーをカーボンフェルトに含浸したり、カーボンブラック
等の導電材と混合して用いられている。
Since the disulfide compound itself has a poor electron conductivity, when it is used for an electrode of a battery or the like, the inventors of US Pat. No. 4,833,048, Journal, Electrochemical, Society Vol. 137, Vol. 11
91 (1990), 138, 1896 (1
As reported in 991), a disulfide monomer or a prepolymerized disulfide compound polymer is impregnated into carbon felt or is used by mixing with a conductive material such as carbon black.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ジスル
フィド化合物を導電材に含浸したり単に混合するだけで
は、電解質に液体あるいは液体を含む電解質を用いて電
池を構成する場合は、ジスルフィド化合物の電極内への
保持が不十分である。そのため電池の充放電に伴ってジ
スルフィド化合物が重合、脱重合を繰り返す間に電極か
らジスルフィド化合物が流れ出し、電池容量が劣化する
という問題があった。また、リチウム塩を溶解したポリ
エチレンオキサイド等のポリマー固体電解質を用いる場
合は、導電材とジスルフィド化合物が均一に分散され
ず、重合、脱重合を繰り返していると、さらに不均一さ
が増し、導電材と電気的に接続されないため充放電でき
ないジスルフィド化合物の塊が電極内に発生し、電池容
量が劣化するという問題があった。本発明は、このよう
な問題を解決するもので、充放電に際して容量劣化の少
ないジスルフィド化合物を主体とする電極の製造方法を
提供するものである。
However, when a battery is constructed using a liquid or an electrolyte containing a liquid as an electrolyte by impregnating or simply mixing a conductive material with the disulfide compound, the disulfide compound is introduced into the electrode. Is insufficiently retained. Therefore, there is a problem that the disulfide compound flows out from the electrode during repeated polymerization and depolymerization of the disulfide compound as the battery is charged and discharged, and the battery capacity deteriorates. Further, when a polymer solid electrolyte such as polyethylene oxide in which a lithium salt is dissolved is used, the conductive material and the disulfide compound are not uniformly dispersed, and when polymerization and depolymerization are repeated, the nonuniformity is further increased and the conductive material There is a problem that a mass of a disulfide compound that cannot be charged / discharged because it is not electrically connected to is generated in the electrode, and the battery capacity deteriorates. The present invention solves such a problem, and provides a method for producing an electrode containing a disulfide compound as a main component, which causes little capacity deterioration during charge and discharge.

【0005】[0005]

【課題を解決するための手段】本発明の電極の製造方法
は、ジスルフィド化合物と導電性物質との混合物にポリ
ビニルピリジンを溶解した第1の溶液を添加・混合する
工程、混合物より溶媒を除去する工程を少なくとも含
む。さらに、前記工程に加え、前記ジスルフィド化合
物、導電性物質およびポリビニルピリジンを含む混合物
に、ポリマー電解質を溶解した第2の溶液を添加・混合
する工程、混合物を成形する工程、成形物より溶媒を除
去する工程を含む。
According to the method for producing an electrode of the present invention, a step of adding and mixing a first solution in which polyvinyl pyridine is dissolved in a mixture of a disulfide compound and a conductive substance, and removing a solvent from the mixture. At least the process is included. Further, in addition to the above steps, a step of adding and mixing a second solution in which a polymer electrolyte is dissolved to a mixture containing the disulfide compound, the conductive substance and polyvinyl pyridine, a step of molding the mixture, and a solvent removed from the molded article. Including the step of

【0006】[0006]

【作用】本発明においては、ジスルフィド化合物と導電
性物質は、あらかじめ混合された後、ポリビニルピリジ
ンを含む第1の溶液と均一に混合・分散された後、第1
の溶液に含まれる溶媒を除去するようにしたので、ポリ
ビニルピリジンの接着作用と界面活性作用により、ジス
ルフィド化合物と導電性物質とがお互いに均一混合かつ
緊密接着した電極を得ることができる。このような電極
を充放電すると、導電性物質とジスルフィド化合物との
電気的な接続が良好に保たれ、容量の劣化が軽減される
という効果が得られる。
In the present invention, the disulfide compound and the conductive substance are mixed in advance, then uniformly mixed and dispersed with the first solution containing polyvinyl pyridine, and then the first solution.
Since the solvent contained in the solution is removed, it is possible to obtain an electrode in which the disulfide compound and the conductive substance are uniformly mixed and tightly adhered to each other due to the adhesive action and the surface-active action of polyvinylpyridine. When such an electrode is charged / discharged, the electrical connection between the conductive substance and the disulfide compound is kept good, and the deterioration of the capacity is reduced.

【0007】また、得られた電極と、ポリマー電解質を
溶解した溶液とを混合したのち、混合物を成形後、溶媒
を除去することで、電極のイオン伝導性をさらに向上さ
せることができる。従って、より大きな電流で使用可能
な電極とすることができる。本発明に用いられるジスル
フィド化合物としては、ジチオグリコール(エタンジチ
オール)、2,5ージメルカプトー1,3,4ーチアジ
アゾール、チオシアヌル酸(s−トリアジンー2,4,
6ートリチオール)、チオ尿素等がある。また、これら
のジスルフィド化合物を、沃素、フェリシアン化カリウ
ム、過酸化水素等の酸化剤を用いて化学重合法により、
あるいは電解酸化法により重合したジスルフィド化合物
の重合物を用いることができる。
Further, the ionic conductivity of the electrode can be further improved by mixing the obtained electrode with a solution in which a polymer electrolyte is dissolved and then molding the mixture and then removing the solvent. Therefore, the electrode can be used with a larger current. The disulfide compound used in the present invention includes dithioglycol (ethanedithiol), 2,5-dimercapto-1,3,4-thiadiazole, thiocyanuric acid (s-triazine-2,4,4).
6-trithiol), thiourea and the like. Further, these disulfide compounds are chemically polymerized by using an oxidizing agent such as iodine, potassium ferricyanide, or hydrogen peroxide,
Alternatively, a polymer of a disulfide compound polymerized by the electrolytic oxidation method can be used.

【0008】導電性物質としては、アセチレンブラッ
ク、人造黒鉛、天然黒鉛等の炭素材料、ポリアニリン、
ポリピロール、ポリチオフェン等の導電性高分子材料等
が用いられる。導電性物質としては、以上の導電性物質
をお互いに複合化したもの、あるいは、以上の導電性物
質と、ポリプロピレン、ポリブテン等のポリオレフィ
ン、ポリテトラフルオロエチレン等のフッ素樹脂、ある
いは合成ゴム等の合成樹脂材料と複合化したものも用い
ることができる。特に、可撓性のある導電性高分子材
料、中でも、フィブリル構造あるいは多孔質構造を有
し、ジスルフィド化合物を有効に分散保持できるポリア
ニリンが好ましい。導電性物質の混合量は、電極全重量
の0.1〜20%が好ましい。0.1%以下であると、
十分な電気伝導性が得られない。また20%以上である
と、電極の成形が困難となる。
As the conductive material, carbon materials such as acetylene black, artificial graphite and natural graphite, polyaniline,
Conductive polymer materials such as polypyrrole and polythiophene are used. As the conductive substance, a composite of the above conductive substances with each other, or the above conductive substance and a polyolefin such as polypropylene or polybutene, a fluororesin such as polytetrafluoroethylene, or a synthetic rubber or the like is synthesized. A composite material with a resin material can also be used. In particular, a flexible conductive polymer material, especially polyaniline having a fibril structure or a porous structure and capable of effectively dispersing and holding a disulfide compound is preferable. The amount of the conductive material mixed is preferably 0.1 to 20% of the total weight of the electrode. When it is 0.1% or less,
Sufficient electrical conductivity cannot be obtained. If it is 20% or more, it becomes difficult to form the electrode.

【0009】ポリビニルピリジンとしては、ピリジンの
2位にビニル鎖が結合したポリー2ービニルピリジン、
ピリジンの4位にビニル鎖が結合したポリー4ービニル
ピリジン、さらに、ピリジンのN原子がアルキル基によ
り4級化したN−アルキルー2ービニルピリジニウム塩
あるいは、Nーアルキルー4ービニルピリジニウム塩を
用いることができる。アルキル基としては炭素数に制限
なく、メチル基、エチル基、ブチル基、セチル基等、直
鎖アルキル基、分岐アルキル基いずれであってもよい。
分子量は、1000以上の高分子量のものが好ましい。
ポリビニルピリジンの含有量は、電極全重量の0.1〜
20%が好ましい。0.5%以下であると、十分な接着
性が得られない。また、20%以上では、電極が柔らか
くなり過ぎて成形後の取扱いが困難になる。
Polyvinyl pyridine includes poly-2-vinyl pyridine in which a vinyl chain is bonded to the 2-position of pyridine,
It is possible to use poly-4-vinylpyridine in which a vinyl chain is bonded to the 4-position of pyridine, and further an N-alkyl-2-vinylpyridinium salt or a N-alkyl-4-vinylpyridinium salt in which the N atom of pyridine is quaternized with an alkyl group. . The alkyl group is not limited in carbon number, and may be a methyl group, an ethyl group, a butyl group, a cetyl group, a linear alkyl group or a branched alkyl group.
The molecular weight is preferably 1000 or higher.
The content of polyvinyl pyridine is 0.1 to 0.1% of the total weight of the electrode.
20% is preferable. If it is 0.5% or less, sufficient adhesiveness cannot be obtained. On the other hand, if it is 20% or more, the electrode becomes too soft and it becomes difficult to handle it after molding.

【0010】ポリピニルピリジンを溶解した第1の溶液
の溶媒としては、エチルアルコール、ブチルアルコール
等のアルコール類、ジメトキシエタン、ジグライム、エ
チルモノグライム、ジメトキシエタン等のエーテル類、
ニトロメタン、アセトニトリルあるいはこれらの混合物
が用いられる。ポリマー固体電解質としては、LiBF
4,LiPF6,LiCF3SO3,LiClO4等のリチ
ウム塩を溶解したポリエチレンオキサイド、ポリプロピ
レンオキサイド、ポリエチレンオキサイドとポリプロピ
レンオキサイドとの共重合体等のポリアルキレンオキサ
イドが用いられる。さらに、プロピレンカーボネート、
エチレンカーボネート、スルホラン、ジメトキシエタ
ン、あるいはこれらの混合物溶媒に前記リチウム塩を溶
解してなる有機電解液を含んだポリアルキレンオキサイ
ドあるいはポリアクリロニトリル等からなるゲル電解質
等が用いられる。
Solvents for the first solution in which polypinylpyridine is dissolved include alcohols such as ethyl alcohol and butyl alcohol, ethers such as dimethoxyethane, diglyme, ethyl monoglyme and dimethoxyethane,
Nitromethane, acetonitrile or mixtures of these are used. LiBF as the polymer solid electrolyte
Polyalkylene oxide such as polyethylene oxide, polypropylene oxide, a copolymer of polyethylene oxide and polypropylene oxide, in which a lithium salt such as 4 , LiPF 6 , LiCF 3 SO 3 , or LiClO 4 is dissolved is used. In addition, propylene carbonate,
A gel electrolyte made of polyalkylene oxide or polyacrylonitrile containing an organic electrolytic solution prepared by dissolving the lithium salt in a solvent of ethylene carbonate, sulfolane, dimethoxyethane, or a mixture thereof is used.

【0011】ポリマー電解質を含む第2の溶液の溶媒と
しては、第1の溶液の溶媒と同様のものが用いられる。
ポリマー電解質の含有量は、電極全重量の60%以下が
好ましい。60%以上になると、電極の電子伝導性が小
さくなり、電子の移動を伴うジスルフィド化合物の酸化
還元反応が起こり難くなる。
As the solvent of the second solution containing the polymer electrolyte, the same solvent as the solvent of the first solution is used.
The content of the polymer electrolyte is preferably 60% or less of the total weight of the electrode. When it is 60% or more, the electron conductivity of the electrode becomes small, and the redox reaction of the disulfide compound accompanied by the transfer of electrons becomes difficult to occur.

【0012】[0012]

【実施例】以下に本発明の実施例を説明する。 [実施例1]2,5ージメルカプトー1,3,4ーチア
ジアゾール(以下、DMcTと呼ぶ)粉末1grとHB
4をドープしたポリアニリン粉末(電気抵抗=1.6
s/cm、25℃、平均粒径=6μm)1.5grとを
乳鉢で混合した。分子量50,000のポリー2ービニ
ルピリジン0.1grをエチルモノグライム10mlに
溶解し、ゼオライト吸着剤により脱水してポリビニルピ
リジン溶液を得た。DMcT粉末とポリアニリン粉末の
混合物にポリビニルピリジン溶液を混合したのち、混合
物からジグライムを80℃で減圧除去することでDMc
T粉末とポリアニリン粉末とポリビニルピリジンを含む
電極Aを得た。
EXAMPLES Examples of the present invention will be described below. [Example 1] 1-gr powder of 2,5-dimercapto-1,3,4-thiadiazole (hereinafter referred to as DMcT) powder and HB
Polyaniline powder doped with F 4 (electrical resistance = 1.6
s / cm, 25 ° C., average particle size = 6 μm) and 1.5 gr were mixed in a mortar. 0.1 gr of poly-2-vinylpyridine having a molecular weight of 50,000 was dissolved in 10 ml of ethyl monoglyme and dehydrated with a zeolite adsorbent to obtain a polyvinylpyridine solution. After mixing the polyvinyl pyridine solution with the mixture of DMcT powder and polyaniline powder, diglyme was removed from the mixture under reduced pressure at 80 ° C to obtain DMc.
An electrode A containing T powder, polyaniline powder and polyvinyl pyridine was obtained.

【0013】[比較例1]ポリー2ービニルピリジンを
含むエチルモノグライム溶液に換えて、ポリー2ービニ
ルピリジンを含まないエチルモノグライムを用いた以外
は実施例1と同様にして電極Bを調製した。
[Comparative Example 1] An electrode B was prepared in the same manner as in Example 1 except that an ethyl monoglyme solution containing no poly-2-vinylpyridine was used in place of the ethyl monoglyme solution containing poly-2-vinylpyridine.

【0014】[実施例2]透明液状のジチオグルコール
(DTGと呼ぶ)5grを、二塩基酸であるDTGを中
和するのに必要な当量の水酸化リチウムを溶解したアセ
トンー水(1:1容積比)混合溶媒100mlに加え中
和溶解した。次に、同様のエタノールー水混合溶媒10
0ml中に、DTGを酸化するのに必要な当量の沃素
と、沃素と同一モル数の沃化リチウムを溶解し酸化剤溶
液を調製した。先に調製したDTG溶液をホモジナイザ
ーで回転数1000rpmで攪拌しながら、酸化剤溶液
を2時間に渡り滴下し、DTGモノマーを重合した。
[Example 2] 5 gr of transparent liquid dithioglycol (referred to as DTG) was dissolved in acetone-water (1: 1) in which an equivalent amount of lithium hydroxide necessary for neutralizing the dibasic acid DTG was dissolved. (Volume ratio) 100 ml of a mixed solvent was added to neutralize and dissolve. Next, the same ethanol-water mixed solvent 10
An oxidant solution was prepared by dissolving an equivalent amount of iodine necessary to oxidize DTG and the same molar number of lithium iodide as iodine in 0 ml. The oxidizer solution was added dropwise over 2 hours while stirring the DTG solution prepared above with a homogenizer at a rotation speed of 1000 rpm to polymerize the DTG monomer.

【0015】得られたDTGポリマーの白色粉末1.0
grと酸を含まない脱ドープ状態のポリアニリン粉末
(電気抵抗=10ー8s/cm、25℃、平均粒径=4μ
m)1.25grとを乳鉢で混合した。この混合粉末
を、分子量35,000のポリー4ービニルーNーブチ
ルピリジニウムブロマイド0.15grをニトロメタン
10mlに溶解した溶液中に混合分散したのち、80℃
でニトロメタンを減圧除去することでDTGポリマーと
脱ドープ状態ポリアニリンとポリビニルピリジンを含む
電極Cを調製した。
The resulting DTG polymer white powder 1.0
Undoped polyaniline powder containing no gr and acid (electrical resistance = 10-8 s / cm, 25 ° C., average particle size = 4μ
m) 1.25 gr were mixed in a mortar. This mixed powder was mixed and dispersed in a solution in which 0.15 gr of poly-4-vinyl-N-butylpyridinium bromide having a molecular weight of 35,000 was dissolved in 10 ml of nitromethane, and then 80 ° C.
Then, the nitromethane was removed under reduced pressure to prepare an electrode C containing the DTG polymer, the undoped polyaniline and polyvinyl pyridine.

【0016】[比較例2]ポリー4ービニルーNーブチ
ルピリジニウムブロマイドを含むニトロメタン溶液に換
えて、ポリー4ービニルーNーブチルピリジニウムブロ
マイドを含まないニトロメタンを用いた以外は実施例2
と同様にして電極Dを調製した。 [実施例3]ポリアクリロニトリル3.0grをLiB
4を1M溶解したプロピレンカーボネート/エチレン
カーボネート(1:1容積比)溶液20.7gでゲル化
してゲル電解質を調製した。得られたゲル電解質を15
0℃に加熱し流動状態にしたのち、アセトニトリル30
gで希釈しゲル電解質溶液を得た。実施例1で得た電極
1重量部とゲル電解質溶液1.5重量部とを乳鉢で混合
し、得られたインクをフッ素樹脂とカーボンブラックよ
りなる厚さ50μmのカーボンフィルム上に印刷したの
ち、60℃で減圧乾燥することでアセトニトリルを除去
し、厚さ170ミクロンの電極Eを得た。
[Comparative Example 2] Example 2 except that nitromethane containing no poly-4-vinyl-N-butylpyridinium bromide was used instead of the nitromethane solution containing poly-4-vinyl-N-butylpyridinium bromide.
An electrode D was prepared in the same manner as in. [Example 3] 3.0 g of polyacrylonitrile was added to LiB
A gel electrolyte was prepared by gelling with 20.7 g of a propylene carbonate / ethylene carbonate (1: 1 volume ratio) solution containing 1 M of F 4 dissolved therein. The gel electrolyte obtained is
After heating to 0 ° C to make it fluid, acetonitrile 30
It was diluted with g to obtain a gel electrolyte solution. 1 part by weight of the electrode obtained in Example 1 and 1.5 parts by weight of a gel electrolyte solution were mixed in a mortar, and the obtained ink was printed on a carbon film having a thickness of 50 μm made of fluororesin and carbon black. Acetonitrile was removed by drying under reduced pressure at 60 ° C. to obtain an electrode E having a thickness of 170 μm.

【0017】[比較例3]電極Aに換えて比較例1で得
た電極Bを用いた以外は実施例3と同様にして厚さ17
0ミクロンの電極Fを得た。次に、以上の各電極を電池
に適用して、電池性能を評価した。実施例1、2、3で
得た電極A,C、E、および、比較例1、2、3で得た
電極粉末B,D、Fを正極活物質材料として用い、厚み
0.3mmの金属リチウムを負極とし、ポリアクリロニ
トリル3.0grをLiBF4を1M溶解したプロピレ
ンカーボネート/エチレンカーボネート(1:1容積
比)溶液20.7gでゲル化したゲル電解質を厚み0.
6mmのセパレータ層として用い、直径13mmの電池
を構成した。電極A、B、C、Dを正極に用いた電池に
ついては、0.07mAの定電流で、電極E、Fを正極
に用いた電池については、0.27mAの定電流値で、
それぞれ4.05〜2.50Vの範囲内で充放電試験を
行い、それぞれの電極の電池特性を評価した。1、5、
10、20、30サイクル後の放電容量により評価し
た。粉末状の電極A、B、C、Dは、それぞれ厚さ0.
16〜0.18mm、直径13mmの円板状に加圧成形
して正極とした。また、電極E、Fについては直径13
mmの円板状に打ち抜いたものを用いた。電極の重量は
すべて、20mgとした。表1、表2に試験結果を示
す。
[Comparative Example 3] A thickness of 17 was obtained in the same manner as in Example 3 except that the electrode B was replaced by the electrode B obtained in Comparative Example 1.
An electrode F of 0 micron was obtained. Next, each of the above electrodes was applied to a battery to evaluate the battery performance. The electrodes A, C and E obtained in Examples 1, 2 and 3 and the electrode powders B, D and F obtained in Comparative Examples 1, 2, and 3 were used as positive electrode active material materials, and a metal having a thickness of 0.3 mm was used. Using a lithium negative electrode, a gel electrolyte obtained by gelling 3.0 g of polyacrylonitrile with 20.7 g of a propylene carbonate / ethylene carbonate (1: 1 volume ratio) solution prepared by dissolving 1 M of LiBF 4 in a thickness of 0.
A 6 mm separator layer was used to construct a battery with a diameter of 13 mm. A battery using the electrodes A, B, C, and D as the positive electrode has a constant current of 0.07 mA, and a battery using the electrodes E and F as the positive electrode has a constant current value of 0.27 mA.
A charge / discharge test was performed within the range of 4.05 to 2.50 V, and the battery characteristics of each electrode were evaluated. 1, 5,
It was evaluated by the discharge capacity after 10, 20, and 30 cycles. The powder electrodes A, B, C and D each have a thickness of 0.
A positive electrode was obtained by pressure molding into a disk shape having a diameter of 16 to 0.18 mm and a diameter of 13 mm. Further, the electrodes E and F have a diameter of 13
A punched disc having a size of mm was used. The weight of all electrodes was 20 mg. The test results are shown in Tables 1 and 2.

【0018】[0018]

【表1】 [Table 1]

【0019】表1の結果から明らかなように、本発明に
従う方法で製造した実施例1、2の電極粉末AおよびC
を用いた電池では、充放電30サイクル後も1サイクル
目の容量の84%、80%を保持しているのに対し、従
来の方法で製造した比較例1、2の電極粉末B,Dを用
いた電池では、50%、48%の放電容量を保持するの
みである。
As is clear from the results of Table 1, the electrode powders A and C of Examples 1 and 2 produced by the method according to the present invention.
In the battery using No. 3, the capacity of 84% and 80% of the capacity at the first cycle was retained even after 30 cycles of charging / discharging, while the electrode powders B and D of Comparative Examples 1 and 2 manufactured by the conventional method were used. The battery used only holds a discharge capacity of 50% and 48%.

【0020】[0020]

【表2】 [Table 2]

【0021】表2の結果から明らかなように、本発明に
従う方法で製造した実施例3の電極Eを用いた電池で
は、充放電30サイクル後も1サイクル目の容量の81
%を保持しているのに対し、従来の方法で製造した比較
例3の電極Fを用いた電池では、45%の放電容量を保
持するのみである。
As is clear from the results shown in Table 2, in the battery using the electrode E of Example 3 manufactured by the method according to the present invention, the capacity of the first cycle was 81% even after 30 cycles of charge / discharge.
%, The battery using the electrode F of Comparative Example 3 manufactured by the conventional method only holds a discharge capacity of 45%.

【0022】[0022]

【発明の効果】本発明の製造法に従えば、ジスルフィド
化合物は導電性物質と混合された後、接着性、界面活性
を有するポリビニルピリジンを添加し混合することによ
り、より均一にかつ強く接着されるので、ジスルフィド
化合物と導電性物質とが均一に混合・分散した状態の電
極を得ることができる。そして、このような電極を用い
た電池を充放電すると、導電性物質とジスルフィド化合
物との電気的・イオン的接続が良好に保たれ、電池容量
の劣化が軽減されるという効果が得られる。
According to the production method of the present invention, the disulfide compound is mixed with the conductive substance, and then polyvinyl pyridine having adhesiveness and surface activity is added and mixed, so that the disulfide compound is more uniformly and strongly adhered. Therefore, the electrode in which the disulfide compound and the conductive substance are uniformly mixed and dispersed can be obtained. Then, when a battery using such an electrode is charged and discharged, the electrical and ionic connection between the conductive substance and the disulfide compound is maintained well, and the deterioration of the battery capacity is reduced.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解還元により硫黄ー硫黄結合が開裂し
て硫黄ー金属イオン(プロトンを含む)結合を生成し、
電解酸化により硫黄ー金属イオン結合が元の硫黄ー硫黄
結合を再生する有機イオウ化合物と導電性物質とを混合
する工程と、前記有機イオウ化合物と導電性物質との混
合物中に、ポリビニルピリジンを溶解した第1の溶液を
添加・混合する工程と、第1の溶液に含まれる溶媒を除
去する工程とを含むことを特徴とする電極の製造法。
1. A sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including proton) bond,
Polyvinylpyridine is dissolved in a step of mixing an organic sulfur compound in which a sulfur-metal ion bond regenerates the original sulfur-sulfur bond by electrolytic oxidation and a conductive material, and in a mixture of the organic sulfur compound and the conductive material. And a step of removing the solvent contained in the first solution, and a step of adding and mixing the above-mentioned first solution.
【請求項2】 前記有機イオウ化合物、導電性物質およ
びポリビニルピリジンを含む混合物に、ポリマー電解質
を溶解した第2の溶液を混合する工程、前記混合物を成
形する工程、および前記成形物より第2の溶液に含まれ
る溶媒を除去する工程をさらに含むことを特徴とする請
求項1記載の電極の製造法。
2. A step of mixing a second solution in which a polymer electrolyte is dissolved, with a mixture containing the organic sulfur compound, a conductive substance and polyvinyl pyridine, a step of molding the mixture, and a step of forming a second product from the molded article. The method for producing an electrode according to claim 1, further comprising a step of removing a solvent contained in the solution.
【請求項3】 導電性物質が導電性高分子である請求項
1または2記載の電極の製造法。
3. The method for producing an electrode according to claim 1, wherein the conductive substance is a conductive polymer.
JP5120583A 1993-04-22 1993-04-22 Manufacture of electrode Pending JPH06310127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5120583A JPH06310127A (en) 1993-04-22 1993-04-22 Manufacture of electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5120583A JPH06310127A (en) 1993-04-22 1993-04-22 Manufacture of electrode

Publications (1)

Publication Number Publication Date
JPH06310127A true JPH06310127A (en) 1994-11-04

Family

ID=14789875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5120583A Pending JPH06310127A (en) 1993-04-22 1993-04-22 Manufacture of electrode

Country Status (1)

Country Link
JP (1) JPH06310127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283881A (en) * 1998-03-31 1999-10-15 Nichicon Corp Electrolyte for driving elecrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283881A (en) * 1998-03-31 1999-10-15 Nichicon Corp Electrolyte for driving elecrolytic capacitor

Similar Documents

Publication Publication Date Title
US6174621B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
Dias et al. Trends in polymer electrolytes for secondary lithium batteries
US5601947A (en) Electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same
JP2008159275A (en) Electrode active material and power storage device using the same
JP2000311684A (en) Lithium secondary battery and manufacture of its positive electrode
US4574113A (en) Rechargeable cell
JPH06310127A (en) Manufacture of electrode
US6309778B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
JP2003109594A (en) Electrode material, manufacturing method of the same, electrode for battery using the same, and battery using the electrode
JP3042743B2 (en) Electrode manufacturing method
JP3131441B2 (en) Anode for battery
JPH06150910A (en) Manufacture of electrode
JP4054925B2 (en) Lithium battery
JPH09245848A (en) Photo charging type thin power source element
JP3051468B2 (en) Sheet-shaped negative electrode
JP3048798B2 (en) Reversible electrode and lithium secondary battery comprising the same
JP3775022B2 (en) Gel electrolyte and gel electrolyte battery
JPH08124570A (en) Polymer electrode, manufacture thereof and lithium secondary battery
JP3070820B2 (en) Composite electrode containing organic disulfide compound, method for producing the same, and lithium secondary battery
JPH06150909A (en) Manufacture of polymer electrode
JPH0740493B2 (en) Non-aqueous solvent secondary battery
JPH09106820A (en) Charging and discharging method of secondary battery having cathode containing organic disulfide compound
JPH0628162B2 (en) Secondary battery
JPH0620000B2 (en) Non-aqueous secondary battery
JPH0982329A (en) Composite electrode containing organic disulfide compound, manufacture thereof, and lithium secondary battery