JPH08124570A - Polymer electrode, manufacture thereof and lithium secondary battery - Google Patents
Polymer electrode, manufacture thereof and lithium secondary batteryInfo
- Publication number
- JPH08124570A JPH08124570A JP6262911A JP26291194A JPH08124570A JP H08124570 A JPH08124570 A JP H08124570A JP 6262911 A JP6262911 A JP 6262911A JP 26291194 A JP26291194 A JP 26291194A JP H08124570 A JPH08124570 A JP H08124570A
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- electron
- conductive polymer
- layers
- organic disulfide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電池、エレクトロクロ
ミック表示素子、センサー、メモリー等の電気化学素子
に用いられる有機化合物よりなるポリマー電極、その製
造方法、およびこのポリマー電極を正極に用いたリチウ
ム二次電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrode made of an organic compound used in electrochemical devices such as batteries, electrochromic display devices, sensors and memories, a method for producing the same, and lithium using the polymer electrode as a positive electrode. Regarding secondary batteries.
【0002】[0002]
【従来の技術】1971年に導電性のポリアセチレンが
発見されて以来、導電性高分子を電極材料に用いると軽
量で高エネルギー密度の電池や、大面積のエレクトロク
ロミック素子、微小電極を用いた生物化学センサー等の
電気化学素子が期待できることから、導電性高分子電極
が盛んに検討されている。ポリアセチレンは、不安定で
電極としては実用性に乏しいことから、他のπ電子共役
系導電性高分子が検討され、ポリアニリン、ポリピロー
ル、ポリアセン、ポリチオフェンといった比較的安定な
高分子が開発され、これらを正極に用いたリチウム二次
電池が開発されるに及んでいる。これらの電池のエネル
ギー密度は40〜80Wh/kgと言われている。最近
では、さらに高エネルギー密度が期待できる有機材料と
して、米国特許第4,833,048号に有機ジスルフ
ィド系化合物が提案されている。この化合物は、最も簡
単には M+−-S−R−S-−M+ と表される(Rは脂肪
族あるいは芳香族の有機基、Sは硫黄、M+はプロトン
あるいは金属カチオン)。この化合物は、電解酸化によ
り S−S 結合を介して互いに結合し、 M+−-S−R−S−S−R−S−S−R−S-−M+ のような形でポリマー化する。こうして生成したポリマ
ーは、電解還元により元のモノマーに戻る。カチオン
(M+)を供給、捕捉する金属Mと有機ジスルフィド系
化合物を組み合わせた金属−イオウ二次電池が前述の米
国特許に提案されている。この電池は、150Wh/k
g以上と、通常の二次電池に匹敵あるいはそれ以上のエ
ネルギー密度が期待できる。2. Description of the Related Art Since the discovery of conductive polyacetylene in 1971, the use of conductive polymers as electrode materials has led to lightweight and high energy density batteries, large-area electrochromic devices, and living things using microelectrodes. Conductive polymer electrodes are being actively studied because electrochemical elements such as chemical sensors can be expected. Since polyacetylene is unstable and poor in practicality as an electrode, other π-electron conjugated conductive polymers have been studied, and relatively stable polymers such as polyaniline, polypyrrole, polyacene, and polythiophene have been developed. A lithium secondary battery used for the positive electrode is being developed. The energy density of these batteries is said to be 40-80 Wh / kg. Recently, an organic disulfide compound has been proposed in US Pat. No. 4,833,048 as an organic material which can be expected to have a higher energy density. The compound is most easily is M + - - S-R- S - -M + and represented by (R is an aliphatic or aromatic organic group, S is sulfur, M + is a proton or a metal cation). This compound via an S-S bond linked to each other by electrolytic oxidation, M + - - S-R -S-S-R-S-S-R-S - polymer in the form such as -M + To do. The polymer thus produced returns to the original monomer by electrolytic reduction. A metal-sulfur secondary battery in which a metal M that supplies and captures a cation (M + ) and an organic disulfide compound is combined is proposed in the above-mentioned US patent. This battery is 150 Wh / k
An energy density comparable to or higher than that of an ordinary secondary battery can be expected to be g or more.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、提案さ
れているジスルフィド系化合物は、モノマーの状態では
動きやすく、正極よりセパレータあるいは電解質内、さ
らには負極側に散逸するため、充放電効率が低く、充放
電サイクル寿命が短いという欠点を有していた。本発明
は、このような問題を解決し、有機ジスルフィド化合物
の高エネルギー密度という特徴を損なわず、かつ充放電
効率が高く保持され、良好な充放電サイクル特性が得ら
れるポリマー電極を提供することを目的とするものであ
る。However, the proposed disulfide compound is easy to move in the state of a monomer and is dissipated to the separator or the electrolyte from the positive electrode, and further to the negative electrode side. It had the drawback of a short discharge cycle life. The present invention provides a polymer electrode which solves such a problem, does not impair the feature of the organic disulfide compound having high energy density, and maintains high charge / discharge efficiency and can obtain good charge / discharge cycle characteristics. It is intended.
【0004】[0004]
【課題を解決するための手段】本発明のポリマー電極
は、有機ジスルフィド化合物、金属酸化物およびπ電子
共有導電性高分子を含む層(以下、SSCPMLと呼
ぶ)と、π電子共有導電性高分子を主体とする層(以
下、CPLと呼ぶ)とが交互に積層され、かつ最上部お
よび最下部がCPLにより形成されたポリマー電極であ
る。ここで、有機ジスルフィド化合物とは、電解還元に
より硫黄ー硫黄結合が開裂して硫黄ー金属イオン(プロ
トンを含む)結合を生成し、電解酸化により硫黄ー金属
イオン結合が元の硫黄ー硫黄結合を再生する化合物をい
う。また、本発明のポリマー電極の製造方法において
は、Nーアルキルー2ーピロリドンに有機ジスルフィド
化合物およびπ電子共有導電性高分子を溶解した液体
に、金属酸化物粉末を混合し、この混合物を塗布するこ
とによりSSCPMLを形成し、Nーアルキルー2ーピ
ロリドンにπ電子共有導電性高分子を溶解した液体を塗
布することによりCPLを形成する。本発明のリチウム
二次電池は、上記のポリマー電極を正極とする。The polymer electrode of the present invention comprises a layer containing an organic disulfide compound, a metal oxide and a π electron sharing conductive polymer (hereinafter referred to as SSCPML), and a π electron sharing conductive polymer. Is a polymer electrode in which layers mainly composed of (hereinafter, referred to as CPL) are alternately laminated, and the uppermost and lowermost portions are formed of CPL. Here, with an organic disulfide compound, the sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including proton) bond, and the sulfur-metal ion bond is converted to the original sulfur-sulfur bond by electrolytic oxidation. A compound that regenerates. In addition, in the method for producing a polymer electrode of the present invention, a metal oxide powder is mixed with a liquid obtained by dissolving an organic disulfide compound and a π-electron shared conductive polymer in N-alkyl-2-pyrrolidone, and the mixture is applied. CSP is formed by forming SSCPML and applying a liquid in which a π-electron sharing conductive polymer is dissolved in N-alkyl-2-pyrrolidone. The lithium secondary battery of the present invention uses the polymer electrode as a positive electrode.
【0005】[0005]
【作用】還元により生成したSSCPML内の有機ジス
ルフィド化合物のモノマーアニオンは、SSCPML内
からCPLへと拡散移動するが、CPL内にあって、C
PL中のπ電子共有導電性高分子のアニオンドーパント
として捕捉され、電極外への拡散移動が有効に阻止され
る。このため、高い充放電効率と優れた充放電サイクル
寿命を提供することができる。また、本発明のポリマー
電極の製造方法においては、有機ジスルフィド化合物あ
るいはπ電子共有導電性高分子は均一にかつ高濃度にN
ーアルキルー2ーピロリドンに溶解し、こうして調製し
た溶液を多層に塗布するので、高密度でしかも均一なピ
ンホールのない多層の塗布膜を得ることができる。[Function] The monomer anion of the organic disulfide compound in SSCPML produced by the reduction diffuses and moves from SSCPML to CPL, but in CPL, C
It is trapped as an anion dopant of the π-electron shared conductive polymer in PL, and diffusion transfer to the outside of the electrode is effectively blocked. Therefore, high charge / discharge efficiency and excellent charge / discharge cycle life can be provided. In the method for producing a polymer electrode of the present invention, the organic disulfide compound or the π-electron sharing conductive polymer is uniformly and highly concentrated in N
-Alkyl-2-pyrrolidone is dissolved and the solution thus prepared is applied in multiple layers, so that it is possible to obtain a high-density and uniform pinhole-free multilayer coating film.
【0006】[0006]
【実施例】本発明に用いられる有機ジスルフィド化合物
としては、一般式(R(S)y)nで表される化合物を用
いることができる。Rは脂肪族基または芳香族基、Sは
硫黄、yは1以上の整数、nは2以上の整数である。H
SCH2CH2SHで表されるジチオグリコール、C2N2
S(SH)2で表される2,5−ジメルカプト−1,
3,4−チアジアゾール、C3H3N3S3で表されるs−
トリアジン−2,4,6ートリチオール、C6H6N4S3
で表される7−メチル−2,6,8−トリメルカプトプ
リン、あるいはC4H6N4S2で表される4,5−ジアミ
ノ−2,6−ジメルカプトピリミジン等が用いられる。
何れも市販品をそのまま用いることができる。また、こ
れらの有機ジスルフィド化合物を、沃素、フェリシアン
化カリウム、過酸化水素等の酸化剤を用いて化学重合法
により、あるいは電解酸化法により重合した有機ジスル
フィド化合物の重合物を用いることができる。電池を組
み立てた時点での有機ジスルフィド化合物の拡散移動を
より有効に抑えるためには、有機ジスルフィドのダイマ
ー、テトラマー等の重合物を用いて電池を組み立てるの
が好ましい。EXAMPLES As the organic disulfide compound used in the present invention, a compound represented by the general formula (R (S) y ) n can be used. R is an aliphatic group or an aromatic group, S is sulfur, y is an integer of 1 or more, and n is an integer of 2 or more. H
Dithioglycol represented by SCH 2 CH 2 SH, C 2 N 2
2,5-dimercapto-1, represented by S (SH) 2 ,
3,4-thiadiazole is represented by C 3 H 3 N 3 S 3 s-
Triazine-2,4,6 Torichioru, C 6 H 6 N 4 S 3
7-methyl-2,6,8-trimercaptopurine represented by or 4,5-diamino-2,6-dimercaptopyrimidine represented by C 4 H 6 N 4 S 2 is used.
In each case, a commercial product can be used as it is. Further, it is possible to use a polymer of an organic disulfide compound obtained by polymerizing these organic disulfide compounds by a chemical polymerization method using an oxidizing agent such as iodine, potassium ferricyanide or hydrogen peroxide, or by an electrolytic oxidation method. In order to more effectively suppress the diffusion transfer of the organic disulfide compound at the time of assembling the battery, it is preferable to assemble the battery using a polymer such as a dimer or tetramer of the organic disulfide.
【0007】有機ジスルフィド化合物およびこの重合物
は、電気絶縁性であるので、SSCPMLの層が厚くな
り50μmを越える場合は、導電性物質を添加するのが
好ましい。このような導電性物質としては、アセチレン
ブラック、人造黒鉛、天然黒鉛等の炭素材料が用いられ
る。また、以上の導電性物質を互いに複合化したもの、
あるいは、以上の導電性物質と、ポリプロピレン、ポリ
ブテン等のポリオレフィン、ポリテトラフルオロエチレ
ン等のフッ素樹脂、あるいは合成ゴム等の合成樹脂材料
と複合化したものも用いることができる。金属酸化物と
しては、遷移金属酸化物あるいは複合酸化物であれば何
れでも用いることができるが、特にポリアニリンの電気
化学当量150mAh/gと同程度かあるいは上回る電
気化学当量を有する化合物が好ましい。このような遷移
金属酸化物としては、LiCoO2(電気化学当量=1
40〜160mAh/g)、 V6O13(電気化学当量=
160〜230mAh/g)、LiMn2O4(電気化学
当量=100〜120mAh/g)、V2O5(電気化学
当量=130〜150mAh/g)、LiNiO2(電
気化学当量=140〜220mAh/g)が好ましい。
平均粒径が1〜10μm程度の粉末状のものが用いられ
る。これらの遷移金属酸化物について、遷移金属元素が
複数のものであっても何等支障なく用いることができ
る。例えば、LiCoO2 について、Co(コバルト)
の一部がMn(マンガン)やNi(ニッケル)、Fe
(鉄)に置き換えた複合酸化物、あるいは、V6O13の
Vの一部がW(タングステン)に置き換えた複合酸化物
も用いることができる。Since the organic disulfide compound and this polymer are electrically insulating, it is preferable to add a conductive substance when the SSCPML layer becomes thick and exceeds 50 μm. A carbon material such as acetylene black, artificial graphite, or natural graphite is used as such a conductive substance. In addition, a composite of the above conductive materials,
Alternatively, it is also possible to use a composite of the above conductive material with a polyolefin such as polypropylene or polybutene, a fluororesin such as polytetrafluoroethylene, or a synthetic resin material such as synthetic rubber. As the metal oxide, any of transition metal oxides and composite oxides can be used, but a compound having an electrochemical equivalent of polyaniline of 150 mAh / g or higher is particularly preferable. As such a transition metal oxide, LiCoO 2 (electrochemical equivalent = 1
40~160mAh / g), V 6 O 13 ( electrochemical equivalent =
160 to 230 mAh / g), LiMn 2 O 4 (electrochemical equivalent = 100 to 120 mAh / g), V 2 O 5 (electrochemical equivalent = 130 to 150 mAh / g), LiNiO 2 (electrochemical equivalent = 140 to 220 mAh / g) g) is preferred.
A powdery material having an average particle size of about 1 to 10 μm is used. These transition metal oxides can be used without any trouble even if the transition metal elements are plural. For example, for LiCoO 2 , Co (cobalt)
Part of Mn (manganese), Ni (nickel), Fe
A complex oxide in which (iron) is replaced or a complex oxide in which a part of V in V 6 O 13 is replaced by W (tungsten) can also be used.
【0008】さらに、SSCPMLには金属カチオンM
+を含有する電解質を添加してもよい。このような電解
質としては、有機ジスルフィドモノマーの拡散移動がし
にくい固体状あるいは半固体状の高分子電解質が好まし
い。ポリエチレンオキサイドにLiClO4、LiCF3
SO3、LiN(CF3SO2)2 等のリチウム塩を溶解
したポリマー固体電解質、プロピレンカーボネート、エ
チレンカーボネート等の非水溶媒中にLiClO4、L
iCF3SO3、LiBF4、LiPF6、LiN(CF3
SO2)2 等のリチウム塩を溶解した電解液をポリアク
リロニトリル、ポリフッ化ビニリデン、ポリアクリル酸
のような高分子でゲル化した半固体状の高分子電解質が
有効に用いられる。Nーアルキルー2ーピロリドンの前
記リチウム塩を1M程度溶解した液体電解質を添加して
もよい。Further, the metal cation M is contained in SSCPML.
An electrolyte containing + may be added. As such an electrolyte, a solid or semi-solid polymer electrolyte in which the organic disulfide monomer is less likely to diffuse and move is preferable. LiClO 4 , LiCF 3 on polyethylene oxide
LiClO 4 , L in a polymer solid electrolyte in which a lithium salt such as SO 3 or LiN (CF 3 SO 2 ) 2 is dissolved, or a non-aqueous solvent such as propylene carbonate or ethylene carbonate.
iCF 3 SO 3 , LiBF 4 , LiPF 6 , LiN (CF 3
A semi-solid polymer electrolyte obtained by gelling an electrolyte solution in which a lithium salt such as SO 2 ) 2 is dissolved with a polymer such as polyacrylonitrile, polyvinylidene fluoride or polyacrylic acid is effectively used. A liquid electrolyte in which the lithium salt of N-alkyl-2-pyrrolidone is dissolved in about 1 M may be added.
【0009】本発明のCPLに用いるπ電子共有導電性
高分子として、ポリアニリン、ポリピロール、ポリチオ
フェン等を用いることができる。電解重合法によりあら
かじめ膜状に成形したもの、相当するポリマー溶液を塗
布乾燥することであらかじめ膜状に成形したもの、SS
CPML上に電解重合法により形成したもの、あるいは
相当するポリマー溶液をSSCPML上に塗布乾燥する
ことで形成したものを用いることができる。特に、脱ド
ープ状態の還元性ポリアニリンは、有機ジスルフィドモ
ノマーを有効に捕捉するので好ましい。ポリアニリンの
還元度(RDI)は、ポリアニリンをN−メチル−2−
ピロリドンに微量溶解した溶液の電子吸収スペクトルに
基づいて表すことができる。すなわち、340nm付近
の短波長側に現れるパラ置換ベンゼン構造に起因する吸
収ピークの強度(I340)と、640nm付近の長波長
側に現れるキノンジイミン構造に起因する吸収ピークの
強度(I640)との比により、RDI=I640/I340 で
表される。RDIが0.5以下のポリアニリンが好適に
用いられる。ポリアニリンの脱ドープの程度は、伝導度
により表される。伝導度が、10-5S/cm以下のポリ
アニリンが好適に用いられる。Polyaniline, polypyrrole, polythiophene and the like can be used as the π electron sharing conductive polymer used in the CPL of the present invention. Preformed into a film by electrolytic polymerization method, preformed into a film by coating and drying a corresponding polymer solution, SS
What was formed on CPML by the electrolytic polymerization method, or what was formed by apply | coating and drying the corresponding polymer solution on SSCPML can be used. In particular, the reductive polyaniline in the undoped state is preferable because it effectively captures the organic disulfide monomer. The degree of reduction (RDI) of polyaniline is such that polyaniline is N-methyl-2-
It can be expressed based on the electronic absorption spectrum of a solution of a small amount dissolved in pyrrolidone. That is, the intensity of the absorption peak due to the para-substituted benzene structure appearing on the short wavelength side near 340 nm (I 340 ) and the intensity of the absorption peak due to the quinone diimine structure appearing on the long wavelength side near 640 nm (I 640 ). The ratio is represented by RDI = I 640 / I 340 . Polyaniline having an RDI of 0.5 or less is preferably used. The degree of dedoping of polyaniline is represented by conductivity. Polyaniline having a conductivity of 10 −5 S / cm or less is preferably used.
【0010】本発明のポリマー電極の製造方法に用いる
N−アルキル−2−ピロリドンとしては、市販の試薬を
そのまま、あるいはゼオライト吸着剤により水分を20
ppm以下に低減したものを用いることができる。ピロ
リドン、N−メチル−2−ピロリドン、N−エチル−2
−ピロリドン、N−ブチル−2−ピロリドン等を用いる
ことができる。さらに、SSCPMLとCPLの片方あ
るいは両方に、ビニルピリジンの共重合体(以下、PV
Pと呼ぶ)を添加することができる。PVPを添加する
ことで、SSCPMLとCPLの接合を良好にし、電極
全体の機械強度を高め分極を小さくすることができる。
このようなビニルピリジンの共重合体としては、N−ア
ルキル−2−ピロリドンに10wt%以上の溶解性を有
し、かつプロピレンカーボネート、エチレンカーボネー
ト等の非プロトン性溶媒に溶解性をほとんど示さないも
のが好ましい。共重合主成分としては、4−ビニリピリ
ジンあるいは4級化4−ビニルピリジンが好ましい。こ
のようなビニルピリジンの共重合体としては、広栄化学
工業(株)製の「MH−1」がある。ビニルピリジンと
共重合する他の共重合成分としては、重合可能なビニル
化合物ならいずれも使用可能である。このようなビニル
化合物として、(メタ)アクリル酸あるいはこれらのエ
ステル類、塩化ビニル、アクリロニトリル、酢酸ビニ
ル、スチレン等がある。とくに、ヒドロキシル基を含有
する(メタ)アクリル酸ヒドロキシエチルあるいは(メ
タ)アクリル酸ヒドロキシブチル等の(メタ)アクリル
酸ヒドロキシエステルが好ましい。共重合比は、モル比
で、ビニルピリジンが50%以上であることが好まし
い。As the N-alkyl-2-pyrrolidone used in the method for producing the polymer electrode of the present invention, commercially available reagents may be used as they are, or water content may be adjusted to 20 by using a zeolite adsorbent.
It is possible to use those reduced to ppm or less. Pyrrolidone, N-methyl-2-pyrrolidone, N-ethyl-2
-Pyrrolidone, N-butyl-2-pyrrolidone and the like can be used. Further, a vinylpyridine copolymer (hereinafter referred to as PV) is added to one or both of SSCML and CPL.
Referred to as P) can be added. By adding PVP, the bonding between SSCPML and CPL can be improved, the mechanical strength of the entire electrode can be increased, and the polarization can be reduced.
Such a vinyl pyridine copolymer has a solubility of 10 wt% or more in N-alkyl-2-pyrrolidone and shows almost no solubility in an aprotic solvent such as propylene carbonate or ethylene carbonate. Is preferred. As the copolymerization main component, 4-vinylylpyridine or quaternized 4-vinylpyridine is preferable. As such a copolymer of vinylpyridine, there is "MH-1" manufactured by Koei Chemical Industry Co., Ltd. As the other copolymerization component copolymerized with vinylpyridine, any polymerizable vinyl compound can be used. Examples of such vinyl compounds include (meth) acrylic acid or esters thereof, vinyl chloride, acrylonitrile, vinyl acetate, and styrene. Particularly, (meth) acrylic acid hydroxy ester such as hydroxyethyl (meth) acrylate or hydroxybutyl (meth) acrylate having a hydroxyl group is preferable. The copolymerization ratio is preferably 50% or more in terms of molar ratio of vinylpyridine.
【0011】有機ジスルフィド化合物が還元して塩を形
成する際の金属イオンには、前述の米国特許に述べられ
ているアルカリ金属イオン、アルカリ土類金属イオンに
加えて、プロトンも用いることができる。アルカリ金属
イオンとしてリチウムイオンを用いる場合は、リチウム
イオンを供給および捕捉する電極として金属リチウムあ
るいはリチウムーアルミニウム等のリチウム合金を用
い、リチウムイオンを伝導する電解質を用いると、電圧
が3〜4ボルトの電池を構成できる。プロトンを用い、
プロトンを供給および捕捉する電極として LaNi5
等の金属水素化物を用い、プロトンを伝導する電解質を
用いると、電圧が1から2ボルトの電池を構成できる。As the metal ion used when the organic disulfide compound is reduced to form a salt, a proton can be used in addition to the alkali metal ion and alkaline earth metal ion described in the above-mentioned US patent. When lithium ions are used as the alkali metal ions, metal lithium or a lithium alloy such as lithium-aluminum is used as an electrode that supplies and captures the lithium ions, and an electrolyte that conducts the lithium ions is used. A battery can be constructed. Using protons,
LaNi 5 as an electrode for supplying and trapping protons
A battery having a voltage of 1 to 2 volt can be formed by using a metal hydride such as ## STR3 ## and an electrolyte that conducts protons.
【0012】[実施例1]π電子共有導電性高分子とし
て日東電工製のポリアニリン(商品名アニリード)をア
ルカリ溶液中で脱ドープし、ヒドラジンで還元して得た
伝導度が10ー8S/cm、RDI値が0.3の脱ドープ
還元ポリアニリン粉末を用いた。この脱ドープポリアニ
リン粉末0.5gをN−メチル−2−ピロリドン(以
下、NMPと呼ぶ)20gに溶解し、青色のPAnーN
MP溶液(CPl−1)を得た。一方、有機ジスルフィ
ド化合物として2,5−ジメルカプト−1,3,4−チ
アジアゾール(以下、DMcTと呼ぶ)モノマー粉末を
用いる。このDMcTモノマー粉末2gおよび前述した
脱ドープポリアニリン粉末1gをNMP5gに溶解し、
粘性のあるDMcTーPAnーNMP溶液を得た。ま
た、ビニルビリジン共重合体としての4ービニルピリジ
ンとメタクリル酸ヒドロキシメチルの60:40(モル
比)共重合体を5%溶解したNMP10gに、平均粒径
が6μmのV6O13粉末2.5gを分散混合してスラリ
ーを得た。このスラリーを前記DMcTーPAnーNM
P粘性溶液に添加混合したのち、ホモジナイザーで回転
数5000rmpで約10分混合し分散液を得た。ロー
タリーエバッポレーターでこの分散液からNMPの一部
を除去し、粘着性のある分散液(SSCPMl−1)と
した。[0012] [Example 1] [pi manufactured by Nitto Denko Corporation of polyaniline as an electronic covalent conductive polymer (trade name Anirido) dedoped in an alkaline solution, the conductivity obtained by reduction with hydrazine is 10 @ 8 S / A dedoped reduced polyaniline powder having a cm and RDI value of 0.3 was used. 0.5 g of this dedoped polyaniline powder was dissolved in 20 g of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) to give blue PAn-N.
An MP solution (CP1-1) was obtained. On the other hand, 2,5-dimercapto-1,3,4-thiadiazole (hereinafter referred to as DMcT) monomer powder is used as the organic disulfide compound. 2 g of this DMcT monomer powder and 1 g of the above-mentioned dedoped polyaniline powder were dissolved in 5 g of NMP,
A viscous DMcT-PAn-NMP solution was obtained. Further, 2.5 g of V 6 O 13 powder having an average particle diameter of 6 μm was added to 10 g of NMP in which 5% of a 60:40 (molar ratio) copolymer of 4-vinylpyridine as a vinyl pyridine copolymer and hydroxymethyl methacrylate was dissolved. The mixture was dispersed and mixed to obtain a slurry. This slurry was added to the DMcT-PAN-NM
The mixture was added to and mixed with the P viscous solution, and then mixed with a homogenizer at a rotation speed of 5000 rpm for about 10 minutes to obtain a dispersion liquid. A part of NMP was removed from this dispersion with a rotary evaporator to obtain a viscous dispersion (SSCPM1-1).
【0013】次に、厚さ30μmのチタン箔2に接合し
た繊維状のフッ素樹脂とカーボンブラックよりなる厚さ
40μmのカーボンフィルム1上に、CPl−1を90
μmの厚さに塗布し、Arガス気流中において80℃で
15分加熱したのち、1cmHgの減圧下において80
℃で加熱処理し、厚さ3μmのポリアニリン膜3aを形
成した。次に、このポリアニリン膜3a上にSSCPM
l−1を120μmの厚さに塗布し、Arガス気流中に
おいて80℃で15分加熱したのち、1cmHgの減圧
下において80℃で加熱処理し、厚さ15μmの有機ジ
スルフィド+V6O13+PAn膜4aを形成した。さら
に、膜4a上にCPl−1を90μmの厚さに塗布し、
Arガス気流中において80℃で15分加熱したのち、
1cmHgの減圧下において80℃で加熱処理し、厚さ
3μmのポリアニリン膜3bを形成した。このあと、有
機ジスルフィド+V6O13+PAn膜およびポリアニリ
ン膜の形成工程を交互に2回繰り返し、膜4b、3c、
4c、3dを形成して、図1に示すような断面の構造を
有する多層膜を得た。得られた膜を大きさ2×2cm角
に切断してポリマー電極Aを得た。Next, 90% of CP1-1 was applied onto a carbon film 1 having a thickness of 40 μm made of fibrous fluororesin and carbon black bonded to a titanium foil 2 having a thickness of 30 μm.
It is applied to a thickness of μm and heated in an Ar gas stream at 80 ° C. for 15 minutes and then at a reduced pressure of 1 cmHg for 80 minutes.
A heat treatment was carried out at a temperature of ℃ to form a polyaniline film 3a having a thickness of 3 μm. Next, SSCPM is formed on the polyaniline film 3a.
1-1 was applied to a thickness of 120 μm, heated at 80 ° C. for 15 minutes in an Ar gas stream, and then heat-treated at 80 ° C. under a reduced pressure of 1 cmHg to form a 15 μm-thick organic disulfide + V 6 O 13 + PAn film. 4a was formed. Further, CP1-1 was applied on the film 4a to a thickness of 90 μm,
After heating at 80 ° C for 15 minutes in Ar gas stream,
Heat treatment was performed at 80 ° C. under a reduced pressure of 1 cmHg to form a polyaniline film 3b having a thickness of 3 μm. After that, the steps of forming the organic disulfide + V 6 O 13 + PAn film and the polyaniline film are alternately repeated twice to form films 4b, 3c,
4c and 3d were formed to obtain a multilayer film having a cross-sectional structure as shown in FIG. The obtained membrane was cut into a 2 × 2 cm square to obtain a polymer electrode A.
【0014】[比較例1]実施例1で用いたCPl−1
を、実施例1と同様の構成のチタン箔6に接合したカー
ボンフィルム5上に塗布し、脱ドープ還元性ポリアニリ
ンよりなる膜7aを形成したのち、同じく実施例1で用
いたSSCPMl−1を膜7a上に塗布し有機ジスルフ
ィド+V6O13+PAnよりなる膜8aを形成した。有
機ジスルフィド+V6O13+PAn膜の形成工程をさら
に2回繰り返し、膜8b、8cを形成し、図2に示すよ
うな断面の構造を有する多層膜を得た。得られた膜を大
きさ2×2cm角に切断してポリマー電極Bを得た。[Comparative Example 1] CPl-1 used in Example 1
Was coated on a carbon film 5 bonded to a titanium foil 6 having the same structure as in Example 1 to form a film 7a made of dedoped reducing polyaniline, and then SSCPM1-1 used in Example 1 was also formed into a film. A film 8a made of organic disulfide + V 6 O 13 + PAn was formed by coating on 7a. The step of forming the organic disulfide + V 6 O 13 + PAn film was repeated twice more to form films 8b and 8c, and a multilayer film having a cross-sectional structure as shown in FIG. 2 was obtained. The obtained film was cut into a 2 × 2 cm square to obtain a polymer electrode B.
【0015】[実施例2]π電子共有導電性高分子とし
て日東電工製のポリアニリン(商品名アニリード)をア
ルカリ溶液中で脱ドープし、ヒドラジンで還元して得た
伝導度が10ー8S/cm、RDI値が0.34の脱ドー
プ還元ポリアニリン粉末0.5gをNMP20gに溶解
し、青色のPAnーNMP溶液(CPl−2)を得た。
4,5−ジアミノ−2,6−ジメルカプトピリミジン
(以下、DDPyと呼ぶ)モノマー粉末2gおよび前述
した脱ドープポリアニリン粉末1gを、NMP5gに溶
解し、粘性のあるDDPyーPAnーNMP溶液を得
た。平均粒径が3.5μmのV2O5粉末2.5gを、N
MP10gに分散混合してスラリーを得た。DDPyー
PAnーNMP粘性溶液にこのスラリーを添加混合した
のち、ホモジナイザーで回転数5000rmpで約10
分混合し分散液を得た。ロータリーエバッポレーターで
この分散液からNMPの一部を除去し粘着性のある分散
液(SSCPMl−2)とした。[0015] [Example 2] [pi manufactured by Nitto Denko Corporation of polyaniline as an electronic covalent conductive polymer (trade name Anirido) dedoped in an alkaline solution, the conductivity obtained by reduction with hydrazine is 10 @ 8 S / cm and RDI value of 0.34, 0.5 g of dedoped reduced polyaniline powder was dissolved in 20 g of NMP to obtain a blue PAn-NMP solution (CP1-2).
2 g of 4,5-diamino-2,6-dimercaptopyrimidine (hereinafter referred to as DDPy) monomer powder and 1 g of the above-mentioned dedoped polyaniline powder were dissolved in 5 g of NMP to obtain a viscous DDPy-PAn-NMP solution. . 2.5 g of V 2 O 5 powder having an average particle size of 3.5 μm was added to N
MP10g was dispersed and mixed to obtain a slurry. This slurry was added to and mixed with a DDPy-PAn-NMP viscous solution, and then a homogenizer was operated at a rotation speed of 5000 rpm for about 10 minutes.
Minute mixing was performed to obtain a dispersion liquid. A part of NMP was removed from this dispersion with a rotary evaporator to obtain a viscous dispersion (SSCPM1-2).
【0016】先ず、厚さ30μmのチタン箔2に接合し
た繊維状のフッ素樹脂とカーボンブラックよりなる厚さ
40μmのカーボンフィルム1上に、CPl−2を90
μmの厚さに塗布し、Arガス気流中において80℃で
15分加熱したのち、1cmHgの減圧下において80
℃で加熱処理し、厚さ3μmのポリアニリン膜3aを形
成した。次に、膜3a上にSSCPMl−2を120μ
mの厚さに塗布し、Arガス気流中において80℃で1
5分加熱したのち、1cmHgの減圧下において80℃
で加熱処理し、厚さ12μmの有機ジスルフィド+V2
O5+PAn膜4aを形成した。さらに、膜4a上にC
Pl−2を90μmの厚さに塗布し、Arガス気流中に
おいて80℃で15分加熱したのち、1cmHgの減圧
下において80℃で加熱処理し、厚さ3μmのポリアニ
リン膜3bを形成した。このあと、有機ジスルフィド+
V2O5+PAn膜およびポリアニリン膜の形成工程を交
互に2回繰り返し、膜4b、3c、4c、3dを形成
し、図1に示すような断面の構造を有する多層膜を得
た。得られた膜を大きさ2×2cm角に切断してポリマ
ー電極Cを得た。First, 90 parts of CP1-2 are formed on a carbon film 1 having a thickness of 40 μm and made of fibrous fluororesin and carbon black bonded to a titanium foil 2 having a thickness of 30 μm.
It is applied to a thickness of μm and heated in an Ar gas stream at 80 ° C. for 15 minutes and then at a reduced pressure of 1 cmHg for 80 minutes.
A heat treatment was carried out at a temperature of ℃ to form a polyaniline film 3a having a thickness of 3 μm. Next, 120 μm of SSCPM1-2 on the film 3a.
It is applied at a thickness of 80 m in Ar gas stream at 1
After heating for 5 minutes, depressurize at 1 cmHg at 80 ℃
Heat-treated with 12 μm thick organic disulfide + V 2
The O 5 + PAn film 4a was formed. Furthermore, C on the film 4a
Pl-2 was applied to a thickness of 90 μm, heated at 80 ° C. for 15 minutes in an Ar gas stream, and then heat-treated at 80 ° C. under a reduced pressure of 1 cmHg to form a polyaniline film 3b having a thickness of 3 μm. After this, organic disulfide +
The steps of forming the V 2 O 5 + PAn film and the polyaniline film were alternately repeated twice to form films 4b, 3c, 4c and 3d, and a multilayer film having a cross-sectional structure as shown in FIG. 1 was obtained. The obtained film was cut into a 2 × 2 cm square to obtain a polymer electrode C.
【0017】[比較例2]実施例2で用いたCPl−2
をカーボンフィルム5上に塗布し脱ドープ還元性ポリア
ニリンよりなる膜7aを形成したのち、同じく実施例2
で用いたSSCPMl−2を膜7a上に塗布し有機ジス
ルフィド+V2O5+PAnよりなる膜8aを形成した。
有機ジスルフィド+V2O5+PAn膜の形成工程をさら
に2回繰り返し、膜8b、8cを形成し、図2に示すよ
うな断面の構造を有する多層膜を得た。得られた膜を大
きさ2×2cm角に切断してポリマー電極Dを得た。[Comparative Example 2] CP1-2 used in Example 2
Was applied onto the carbon film 5 to form a film 7a made of dedoped reducing polyaniline, and then the same procedure as in Example 2 was performed.
The SSCPM1-2 used in 1) was applied on the film 7a to form a film 8a made of organic disulfide + V 2 O 5 + PAn.
The step of forming the organic disulfide + V 2 O 5 + PAn film was repeated twice more to form films 8b and 8c, and a multilayer film having a cross-sectional structure as shown in FIG. 2 was obtained. The obtained film was cut into a 2 × 2 cm square to obtain a polymer electrode D.
【0018】[実施例3]π電子共有導電性高分子とし
て、日東電工製のポリアニリン(商品名アニリード)を
アルカリ溶液中で脱ドープし、ヒドラジンで還元して得
た伝導度が10ー8S/cm、RDI値が0.28の脱ド
ープ還元ポリアニリン粉末を用いる。また、DMcTモ
ノマーを水酸化リチウム水溶液中において沃素で化学酸
化することで得たDMcTポリマー粉末を準備した。一
方、NEPに直鎖ポリエチレンオキサイド(住友精化製
PEO−1、平均分子量=15〜40万)を5重量%お
よび過塩素酸リチウム(LiClO4)を1モル/リッ
トル溶解した。このNEP10gに上記の脱ドープ還元
ポリアニリン粉末1.0gおよびDMcTポリマー粉末
2gを溶解し、粘性のあるDMcTーPAn−NEPー
PEO粘性溶液を得た。平均粒径が3.5μmのV2O5
粉末2.5gをNEP10gに分散混合してスラリーを
得た。このスラリーを前記のDMcTーPAn−NEP
ーPEO粘性溶液に添加混合したのち、ホモジナイザー
で回転数5000rmpで約10分混合し分散液を得
た。ロータリーエバッポレーターでNEPの一部を除去
し粘着性のある分散液(SSCPMl−3)とした。さ
らに同様の脱ドープ還元ポリアニリン粉末0.5gをN
MP20gに溶解し、青色のPAnーNEP溶液(CP
l−3)を得た。[0018] [Example 3] [pi as an electronic covalent conductive polymer, manufactured by Nitto Denko polyaniline (trade name Anirido) dedoped in an alkaline solution, the conductivity obtained by reduction with hydrazine is 10 @ 8 S / Cm, RDI value of 0.28 dedoped reduced polyaniline powder is used. Further, a DMcT polymer powder obtained by chemically oxidizing the DMcT monomer with iodine in an aqueous lithium hydroxide solution was prepared. On the other hand, 5% by weight of linear polyethylene oxide (PEO-1, manufactured by Sumitomo Seika, average molecular weight = 140,000) and lithium perchlorate (LiClO 4 ) were dissolved in NEP at 1 mol / liter. 1.0 g of the above-mentioned dedoped reduced polyaniline powder and 2 g of DMcT polymer powder were dissolved in 10 g of this NEP to obtain a viscous DMcT-PAn-NEP-PEO viscous solution. V 2 O 5 with an average particle size of 3.5 μm
2.5 g of the powder was dispersed and mixed in 10 g of NEP to obtain a slurry. This slurry was added to the above DMcT-PAn-NEP.
-After adding and mixing to the PEO viscous solution, a homogenizer was mixed at a rotation speed of 5000 rpm for about 10 minutes to obtain a dispersion liquid. A part of NEP was removed with a rotary evaporator to obtain a viscous dispersion liquid (SSCPMl-3). Further, 0.5 g of the same undoped reduced polyaniline powder was added to N
Dissolve in 20 g of MP, blue PAn-NEP solution (CP
1-3 was obtained.
【0019】まず、厚さ30μmのチタン箔2に接合し
た繊維状のフッ素樹脂とカーボンブラックよりなる厚さ
40μmのカーボンフィルム1上に、CPl−3を90
μmの厚さに塗布し、Arガス気流中において80℃で
15分加熱したのち、1cmHgの減圧下において80
℃で加熱処理し、厚さ3μmのポリアニリン膜3aを形
成した。次に、ポリアニリン膜3a上にSSCPMl−
3を90μmの厚さに塗布し、Arガス気流中において
80℃で15分加熱したのち、1cmHgの減圧下にお
いて80℃で加熱処理し、厚さ15μmの有機ジスルフ
ィド・ポリアニリン・V2O5・ポリエチレンオキサイド
ポリマー電解質複合膜4aを形成した。さらに、複合膜
4a上にCPl−3を90μmの厚さに塗布し、Arガ
ス気流中において80℃で15分加熱したのち、1cm
Hgの減圧下において80℃で加熱処理し、厚さ3μm
のポリアニリン膜3bを形成した。このあと、有機ジス
ルフィド・ポリアニリン・V2O5・ポリエチレンオキサ
イドポリマー電解質複合膜およびポリアニリン膜の形成
工程を交互に2回繰り返し、膜4b、3c、4c、3d
を形成した。得られた膜を大きさ2×2cm角に切断し
てポリマー電極Eを得た。First, 90 parts of CPl-3 are formed on a carbon film 1 having a thickness of 40 μm, which is made of fibrous fluororesin and carbon black bonded to a titanium foil 2 having a thickness of 30 μm.
It is applied to a thickness of μm and heated in an Ar gas stream at 80 ° C. for 15 minutes and then at a reduced pressure of 1 cmHg for 80 minutes.
A heat treatment was carried out at a temperature of ℃ to form a polyaniline film 3a having a thickness of 3 μm. Next, on the polyaniline film 3a, SSCPM1-
3 was applied to a thickness of 90 μm, heated at 80 ° C. for 15 minutes in an Ar gas stream, and then heat-treated at 80 ° C. under a reduced pressure of 1 cmHg to form an organic disulfide / polyaniline / V 2 O 5 / thickness of 15 μm. A polyethylene oxide polymer electrolyte composite membrane 4a was formed. Further, CPl-3 was applied on the composite film 4a to a thickness of 90 μm, heated in an Ar gas stream at 80 ° C. for 15 minutes, and then 1 cm.
Heat treatment at 80 ℃ under reduced pressure of Hg, thickness 3μm
The polyaniline film 3b was formed. Thereafter, the steps of forming the organic disulfide / polyaniline / V 2 O 5 / polyethylene oxide polymer electrolyte composite film and the polyaniline film are alternately repeated twice to form the films 4b, 3c, 4c, 3d.
Was formed. The obtained film was cut into a 2 × 2 cm square to obtain a polymer electrode E.
【0020】[比較例3]実施例3で用いたCPl−3
をカーボンフィルム上に塗布し脱ドープ還元性ポリアニ
リンよりなる膜7aを形成したのち、同じく実施例3で
用いたSSCPMl−3を膜7a上に塗布し、有機ジス
ルフィドとポリアニリンとV2O5とポリエチレンオキサ
イドポリマー電解質を含む膜8aを形成した。有機ジス
ルフィドとポリアニリンとV2O5とポリエチレンオキサ
イドポリマー電解質を含む膜の形成工程をさらに2回繰
り返し、膜8b、8cを形成した。得られた膜を大きさ
2×2cm角に切断してポリマー電極Fを得た。[Comparative Example 3] CPl-3 used in Example 3
Was coated on a carbon film to form a film 7a made of dedoped reducing polyaniline, and then SSCPMl-3 used in Example 3 was also coated on the film 7a to form organic disulfide, polyaniline, V 2 O 5 and polyethylene. A film 8a containing an oxide polymer electrolyte was formed. The steps of forming a film containing an organic disulfide, polyaniline, V 2 O 5 and a polyethylene oxide polymer electrolyte were repeated twice more to form films 8b and 8c. The obtained film was cut into a 2 × 2 cm square to obtain a polymer electrode F.
【0021】上記の実施例および比較例で得た電極A、
B、C、D、E、およびFを正極、厚み0.3mmの金
属リチウムを負極とし、厚み0.6mmのゲル電解質を
セパレータ層としてそれぞれ大きさ2×2cm角の電池
A、B、C、D、E、およびFを構成した。なお、ゲル
電解質は、ポリアクリロニトリル3.0gをLiBF4
を1M溶解したプロピレンカーボネート/エチレンカー
ボネート(1:1容積比)溶液20.7gでゲル化した
ものである。これらの電池を20℃において、0日、5
日、46日保存後、0.2mAの一定電流で、4.5〜
1.5Vの範囲で充放電サイクルを繰り返し、各充放電
サイクルにおける放電容量(Q、単位:mAh)を測定
し、電池保存に伴う放電容量の減少量により電極保存性
能を評価した。結果を表1から表3に示す。以上の結果
から明らかなように、本発明に従う実施例1、2、およ
び3の電極A、C、およびEを用いた電池は、それぞれ
対応する比較例の電極B、D、およびFを用いた電池に
較べ、電池保存中および充放電サイクル中の放電容量の
低下が小さい。The electrodes A obtained in the above-mentioned Examples and Comparative Examples,
B, C, D, E, and F are used as positive electrodes, metal lithium having a thickness of 0.3 mm is used as a negative electrode, and a gel electrolyte having a thickness of 0.6 mm is used as a separator layer. D, E, and F were constructed. The gel electrolyte was prepared by adding 3.0 g of polyacrylonitrile to LiBF4
Is gelled with 20.7 g of a propylene carbonate / ethylene carbonate (1: 1 volume ratio) solution in which 1M was dissolved. These batteries were stored at 20 ° C for 0 days, 5 days.
After storage for 46 days on a constant current of 0.2 mA, 4.5 ~
The charge / discharge cycle was repeated in the range of 1.5 V, the discharge capacity (Q, unit: mAh) in each charge / discharge cycle was measured, and the electrode storage performance was evaluated by the reduction amount of the discharge capacity due to storage of the battery. The results are shown in Tables 1 to 3. As is clear from the above results, the batteries using the electrodes A, C, and E of Examples 1, 2, and 3 according to the present invention used the electrodes B, D, and F of the corresponding comparative examples, respectively. Compared to batteries, the decrease in discharge capacity during battery storage and charge / discharge cycles is small.
【0022】[0022]
【表1】 [Table 1]
【0023】[0023]
【表2】 [Table 2]
【0024】[0024]
【表3】 [Table 3]
【0025】[0025]
【発明の効果】本発明の電極は、上下にπ電子共有導電
性高分子層を設け、かつ有機ジスルフィド化合物とπ電
子共有導電性高分子と金属酸化物を含む層とπ電子共有
導電性高分子層を交互に重ねた構造を有するので、電池
保存中および充放電中において有機ジスルフィド化合物
モノマーの電極内からの散逸が軽減される。従って、こ
の電極を用いれば、保存後および充放電中の放電容量の
低下の少ない高エネルギー密度二次電池を得ることがで
きる。なお、実施例においてはポリマー電極を電池に適
用した例のみを示したが、電池の他に、本発明のポリマ
ー電極を対極に用いることで、発色・退色速度の速いエ
レクトロクロミック素子、応答速度の早いグルコースセ
ンサー等の生物化学センサーを得ることができるし、ま
た、書き込み・読み出し速度の速い電気化学アナログメ
モリーを構成することもできる。EFFECT OF THE INVENTION The electrode of the present invention is provided with a π-electron sharing conductive polymer layer on the upper and lower sides, and a layer containing an organic disulfide compound, a π-electron sharing conductive polymer and a metal oxide, and a π-electron sharing conductive polymer layer. Since it has a structure in which molecular layers are alternately stacked, dissipation of the organic disulfide compound monomer from the electrode is reduced during battery storage and charge / discharge. Therefore, by using this electrode, it is possible to obtain a high energy density secondary battery with little decrease in discharge capacity after storage and during charge / discharge. In the examples, only the example in which the polymer electrode was applied to the battery was shown, but in addition to the battery, by using the polymer electrode of the present invention as a counter electrode, an electrochromic element having a high coloring / fading speed and a high response speed. A biochemical sensor such as a fast glucose sensor can be obtained, and an electrochemical analog memory with a high writing / reading speed can be constructed.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の一実施例におけるポリマー電極の縦断
面図である。FIG. 1 is a vertical sectional view of a polymer electrode according to an embodiment of the present invention.
【図2】比較例のポリマー電極の縦断面図である。FIG. 2 is a vertical sectional view of a polymer electrode of a comparative example.
1 カーボンフィルムよりなる電極集電体 2 チタン箔 3a〜3d π電子共有導電性高分子を主体とする層 4a〜4c 有機ジスルフィド化合物、π電子共有導電
性高分子および金属酸化物を含む層DESCRIPTION OF SYMBOLS 1 Electrode current collector consisting of carbon film 2 Titanium foil 3a to 3d Layer mainly composed of π electron sharing conductive polymer 4a to 4c Layer containing organic disulfide compound, π electron sharing conductive polymer and metal oxide
Claims (6)
て硫黄ー金属イオン(プロトンを含む)結合を生成し、
電解酸化により硫黄ー金属イオン結合が元の硫黄ー硫黄
結合を再生する有機ジスルフィド化合物と金属酸化物と
π電子共有導電性高分子とを含む層と、π電子共有導電
性高分子を主体とする層が交互に積み重なった層状構造
を有し、かつ最上部と最下部の層がπ電子共有導電性高
分子を主体とする層であることを特徴とするポリマー電
極。1. A sulfur-sulfur bond is cleaved by electrolytic reduction to form a sulfur-metal ion (including proton) bond,
A layer containing an organic disulfide compound whose sulfur-metal ionic bond regenerates the original sulfur-sulfur bond by electrolytic oxidation, a layer containing a metal oxide and a π-electron shared conductive polymer, and a π-electron shared conductive polymer A polymer electrode having a layered structure in which layers are alternately stacked, and the uppermost and lowermost layers are layers mainly composed of a π-electron sharing conductive polymer.
π電子共有導電性高分子を含む層が電解質を含有する請
求項1記載のポリマー電極。2. The polymer electrode according to claim 1, wherein the layer containing the organic disulfide compound, the metal oxide, and the π-electron sharing conductive polymer contains an electrolyte.
元状態のポリアニリンである請求項1または2記載のポ
リマー電極。3. The polymer electrode according to claim 1, wherein the π-electron sharing conductive polymer is polyaniline in a dedoped / reduced state.
ー2ーピロリドンに溶解した溶液を基板上に塗布し塗膜
を形成する工程、有機ジスルフィド化合物およびπ電子
共有導電性高分子をアルキルピロリドンに溶解した液体
と金属酸化物粉末との混合物と、π電子共有導電性高分
子をNーアルキルー2ーピロリドンに溶解した液体とを
前記塗膜上に交互に塗布し層状の塗膜を形成する工程、
およびπ電子共有導電性高分子をNーアルキルー2ーピ
ロリドンに溶解した液体を前記層状の塗膜上に塗布し塗
膜を形成する工程を含むことを特徴とするポリマー電極
の製造方法。4. A step of applying a solution prepared by dissolving a π-electron sharing conductive polymer in N-alkyl-2-pyrrolidone onto a substrate to form a coating film, dissolving an organic disulfide compound and a π-electron sharing conductive polymer in an alkylpyrrolidone. A step of forming a layered coating film by alternately applying a mixture of the liquid and the metal oxide powder, and a liquid obtained by dissolving a π-electron shared conductive polymer in N-alkyl-2-pyrrolidone on the coating film,
And a step of forming a coating film by applying a liquid in which a π-electron shared conductive polymer is dissolved in N-alkyl-2-pyrrolidone onto the layered coating film to form a coating film.
元状態のポリアニリンである請求項4記載のポリマー電
極の製造方法。5. The method for producing a polymer electrode according to claim 4, wherein the π-electron sharing conductive polymer is polyaniline in a dedoped / reduced state.
て具備するリチウム二次電池。6. A lithium secondary battery comprising the polymer electrode according to claim 1 as a positive electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26291194A JP3471097B2 (en) | 1994-10-26 | 1994-10-26 | Polymer electrode, method for producing polymer electrode, and lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26291194A JP3471097B2 (en) | 1994-10-26 | 1994-10-26 | Polymer electrode, method for producing polymer electrode, and lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08124570A true JPH08124570A (en) | 1996-05-17 |
JP3471097B2 JP3471097B2 (en) | 2003-11-25 |
Family
ID=17382326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26291194A Expired - Fee Related JP3471097B2 (en) | 1994-10-26 | 1994-10-26 | Polymer electrode, method for producing polymer electrode, and lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3471097B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10275633A (en) * | 1997-01-28 | 1998-10-13 | Mitsubishi Electric Corp | Lithium ion secondary battery |
US5919587A (en) * | 1996-05-22 | 1999-07-06 | Moltech Corporation | Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same |
US8389204B2 (en) | 2010-04-14 | 2013-03-05 | Tokyo Ohka Kogyo Co., Ltd. | Method for producing comb-shaped electrode |
GB2571770A (en) * | 2018-03-08 | 2019-09-11 | Sumitomo Chemical Co | Battery, electrode and method |
-
1994
- 1994-10-26 JP JP26291194A patent/JP3471097B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5919587A (en) * | 1996-05-22 | 1999-07-06 | Moltech Corporation | Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same |
US6238821B1 (en) | 1996-05-22 | 2001-05-29 | Moltech Corporation | Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same |
US7790315B2 (en) | 1996-05-22 | 2010-09-07 | Sion Power Corporation | Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same |
US7939198B2 (en) | 1996-05-22 | 2011-05-10 | Sion Power Corporation | Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same |
JPH10275633A (en) * | 1997-01-28 | 1998-10-13 | Mitsubishi Electric Corp | Lithium ion secondary battery |
US8389204B2 (en) | 2010-04-14 | 2013-03-05 | Tokyo Ohka Kogyo Co., Ltd. | Method for producing comb-shaped electrode |
GB2571770A (en) * | 2018-03-08 | 2019-09-11 | Sumitomo Chemical Co | Battery, electrode and method |
Also Published As
Publication number | Publication date |
---|---|
JP3471097B2 (en) | 2003-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5851504A (en) | Carbon based electrodes | |
US6228532B1 (en) | Lithium secondary cell | |
JP3292441B2 (en) | Electrode containing organic disulfide compound and method for producing the same | |
CN107851836A (en) | Lithium rechargeable battery | |
JP3868231B2 (en) | Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
JP3333130B2 (en) | Composite electrode, method for producing the same, and lithium secondary battery | |
US5665492A (en) | Composite Electrode including organic disulfide compound, method of producing the same, and lithium secondary battery utilizing the same | |
JP5169181B2 (en) | Non-aqueous electrolyte secondary battery | |
KR100462668B1 (en) | Polymer cell | |
JP2008066047A (en) | Nonaqueous electrolyte battery and separator thereof | |
EP0818839A2 (en) | Composite electrode containing an organic disulfide compound and method for producing the same | |
JP3471097B2 (en) | Polymer electrode, method for producing polymer electrode, and lithium secondary battery | |
JP3346661B2 (en) | Polymer electrode, method for producing the same, and lithium secondary battery | |
JP2017199639A (en) | Electrode structure for power storage device, power storage device, and method for manufacturing electrode structure | |
JP2000311684A (en) | Lithium secondary battery and manufacture of its positive electrode | |
JPH08185851A (en) | Electrode for battery and secondary battery using this electrode | |
JP3699786B2 (en) | Air lithium secondary battery | |
JP2002134111A (en) | Carbon material for lithium ion secondary battery negative electrode and lithium ion secondary battery | |
JPH08203530A (en) | Combined electrode, manufacture thereof and lithium secondary battery | |
JP3722462B2 (en) | Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same | |
JP2002164084A (en) | Lithium battery and its manufacturing method | |
JP3070820B2 (en) | Composite electrode containing organic disulfide compound, method for producing the same, and lithium secondary battery | |
JPH0864200A (en) | Electrode for secondary battery and secondary battery using this electrode | |
JP3539594B2 (en) | Method for charging and discharging a secondary battery having a positive electrode containing an organic disulfide compound | |
JP3444463B2 (en) | Electrode containing organic disulfide compound and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |