JPH06306705A - Antimicrobial fiber and its production - Google Patents

Antimicrobial fiber and its production

Info

Publication number
JPH06306705A
JPH06306705A JP3928494A JP3928494A JPH06306705A JP H06306705 A JPH06306705 A JP H06306705A JP 3928494 A JP3928494 A JP 3928494A JP 3928494 A JP3928494 A JP 3928494A JP H06306705 A JPH06306705 A JP H06306705A
Authority
JP
Japan
Prior art keywords
fiber
antibacterial
metal ion
fine particles
inorganic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3928494A
Other languages
Japanese (ja)
Other versions
JP2945264B2 (en
Inventor
Tadayoshi Koizumi
忠由 古泉
Hisashi Nagi
比佐志 凪
Izumi Yuasa
泉 湯淺
Shunichi Hasegawa
俊一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP3928494A priority Critical patent/JP2945264B2/en
Publication of JPH06306705A publication Critical patent/JPH06306705A/en
Application granted granted Critical
Publication of JP2945264B2 publication Critical patent/JP2945264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the subject fiber capable of keeping high antimicrobial properties also after post processing, post treatment, washing, wearing, etc., by including inorganic fine particles retaining a metallic ion having antimicrobial action and a metal ion transferring agent in a fiber-forming polymer. CONSTITUTION:Inorganic fine particles (zeolite, etc.) retaining a metal ion (silver ion, copper ion, zinc ion, etc.) having antimicrobial action and a metal ion transferring agent are contained in a fiber-forming polymer and the polymer is fiberized. When the fiber-forming polymer is a polyester, the metal ion- transfer agent is preferably a polyester having a molecular weight or a melting point lower than that of the polyester and when the polymer is a polyamide, the agent is preferably a polyamide having a molecular weight or a melting point lower than that of the polyamide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は抗菌性繊維およびその製
造方法に関する。詳細には、本発明は、染色、洗浄など
の後加工や後処理、洗濯、着用や使用などを経ても抗菌
性が直ちに失われず、長期間に亙って良好な抗菌性を保
ち得る抗菌性繊維およびその製造方法に関する。
FIELD OF THE INVENTION The present invention relates to an antibacterial fiber and a method for producing the same. More specifically, the present invention does not immediately lose antibacterial properties even after post-processing and post-treatment such as dyeing and washing, washing, wearing and using, and can maintain good antibacterial properties for a long period of time. The present invention relates to a fiber and a method for manufacturing the fiber.

【0002】[0002]

【従来の技術】人間の生活環境下には種々の細菌類やカ
ビなどが棲息しており、人体、繊維製品などに付着して
繁殖し、皮膚障害やゼンソクなどの様々の疾病を引き起
こしたり、繊維製品の変質や劣化、または悪臭の発生を
もたらしている。
2. Description of the Related Art Various bacteria and molds inhabit the human living environment, attach to human bodies, textiles, etc. and propagate, causing various diseases such as skin disorders and Zensoku. It causes deterioration or deterioration of textile products or generation of odor.

【0003】特に、合成繊維は天然繊維に比べて吸汗性
が低いために、合成繊維製の衣類を身につけた場合に
は、汗の付着した皮膚や衣類等に微生物が付着し繁殖し
て腐敗現象を起こし、汗くさい臭いを生ずる。そのた
め、悪臭を発生せず、快適で安全な清潔感のある抗菌性
のある合成繊維が古くから求められており、そのための
研究開発が従来から色々行われている。
In particular, since synthetic fibers have a lower sweat absorption property than natural fibers, when clothes made of synthetic fibers are worn, microorganisms adhere to the sweat-laden skin, clothes, etc. to propagate and rot. It causes a phenomenon and produces a sweaty odor. Therefore, a synthetic fiber having an antibacterial property that does not generate a foul odor, is comfortable, safe, and has a clean feeling has long been required, and various researches and developments have been conventionally performed for that purpose.

【0004】繊維に抗菌性を付与するために有機錫化合
物や有機水銀化合物が繊維に対して用いられていた時期
があるが、これらの化合物の毒性が問題となり、その大
半が現在使用中止となっている。また、安全性の高い抗
菌・防カビ剤であるシリコーン系の第4級アンモニウム
塩などを後処理によって繊維に付着させて抗菌・防カビ
性のカーペットを製造することが提案されている(特開
昭57−51874号公報)。しかし、シリコーン系の
第4級アンモニウム塩はセルロース系繊維には反応性や
親和性を有し洗濯耐久性のある抗菌効果を示すが、合成
繊維に対しては反応性または親和性に劣るためその抗菌
作用は一時的なものに過ぎず耐久性がない。
Although there have been some times when organotin compounds and organomercury compounds were used for fibers to impart antibacterial properties to the fibers, the toxicity of these compounds became a problem, and most of them were discontinued at present. ing. Further, it has been proposed that a silicone-based quaternary ammonium salt, which is a highly safe antibacterial / antifungal agent, is attached to the fibers by post-treatment to produce an antibacterial / antifungal carpet (Japanese Patent Laid-Open No. 2004-242242) 57-51874). However, the silicone-based quaternary ammonium salt has reactivity and affinity with cellulosic fibers and exhibits an antibacterial effect with washing durability, but is inferior in reactivity or affinity with synthetic fibers, so The antibacterial effect is only temporary and not durable.

【0005】また、抗菌性を有することが古くから知ら
れている銀、銅、亜鉛等の金属イオンを溶出させ得る金
属化合物を直接そのまま繊維形成性重合体中に混合して
繊維を製造する方法が提案されている(特開昭54−1
47220号公報)。しかしこの方法による場合は、そ
れらの金属化合物が繊維形成性重合体に及ぼす影響が大
きく、添加割合が著しく制限されたり、繊維化工程での
工程通過性が低下し、特に紡糸時の単糸切れ、パックフ
ィルターの目詰りによるパック寿命の低下、延伸時の毛
羽の頻発などを生じ易い。しかも、金属化合物を単にそ
のまま直接重合体中に配合しているこの方法による場合
は、繊維表面に存在する金属イオン量が時間の経過や使
用に伴って減少してゆくにつれて抗菌性能が短期間に著
しく低下し、長期間にわたって良好な抗菌作用を維持す
ることができない。
A method for producing fibers by directly mixing a metal compound capable of eluting metal ions such as silver, copper and zinc, which have long been known to have antibacterial properties, directly into a fiber-forming polymer. Has been proposed (JP-A-54-1).
47220). However, in the case of this method, the influence of those metal compounds on the fiber-forming polymer is large, the addition ratio is remarkably limited, the process passability in the fiberizing process is lowered, and especially the single yarn breakage during spinning is caused. In addition, the pack life is shortened due to clogging of the pack filter and frequent occurrence of fluff during stretching. Moreover, in the case of this method in which the metal compound is simply directly blended in the polymer, the antibacterial performance is reduced in a short period of time as the amount of metal ions present on the fiber surface decreases with the passage of time and use. It is remarkably reduced, and good antibacterial action cannot be maintained for a long period of time.

【0006】更に、銀、銅等の金属イオンを保持させた
ゼオライトを繊維形成性重合体中に練込んで繊維を形成
する方法が提案されているが(特公昭63−54013
号公報、特開昭63−175117号公報)、この方法
による場合も時間の経過や使用に伴って繊維表面部分に
存在する金属イオンの量が低減してゆき、それに伴って
抗菌作用も徐々に低下し、耐久性のある抗菌性繊維が得
られない。
Further, a method has been proposed in which a zeolite having metal ions such as silver and copper held therein is kneaded into a fiber-forming polymer to form a fiber (Japanese Patent Publication No. 63-54013).
Japanese Patent Laid-Open No. 63-175117), the amount of metal ions present on the fiber surface portion decreases with the passage of time and use, and the antibacterial action also gradually increases with this method. And no durable antibacterial fiber can be obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、染色
加工や水洗などの後加工や後処理、洗濯、長期間の着用
や使用などを経た後も、高い抗菌性を保ち得る耐久性に
極めて優れた抗菌性繊維およびそれからなる繊維製品を
提供することである。
The problem to be solved by the present invention is to improve the durability that can maintain high antibacterial properties even after post-processing and post-treatment such as dyeing and washing, washing, long-term wearing and use. It is to provide an extremely excellent antibacterial fiber and a fiber product made of the same.

【0008】[0008]

【課題を解決するための手段】本発明者らが上記の課題
を解決すべく繊維素材や配合成分などの材料面、更には
製造法などの面から種々検討を重ねてきたが、その結
果、金属イオンを保持させた無機微粒子を繊維形成性重
合体中に配合するに当たって、更に金属イオン移行剤を
併用すると耐久性および持続性のある抗菌作用を有する
有機重合体繊維が得られることを見出した。更に、本発
明者らは、重合完了後の繊維形成性有機重合体中に、該
重合体が紡糸口金から紡出されるまでの任意の段階で、
金属イオンを保持させた無機微粒子および金属イオン移
行剤を混合して紡糸を行う方法を採用すると、上記した
耐久性のある抗菌性繊維が極めて円滑に且つ簡単に製造
し得ることを見出した。
Means for Solving the Problems To solve the above problems, the present inventors have made various investigations in terms of materials such as fiber materials and compounding ingredients, and further in terms of manufacturing methods. As a result, In compounding the inorganic fine particles retaining metal ions into the fiber-forming polymer, it was found that the organic polymer fibers having a durable and durable antibacterial action can be obtained by further using a metal ion transfer agent. . Further, the present inventors, in the fiber-forming organic polymer after the completion of the polymerization, at any stage until the polymer is spun from the spinneret,
It has been found that the above-mentioned durable antibacterial fiber can be produced extremely smoothly and easily by adopting a method of mixing inorganic fine particles retaining metal ions and a metal ion transfer agent and performing spinning.

【0009】したがって、本発明は、抗菌作用を有する
金属イオンを保持させた無機微粒子および金属イオン移
行剤を含有する繊維形成性重合体を用いて形成されてい
ることを特徴とする抗菌性繊維である。
Therefore, the present invention is an antibacterial fiber characterized by being formed using a fiber-forming polymer containing inorganic fine particles retaining metal ions having an antibacterial action and a metal ion transfer agent. is there.

【0010】そして、本発明は、重合完了後の繊維形成
性有機重合体中に、該重合体が紡糸口金から紡出される
までの任意の段階で、金属イオンを保持させた無機微粒
子および金属イオン移行剤を混合して紡出を行うことを
特徴とする抗菌性繊維の製造方法である。
In the present invention, in the fiber-forming organic polymer after completion of the polymerization, the inorganic fine particles and the metal ions having the metal ions retained at any stage until the polymer is spun from the spinneret. A method for producing an antibacterial fiber, which comprises mixing a transfer agent and performing spinning.

【0011】更に、本発明は上記の抗菌性有機重合体繊
維から製造された繊維製品を包含し、そのような繊維製
品としては、糸や布帛、更には衣類、寝具、カーテン、
カーペット、壁紙、バスマット、タオル、包帯やガー
ゼ、マスクなどの医療品などの最終製品を含む。
Further, the present invention includes a fiber product produced from the above-mentioned antibacterial organic polymer fiber, and as such a fiber product, a yarn or a cloth, further, clothes, bedding, curtain,
Includes end products such as carpets, wallpaper, bath mats, towels, medical items such as bandages, gauze and masks.

【0012】本発明の抗菌性有機重合体繊維を構成する
有機重合体としては、繊維形成性の有機重合体であれば
いずれでもよく特に制限されない。繊維形成性重合体と
しては、例えば繊維形成性のポリエステル、ポリアミ
ド、ポリオレフィン、塩化ビニル、塩化ビニリデン等の
熱溶融性重合体、更にはポリウレタン、アクリル系重合
体、ポリビニルアルコールなどを挙げることができ、そ
られのうちでも溶融紡糸が可能なポリエステル、ポリア
ミド、ポリオレフィン等の熱溶融性重合体が抗菌性金属
イオン保持無機微粒子を含有する繊維を溶融紡糸により
簡単に製造することができ、望ましい。
The organic polymer constituting the antibacterial organic polymer fiber of the present invention is not particularly limited as long as it is a fiber-forming organic polymer. Examples of the fiber-forming polymer include fiber-forming polyester, polyamide, polyolefin, vinyl chloride, heat-melting polymers such as vinylidene chloride, and further polyurethane, acrylic polymer, polyvinyl alcohol, and the like. Of these, melt-spinnable heat-meltable polymers such as polyesters, polyamides, and polyolefins are preferable because fibers containing antibacterial metal ion-holding inorganic fine particles can be easily produced by melt-spinning.

【0013】また、本発明において、抗菌性を有する金
属イオンとは、銀、銅、亜鉛、鉛、クロム、鉄、ニッケ
ル、錫、水銀などの金属のイオンをいい、無機微粒子に
はこれらの金属イオンの1種類のみを保持させても、ま
たは2種以上を保持させてもよい。特に、本発明におい
ては、銀イオンと亜鉛イオンを組み合わせて使用する
と、抗菌性が長期間持続し、かつ繊維における着色を防
止することができ、好ましい。
In the present invention, the metal ion having an antibacterial property means an ion of a metal such as silver, copper, zinc, lead, chromium, iron, nickel, tin and mercury, and the inorganic fine particles include these metals. Only one kind of ion may be held, or two or more kinds may be held. In particular, in the present invention, it is preferable to use a combination of silver ion and zinc ion because the antibacterial property can be maintained for a long period of time and the coloring of the fiber can be prevented.

【0014】金属イオンを保持させる無機微粒子の種類
は特に制限されず有機重合体繊維の劣化作用等を示さな
いものはいずれも使用でき、イオン交換能や金属イオン
吸着能を有していて抗菌性金属イオンの保持能の高いも
のが好ましい。そのような無機微粒子の例としては、ゼ
オライト、リン酸ジルコニウム、リン酸カルシウムなど
を挙げることができ、そのうちでも高いイオン交換能を
有するゼオライトが特に好ましい。しかしながら、ゼオ
ライトを使用する場合には、ゼオライトを充分に加熱乾
燥して水分率を低く抑えておくことが必要であり、ゼオ
ライトの水分率が高いと、ポリエステルなどの繊維形成
性有機重合体の曳糸性が悪くなり、仮に紡糸ができて
も、得られる繊維の強度低下が著しくなるので注意を要
する。この時のゼオライトの加熱乾燥処理は500℃以
上の温度で行うことが好ましい。
The type of the inorganic fine particles for holding the metal ions is not particularly limited, and any one which does not show the deterioration action of the organic polymer fiber can be used, and it has an ion exchange ability and a metal ion adsorption ability and has an antibacterial property. Those having a high metal ion retaining ability are preferable. Examples of such inorganic fine particles include zeolite, zirconium phosphate, calcium phosphate and the like, and among them, zeolite having a high ion exchange capacity is particularly preferable. However, when zeolite is used, it is necessary to heat and dry the zeolite sufficiently to keep the water content low. If the water content of the zeolite is high, the fiber-forming organic polymer such as polyester is pulled. It should be noted that the yarn quality is poor, and even if spinning is possible, the strength of the resulting fiber is significantly reduced. The heat-drying treatment of the zeolite at this time is preferably performed at a temperature of 500 ° C. or higher.

【0015】そして、無機微粒子としては、平均粒径が
0.1〜3μのものが好ましく、0.3〜2.3μのも
のがより好ましく、0.5〜2.0μのものが特に好ま
しい。無機微粒子の平均粒径が0.1μよりも小さい
と、金属イオン移行剤中に抗菌性金属イオン保持無機微
粒子を分散させる際に該微粒子の凝集が生じ易くなり、
しかも紡糸時にフィルターの目詰まりを生じたり、延伸
工程において毛羽が発生し易くなる。一方、無機微粒子
の平均粒径が3μよりも大きいと、やはり紡糸時にフィ
ルターの目詰まりや断糸等を生じて紡糸時の工程性が不
良になり易い。
The inorganic fine particles preferably have an average particle size of 0.1 to 3 μ, more preferably 0.3 to 2.3 μ, and particularly preferably 0.5 to 2.0 μ. When the average particle size of the inorganic fine particles is smaller than 0.1 μ, the fine particles easily aggregate when the antibacterial metal ion-retaining inorganic fine particles are dispersed in the metal ion transfer agent,
Moreover, the filter is likely to be clogged during spinning, and fluff is likely to occur during the drawing process. On the other hand, when the average particle size of the inorganic fine particles is larger than 3 μ, the filter is likely to be clogged or broken during spinning, and the processability during spinning tends to be poor.

【0016】抗菌性を有する金属イオンを保持させた無
機微粒子(以後「抗菌性金属イオン保持無機微粒子」と
いう)としては、抗菌性金属イオンをより高濃度で保持
しているものがよく、例えば無機微粒子がイオン交換能
を有するゼオライトなどからなる場合は、そのイオン交
換容量の90%以上、特に92%以上が抗菌性金属イオ
ンでイオン交換されているものが、また金属イオンが無
機微粒子の物理的な吸着能により保持されている場合は
飽和時の90%以上になるようにして金属イオンを吸着
しているのがよい。
As the inorganic fine particles retaining the antibacterial metal ions (hereinafter referred to as "antibacterial metal ion-retaining inorganic fine particles"), those which retain the antibacterial metal ions in a higher concentration are preferable. When the fine particles are made of zeolite having an ion exchange capacity, 90% or more, especially 92% or more of the ion exchange capacity thereof is ion-exchanged with the antibacterial metal ion, and the metal ion is a physical particle of the inorganic fine particle. When it is retained by a high adsorption capacity, it is advisable to adsorb the metal ions so that it is 90% or more of the saturated state.

【0017】抗菌性金属イオン保持無機微粒子は、通
常、上記したような抗菌性金属イオンを含む水溶液など
の溶液で無機微粒子を含浸処理した後乾燥することによ
り得られるが、本発明においては抗菌性金属イオン保持
無機微粒子の製法は特に限定されず、抗菌性金属イオン
を高濃度で保持している無機微粒子はいずれも使用でき
る。
The antibacterial metal ion-retaining inorganic fine particles are usually obtained by impregnating the inorganic fine particles with a solution such as an aqueous solution containing an antibacterial metal ion as described above and then drying. The method for producing the metal ion-retaining inorganic fine particles is not particularly limited, and any of the inorganic fine particles retaining the antibacterial metal ions at a high concentration can be used.

【0018】抗菌性金属イオン保持無機微粒子の添加量
は、繊維形成性重合体の重量に基づいて0.01〜10
重量%にするのが好ましく、1〜5重量%がより好まし
い。無機微粒子における抗菌性金属イオンによるイオン
交換容量または吸着量にもよるが、イオン交換容量また
は金属イオン吸着能の90%以上が抗菌性の金属イオン
でイオン交換または吸着されている無機微粒子を使用す
る場合であっても、抗菌性金属イオン保持無機微粒子の
添加量が0.01重量%よりも少ないと繊維に充分な抗
菌性を付与しにくく、特に耐久性のある抗菌性が得られ
にくくなる。一方、10重量%を超えると、抗菌性能は
充分であるが、紡糸時に重合体流中において無機微粒子
の占める割合が大きくなり過ぎて、重合体流の粘度低
下、紡糸パックの目詰まりなどにより繊維化工程性が低
下しやすくなり、しかも高価な抗菌性金属イオン保持無
機微粒子を多量に使用することになり経済的でない。
The amount of the antibacterial metal ion-retaining inorganic fine particles added is 0.01 to 10 based on the weight of the fiber-forming polymer.
It is preferably made into the weight% and more preferably from 1 to 5% by weight. Depending on the ion exchange capacity or adsorption amount of the antibacterial metal ions in the inorganic fine particles, use is made of inorganic fine particles in which 90% or more of the ion exchange capacity or the metal ion adsorption capacity is ion-exchanged or adsorbed by the antibacterial metal ions. Even in such a case, if the amount of the antibacterial metal ion-retaining inorganic fine particles added is less than 0.01% by weight, it is difficult to impart sufficient antibacterial properties to the fiber, and it becomes difficult to obtain particularly durable antibacterial properties. On the other hand, if it exceeds 10% by weight, the antibacterial performance is sufficient, but the proportion of the inorganic fine particles in the polymer stream during spinning becomes too large, the viscosity of the polymer stream decreases, and the spinning pack becomes clogged. The chemical conversion processability is likely to be lowered, and expensive antibacterial metal ion-holding inorganic fine particles are used in large amounts, which is not economical.

【0019】そして、本発明では抗菌性金属イオン保持
無機微粒子と共に金属イオン移行剤を使用することが必
要である。この金属イオン移行剤は、無機微粒子に保持
された金属イオンを繊維の内部から表面部分に徐々に移
行させて繊維を長期間に亙って抗菌性に保つ徐放性を繊
維に付与するためのものである。本発明の繊維は金属イ
オン移行剤のそのような徐放機能によって、長期に亙っ
て持続性のある高い抗菌性を保つことができる。またそ
の際に、金属イオン移行剤は、金属イオンの繊維表面へ
の移行促進作用と共に、抗菌性金属イオン保持無機微粒
子を繊維形成性重合体中に均一に分散させる作用をも有
するようにするのが好ましい。
In the present invention, it is necessary to use a metal ion transfer agent together with the antibacterial metal ion-retaining inorganic fine particles. This metal ion transfer agent is for imparting a sustained release property to the fiber, in which the metal ion retained in the inorganic fine particles is gradually transferred from the inside of the fiber to the surface portion to keep the fiber antibacterial over a long period of time. It is a thing. Due to such a sustained release function of the metal ion transfer agent, the fiber of the present invention can maintain long-lasting and high antibacterial property for a long period of time. Further, at this time, the metal ion transfer agent has an action of promoting the transfer of metal ions to the fiber surface and also an action of uniformly dispersing the antibacterial metal ion-retaining inorganic fine particles in the fiber-forming polymer. Is preferred.

【0020】上記の点から本発明者らがより適当な金属
イオン移行剤を選択すべく実験を重ねたところ、ベース
となる繊維形成性重合体と高い親和性を有し且つ繊維形
成性重合体よりも低分子量または低融点の重合体が金属
イオン移行剤として適することが明らかになった。した
がって、本発明では金属イオン移行剤として、ベースと
なる繊維形成性重合体と高い親和性を有し且つ繊維形成
性重合体よりも低分子量または低融点の重合体を使用す
るのが好ましい。
From the above points, the inventors of the present invention have conducted experiments to select a more suitable metal ion transfer agent, and as a result, have a high affinity with the base fiber-forming polymer and have a fiber-forming polymer. It has been found that lower molecular weight or lower melting point polymers are suitable as metal ion transfer agents. Therefore, in the present invention, it is preferable to use, as the metal ion transfer agent, a polymer having a high affinity with the base fiber-forming polymer and having a lower molecular weight or a lower melting point than the fiber-forming polymer.

【0021】例えば、繊維形成性重合体がポリエチレン
テレフタレートなどのポリエステルの場合は、金属イオ
ン移行剤としてそれよりも低分子量または低融点のポリ
エステルを使用するのがよく、特に分子量が約2500
以下または融点が50℃以下のポリエステルが好まし
い。低分子量または低融点ポリエステルはベースとなる
繊維形成性ポリエステルと同種のものであってもまたは
異なる種類のものでもよい。具体的には、アジピン酸と
ジエチレングリコール、またはアジピン酸とブチレング
リコールから製造された分子量が約1000〜2500
の範囲にある脂肪族ポリエステルポリオールがより好ま
しい。また、このポリエステルポリオールの粘度は75
℃において600〜1000センチポイズであること
が、繊維形成性ポリエステルとの混練性および混練され
たものの曳糸性の点から好ましい。
For example, when the fiber-forming polymer is a polyester such as polyethylene terephthalate, it is preferable to use a polyester having a lower molecular weight or a lower melting point as the metal ion transfer agent, and particularly a molecular weight of about 2,500.
Polyester having a melting point of 50 ° C. or lower is preferable. The low molecular weight or low melting point polyester may be of the same or a different type as the base fiber-forming polyester. Specifically, the molecular weight produced from adipic acid and diethylene glycol or adipic acid and butylene glycol is about 1000 to 2500.
More preferred are aliphatic polyester polyols in the range. The viscosity of this polyester polyol is 75
It is preferably 600 to 1000 centipoise at 0 ° C. from the viewpoint of the kneading property with the fiber-forming polyester and the spinnability of the kneaded product.

【0022】また、繊維形成性重合体がポリアミドの場
合は、金属イオン移行剤としてそれよりも低分子量また
は低融点のポリアミド、好ましくは分子量が約3000
以下または融点が50℃以下のポリアミドを使用するの
がよく、その場合の低分子量または低融点ポリアミドは
ベースとなる繊維形成性ポリアミドと同種のものであっ
てもまたは異なる種類のものでもよい。更に繊維形成性
重合体がポリプロピレンの場合は、金属イオン移行剤と
してそれよりも低分子量または低融点のオレフィン系重
合体を使用するのがよく、好ましくは分子量が約300
0以下または融点が50℃以下のポリプロピレン、ポリ
エチレン、プロピレン−エチレン共重合体、ポリブテン
などのオレフィン系重合体を使用するのがよい。
When the fiber-forming polymer is a polyamide, a polyamide having a lower molecular weight or a lower melting point than that of the polyamide is preferably used as the metal ion transfer agent, preferably having a molecular weight of about 3,000.
A polyamide having a melting point of 50 ° C. or lower or a temperature of 50 ° C. or lower is preferably used, in which case the low molecular weight or low melting point polyamide may be the same as or different from the base fiber-forming polyamide. Further, when the fiber-forming polymer is polypropylene, it is preferable to use an olefin polymer having a lower molecular weight or a lower melting point than that as a metal ion transfer agent, preferably a molecular weight of about 300.
It is preferable to use an olefin polymer such as polypropylene, polyethylene, propylene-ethylene copolymer, or polybutene having a melting point of 0 or less or 50 ° C. or less.

【0023】繊維形成性重合体と親和性のある低分子量
または低融点重合体が金属イオン移行剤として適する理
由は明白ではないが、無機微粒子に保持された繊維内部
の金属イオンが低分子量または低融点重合体からなる比
較的ルーズな相を媒体として徐々に繊維表面に移行する
のではないかと推定される。
It is not clear why a low molecular weight or low melting point polymer having an affinity for the fiber-forming polymer is suitable as the metal ion transfer agent, but the metal ions inside the fiber retained by the inorganic fine particles have a low molecular weight or a low molecular weight. It is presumed that a relatively loose phase composed of a melting point polymer gradually migrates to the fiber surface in the medium.

【0024】金属イオン移行剤の使用割合は、ベースと
なる繊維形成性重合体の種類や金属イオン移行剤の種類
などに応じて種々異なり得るが、一般に、繊維形成性重
合体の重量に基づいて、0.5〜10重量%とするのが
好ましく、1〜6重量%がより好ましい。金属イオン移
行剤の使用量が0.5重量%よりも少ないと、繊維内部
の金属イオンに対する徐放効果を充分に発揮することが
困難になり、一方10重量%よりも多いと繊維化時の工
程性が低下して断糸や毛羽などが発生しやすくなり、ま
た得られる繊維の強度などの物性が低下する。
The proportion of the metal ion-transfer agent used may vary depending on the type of the fiber-forming polymer serving as the base and the type of the metal ion-transfer agent, but it is generally based on the weight of the fiber-forming polymer. , 0.5 to 10% by weight, and more preferably 1 to 6% by weight. If the amount of the metal ion transfer agent used is less than 0.5% by weight, it will be difficult to sufficiently exert the effect of sustained release of metal ions inside the fiber. The processability is deteriorated, yarn breakage and fluffing are likely to occur, and the physical properties such as strength of the obtained fiber are deteriorated.

【0025】抗菌性金属イオン保持無機微粒子および金
属イオン移行剤の繊維形成性重合体中への添加方法とし
ては、重合反応(重縮合反応)時におけるそれらの成分
の影響を考えると、重合(重縮合反応)が完了した後の
繊維形成性重合体に加えるのがよい。そのため、本発明
では、抗菌性金属イオン保持無機微粒子および金属イオ
ン移行剤を、繊維形成性重合体の重合(重縮合反応)直
後、重合済の繊維形成性重合体からペレットやチップを
製造するための溶融混練時、重合体粉末、ペレット、チ
ップなどを用いて紡糸を行う際に重合体が紡糸口金から
紡出されるまでの任意の段階などで添加する方法などを
採用できるが、それらのうちでも本発明においては紡糸
時に溶融重合体に添加することが好ましい。
As a method for adding the antibacterial metal ion-retaining inorganic fine particles and the metal ion transfer agent to the fiber-forming polymer, considering the influence of those components during the polymerization reaction (polycondensation reaction), the polymerization (polymerization It is preferable to add it to the fiber-forming polymer after the completion of the condensation reaction). Therefore, in the present invention, the antibacterial metal ion-retaining inorganic fine particles and the metal ion transfer agent are used to produce pellets and chips from the polymerized fiber-forming polymer immediately after the polymerization of the fiber-forming polymer (polycondensation reaction). During melt kneading, polymer powder, pellets, when performing spinning using chips, etc., a method of adding the polymer at any stage until spinning from the spinneret, etc. can be adopted. In the present invention, it is preferably added to the molten polymer during spinning.

【0026】抗菌性金属イオン保持無機微粒子と金属イ
オン移行剤は、各々個別に、同時にまたは逐次に繊維形
成性重合体中に添加してもよいが、抗菌性金属イオン保
持無機微粒子と金属イオン移行剤とを、例えば振動ミ
ル、パールミルなどの適当な混合分散装置を用いて予め
混合して両者が均一に混合されたスラリーを予め準備し
ておくことが好ましい。特に、金属移行剤として前記の
ポリエステルポリオールを使用する場合は、スラリーの
粘度は25℃で40000〜80000センチポイズと
なるように無機微粒子の添加量やポリエステルポリオー
ルの重合度などを選択することが好ましい。この範囲か
ら外れると、スラリーを繊維形成性ポリエステルに均一
に分散させにくくなって、紡糸安定性が悪くなる。ま
た、スラリーの水分率は0.15重量%以下、特に0.
1重量%以下にしておくことが、紡糸安定性および着色
防止の点から好ましい。
The antibacterial metal ion-retaining inorganic fine particles and the metal ion transfer agent may be added individually or simultaneously or sequentially to the fiber-forming polymer, but the antibacterial metal ion-retaining inorganic fine particles and the metal ion transfer agent may be added. It is preferable that the agent and the agent are mixed in advance by using an appropriate mixing and dispersing device such as a vibration mill or a pearl mill to prepare a slurry in which both are uniformly mixed. In particular, when the above polyester polyol is used as the metal transfer agent, it is preferable to select the addition amount of the inorganic fine particles and the degree of polymerization of the polyester polyol so that the viscosity of the slurry becomes 40,000 to 80,000 centipoise at 25 ° C. If it deviates from this range, it becomes difficult to uniformly disperse the slurry in the fiber-forming polyester, and spinning stability deteriorates. Further, the water content of the slurry is 0.15% by weight or less, and particularly, 0.1.
From the standpoint of spinning stability and prevention of coloration, it is preferably 1% by weight or less.

【0027】また、本発明では、上記した抗菌性金属イ
オン保持無機微粒子および金属イオン移行剤の他に、必
要に応じて有機重合体繊維に通常使用されている紫外線
吸収剤、酸化防止剤、滑剤、難燃剤、可塑剤、染顔料な
どの他の添加剤を使用してもよい。
Further, in the present invention, in addition to the above-mentioned antibacterial metal ion-retaining inorganic fine particles and metal ion transfer agent, an ultraviolet absorber, an antioxidant, and a lubricant which are usually used in organic polymer fibers are also used, if necessary. Other additives such as flame retardants, plasticizers, dyes and pigments may be used.

【0028】本発明の抗菌性繊維を得るための繊維化方
法や繊維化条件などは、繊維形成性重合体による従来公
知の繊維化方法のいずれもでもよく特に制限されない。
特に本発明では、熱可塑性の繊維形成性重合体を用いて
溶融紡糸により繊維を製造するのが好ましい。また本発
明の繊維には、捲縮、交絡、混繊、流体撹乱加工、染色
などの種々の加工を必要に応じて施すことができる。
The fiberizing method and fiberizing conditions for obtaining the antibacterial fiber of the present invention may be any conventionally known fiberizing method using a fiber-forming polymer and is not particularly limited.
Particularly in the present invention, it is preferable to produce fibers by melt spinning using a thermoplastic fiber-forming polymer. Further, the fiber of the present invention can be subjected to various processes such as crimping, entanglement, mixed fiber, fluid disturbance process, dyeing and the like, if necessary.

【0029】そして、本発明の抗菌性繊維は1種類の繊
維形成性重合体からなる単一の繊維であっても、または
2種以上の繊維形成性重合体を使用した複合繊維であっ
てもいずれでもよく、複合繊維の場合は芯鞘型、海島
型、貼合型、ランダム複合型などのいずれでもよい。複
合繊維の場合は、繊維に抗菌性を付与するために抗菌性
金属イオン保持無機微粒子を含有させた重合体層が多少
なりとも繊維表面に位置するようにする必要がある。ま
た、繊維の断面形状は、丸断面の他に、偏平断面、ドッ
グボーン断面、T型断面、V型断面、3〜6角形断面、
3〜14葉断面、中空断面などの異形断面など任意の断
面形状とすることができ、特に制限されない。
The antibacterial fiber of the present invention may be a single fiber composed of one kind of fiber-forming polymer, or a composite fiber using two or more kinds of fiber-forming polymer. Any of these may be used, and in the case of the composite fiber, any of a core-sheath type, a sea-island type, a laminating type, a random composite type and the like may be used. In the case of a composite fiber, it is necessary that the polymer layer containing the antibacterial metal ion-retaining inorganic fine particles is provided on the fiber surface to some extent in order to impart antibacterial property to the fiber. In addition to the round cross section, the cross-sectional shape of the fiber includes a flat cross section, a dogbone cross section, a T-shaped cross section, a V-shaped cross section, a 3 to 6 hexagonal cross section,
The cross-section may be any cross-sectional shape such as a 3- to 14-lobed cross section, a modified cross section such as a hollow cross section, and is not particularly limited.

【0030】また、本発明の抗菌性繊維は種々の菌類に
対して有効であり、例えば黒カビ、青カビ、枯草菌、緑
膿菌、大腸菌、腸炎ビブリオ菌、サルモネラ菌、白癬
菌、肺炎桿菌、MRSAなどに対して有効に使用するこ
とができる。本発明の抗菌性繊維の太さは特に制限され
ず、各々の用途に適した太さとすることができ、またフ
ィラメント状、ステープル状などの任意の形態にするこ
とができその形態は特に限定されない。更に、本発明の
抗菌性繊維からは、フィラメント糸、紡績糸、織編物や
不織布などの布帛類を製造することができ、それらは上
着、肌着、ネマキ、腹巻き、作業服、エプロンなどの衣
類、靴中敷、靴下、カーペット、モップ用糸、フトン、
フトンカバー、マクラカバー、ベッド、ベッドカバー、
毛布、シーツ、バスマット、タオル、キャビネットタオ
ル、テーブルクロス、カーテン、シャワーカーテン、ネ
ット、ドアノブカバー、壁紙、白衣、手術用縫糸、手術
衣、病衣、包帯、貼付剤基布、帽子、ガーゼ、マスク、
床擦れ防止マット、おむつカバー、紙おむつ、カルテ用
紙、スリッパ、ティッシュペーパー、ウエットティッシ
ュ、歯ブラシ、手袋、各種ワイパー、エアコンや空気清
浄器および浄水器等のフィルター、食品用容器などの種
々の製品に使用することができ、耐久性のある良好な抗
菌性をそれらの製品に付与することができる。
The antibacterial fiber of the present invention is effective against various fungi, for example, black mold, blue mold, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Vibrio parahaemolyticus, Salmonella, Trichophyton, Klebsiella pneumoniae, MRSA, etc. Can be used effectively against. The thickness of the antibacterial fiber of the present invention is not particularly limited, and may be a thickness suitable for each application, and may be any shape such as filament shape or staple shape, and its shape is not particularly limited. . Furthermore, from the antibacterial fiber of the present invention, filament yarn, spun yarn, woven and knitted fabrics, non-woven fabrics and the like can be produced, and these can be garments such as outerwear, underwear, nemaki, belly rolls, work clothes and aprons. , Insoles, socks, carpet, yarn for mops, futons,
Futon cover, macula cover, bed, bed cover,
Blankets, sheets, bath mats, towels, cabinet towels, table cloths, curtains, shower curtains, nets, doorknob covers, wallpaper, lab coats, surgical threads, surgical clothes, hospital clothes, bandages, patch base cloths, hats, gauze, masks. ,
Used for various products such as floor rub prevention mat, diaper cover, diaper, medical chart paper, slippers, tissue paper, wet tissue, toothbrush, gloves, various wipers, filters for air conditioners, air purifiers and water purifiers, food containers, etc. It is possible to give durable and good antibacterial properties to these products.

【0031】[0031]

【実施例】以下に実施例および比較例により本発明を具
体的に説明するが本発明はそれにより限定されない。以
下の実施例および比較例において、ポリエステルおよび
ポリエステルポリオールの極限粘度の測定、原綿および
それから得られた混紡織布の抗菌性の試験は下記のよう
にして行った。
EXAMPLES The present invention will be described in detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the following Examples and Comparative Examples, the intrinsic viscosity of polyesters and polyester polyols was measured, and the antibacterial properties of raw cotton and blended woven fabrics obtained therefrom were tested as follows.

【0032】極限粘度の測定 フェノールと四塩化エタン(1:1)の混合溶媒中、3
0℃で測定した。
The intrinsic viscosity measurement phenol and tetrachloroethane (1: 1) mixed solvent, 3
It was measured at 0 ° C.

【0033】原綿の抗菌性試験 実施例1または比較例1で得られたポリエステル繊維を
そのまま原綿として用いて、繊維製品衛生加工協議会で
定めたシェーク・フラスコ法に準拠して、試験菌として
肺炎桿菌を用いて、その減菌率を下記の数式1により求
めた。
Antibacterial property test of raw cotton Using the polyester fiber obtained in Example 1 or Comparative Example 1 as raw cotton as it is, in accordance with the shake flask method defined by the Textile Products Sanitation Council, pneumonia as a test bacterium Using bacilli, the sterilization rate was calculated by the following mathematical formula 1.

【0034】[0034]

【数1】 減菌率(%)={(N0−N1)/N0}×100 式中、N0=原綿に施した肺炎桿菌の数 N1=抗菌性試験終了時に原綿中で生存していた肺炎桿
菌の数
[Equation 1] Sterilization rate (%) = {(N 0 −N 1 ) / N 0 } × 100 In the formula, N 0 = the number of Klebsiella pneumoniae applied to the raw cotton N 1 = in the raw cotton at the end of the antibacterial test Number of surviving Klebsiella pneumoniae

【0035】混紡織布の抗菌性試験 各実施例または比較例で得られたポリエステル繊維の混
紡織布の染色を2浴染め(分散/反応)として下記の表
1に示した条件にて染色処理後、水洗して染色布を得
た。
Antibacterial property test of mixed-spun woven fabrics The mixed-spun woven fabrics of polyester fibers obtained in the respective examples or comparative examples are dyed under the conditions shown in the following Table 1 by two-bath dyeing (dispersion / reaction). Then, it was washed with water to obtain a dyed cloth.

【0036】[0036]

【表1】 染 色 条 件 1.分散染料染色(ポリエステル側) C.I.Disperse Red 88 還元洗浄 NaOH 1g/リットル 130℃で60分 Na224 1g/リットル 2.反応性染料染色(綿側) C.I.Reactive Red 223 2% Na2SO4 50g/リットル Na2CO3 10g/リットル 60℃で60分 [Table 1] Dyeing conditions 1. Disperse dye dyeing (polyester side) CIDisperse Red 88 Reduction cleaning NaOH 1 g / l 60 minutes at 130 ° C Na 2 S 2 O 4 1 g / l 2. Reactive dye dyeing (cotton side) CIReactive Red 223 2% Na 2 SO 4 50 g / l Na 2 CO 3 10 g / l 60 ° C. for 60 minutes

【0037】上記で得た染色布を縦50cm、横30c
mの大きさに裁断して、温度40℃の水40リットルを
入れた洗濯機に投入して、中性洗剤80gを加えて、5
分間洗濯した後、すすぎを3回行い、脱水後乾燥した。
この洗濯操作を10回繰り返した後、布帛の抗菌性試験
を原綿の場合と同様に行って、上記数式1によりその減
菌率を求めた。
The dyed cloth obtained above is 50 cm long and 30 c wide.
Cut into m size, put in a washing machine containing 40 liters of water at a temperature of 40 ° C., add 80 g of neutral detergent, and add 5
After washing for 3 minutes, rinsing was performed 3 times, dehydration and drying.
After repeating this washing operation 10 times, the antibacterial property test of the cloth was conducted in the same manner as in the case of the raw cotton, and the sterilization rate was obtained by the above-mentioned formula 1.

【0038】《実施例 1》 (1) ゼオライトを銀と亜鉛の混合イオン(重量で
銀:亜鉛=5:14)でイオン交換した後(イオン交換
率92%)に平均粒径1.6μに微粉砕してゼオライト
粒子を得た。これを500℃で乾燥して抗菌性金属イオ
ン保持無機微粒子として用いた。 (2)アジピン酸とジエチレングリコールを反応させ
て、分子量2500のポリエステルポリオール[粘度8
50センチポイズ(75℃)]を製造し、これを金属イ
オン移行剤として用いた。 (3) 上記(2)で製造した金属イオン移行剤65重
量部と上記(1)で製造した抗菌性金属イオン保持無機
微粒子35重量部を温度60〜70℃で均一に混合して
両者の混合物スラリーを調製した。この混合物スラリー
の粘度は25℃で47000センチポイズであった。
Example 1 (1) After the zeolite was ion-exchanged with a mixed ion of silver and zinc (silver: zinc = 5: 14 by weight) (ion exchange rate 92%), the average particle size was changed to 1.6 μm. Finely pulverized to obtain zeolite particles. This was dried at 500 ° C. and used as antibacterial metal ion-retaining inorganic fine particles. (2) By reacting adipic acid and diethylene glycol, a polyester polyol having a molecular weight of 2500 [viscosity 8
50 centipoise (75 ° C.)] was prepared and used as a metal ion transfer agent. (3) 65 parts by weight of the metal ion transfer agent produced in (2) above and 35 parts by weight of the antibacterial metal ion-retaining inorganic fine particles produced in (1) above are uniformly mixed at a temperature of 60 to 70 ° C. to obtain a mixture of both. A slurry was prepared. The viscosity of this mixture slurry was 47,000 centipoise at 25 ° C.

【0039】(4) テレフタル酸100重量部、エチ
レングリコール60重量部、三酸化アンチモン0.04
重量部および平均粒径0.5μの二酸化チタン2重量部
をエステル化反応槽に仕込み、160℃から240℃ま
で徐々に昇温度しながらエステル化反応を行い、その後
重縮合反応槽で減圧下に280℃まで昇温して重縮合反
応を行わせて、極限粘度[η]0.75のポリエステル
を製造した。 (5) 上記(4)で製造したポリエステルを用いて溶
融紡糸する際に、ポリエステルの計量装置と紡糸口金と
の間のラインに添加剤仕込みラインを設けて、その添加
剤仕込みラインから上記(3)で調製した抗菌性金属イ
オン保持無機微粒子と金属イオン移行剤との混合物をポ
リエステル中の抗菌性金属イオン保持無機微粒子の含有
量が2重量%になるように添加し、紡糸温度280℃、
引取速度1000m/分で紡糸した。得られたポリエス
テルトウを常法にしたがって延伸、捲縮、熱処理、切断
して、単繊維繊度1.4デニール、長さ38mmの原綿
を得た。この原綿の抗菌性を上記した方法で調べたとこ
ろ下記の表2に示すとおりであった。
(4) 100 parts by weight of terephthalic acid, 60 parts by weight of ethylene glycol, 0.04 antimony trioxide
Parts by weight and 2 parts by weight of titanium dioxide having an average particle size of 0.5μ are charged into an esterification reaction tank, the esterification reaction is performed while gradually increasing the temperature from 160 ° C to 240 ° C, and then under reduced pressure in the polycondensation reaction tank. The temperature was raised to 280 ° C. to cause a polycondensation reaction to produce a polyester having an intrinsic viscosity [η] of 0.75. (5) When melt-spinning using the polyester produced in the above (4), an additive charging line is provided between the polyester measuring device and the spinneret, and the additive charging line is used to feed the additive to the above (3). The mixture of the antibacterial metal ion-retaining inorganic fine particles and the metal ion transfer agent prepared in 1) is added so that the content of the antibacterial metal ion-retaining inorganic fine particles in the polyester is 2% by weight, and the spinning temperature is 280 ° C.
Spinning was performed at a take-up speed of 1000 m / min. The obtained polyester tow was stretched, crimped, heat-treated and cut by a conventional method to obtain a raw cotton having a single fiber fineness of 1.4 denier and a length of 38 mm. When the antibacterial property of this raw cotton was examined by the above-mentioned method, it was as shown in Table 2 below.

【0040】《実施例 2》実施例1の(5)で得られ
たポリエステル原綿と綿とを2:8の重量割合で混紡し
て常法により混紡糸を製造し、この混紡糸をタテ糸およ
びヨコ糸として用いて、平織布を作製した。染色+10
回の洗濯後、この織布の抗菌性を上記した方法により調
べたところ、表2に示す結果を得た。
Example 2 The polyester raw cotton obtained in (5) of Example 1 and cotton were mixed and spun at a weight ratio of 2: 8 to produce a mixed yarn by a conventional method, and this mixed yarn is a warp yarn. A plain woven fabric was produced by using the fabric and the weft. Dyeing +10
After repeated washing, the antibacterial property of this woven fabric was examined by the method described above, and the results shown in Table 2 were obtained.

【0041】《実施例 3》実施例1の(5)で得られ
たポリエステル原綿と綿とを4:6の重量割合で混紡し
て常法により混紡糸を製造し、この混紡糸をタテ糸およ
びヨコ糸として用いて、平織布を作製した。染色+10
回の洗濯後、この織布の抗菌性を上記した方法により調
べたところ、表2に示す結果を得た。
Example 3 The polyester raw cotton obtained in (5) of Example 1 and cotton were mixed and spun at a weight ratio of 4: 6 to produce a mixed yarn by a conventional method, and this mixed yarn is a warp yarn. A plain woven fabric was produced by using the fabric and the weft. Dyeing +10
After repeated washing, the antibacterial property of this woven fabric was examined by the method described above, and the results shown in Table 2 were obtained.

【0042】《比較例 1》実施例1の(4)で製造し
たポリエステルを用いて溶融紡糸する際に、ポリエステ
ルの計量装置と紡糸口金との間のラインに設けた添加剤
仕込みラインから、実施例1の(1)で製造した抗菌性
金属イオン保持無機微粒子を単独(金属イオン移行剤な
し)でポリエステル中の抗菌性金属イオン保持無機微粒
子の含有量が2重量%になるように添加し、それ以外は
実施例1の(5)と同様にして単繊維繊度1.4デニー
ル、長さ38mmの原綿を製造した。この原綿の抗菌性
を上記した方法で調べたところ下記の表2に示すとおり
であった。
Comparative Example 1 When melt spinning was carried out using the polyester produced in (4) of Example 1, it was carried out from the additive preparation line provided between the polyester measuring device and the spinneret. The antibacterial metal ion-retaining inorganic fine particles produced in (1) of Example 1 was added alone (without a metal ion transfer agent) so that the content of the antibacterial metal ion-retaining inorganic fine particles in the polyester was 2% by weight, Otherwise in the same manner as in (5) of Example 1, a raw cotton having a single fiber fineness of 1.4 denier and a length of 38 mm was produced. When the antibacterial property of this raw cotton was examined by the above-mentioned method, it was as shown in Table 2 below.

【0043】《比較例 2》比較例1で得られたポリエ
ステル原綿と綿とを2:8の重量割合で混紡して常法に
より混紡糸を製造し、この混紡糸をタテ糸およびヨコ糸
として用いて、平織布を作製した。染色+10回の洗濯
後、この織布の抗菌性を上記した方法により調べたとこ
ろ、表2に示す結果を得た。
Comparative Example 2 The polyester raw cotton obtained in Comparative Example 1 and cotton were mixed and spun at a weight ratio of 2: 8 to produce a mixed yarn by a conventional method, and this mixed yarn was used as a warp yarn and a weft yarn. A plain weave fabric was produced using After the dyeing + 10 times of washing, the antibacterial property of this woven fabric was examined by the above-mentioned method, and the results shown in Table 2 were obtained.

【0044】《比較例 3》比較例1で得られたポリエ
ステル原綿と綿とを4:6の重量割合で混紡して常法に
より混紡糸を製造し、この混紡糸をタテ糸およびヨコ糸
として用いて、平織布を作製した。染色+10回の洗濯
後、この織布の抗菌性を上記した方法により調べたとこ
ろ、表2に示す結果を得た。
Comparative Example 3 The polyester raw cotton obtained in Comparative Example 1 and cotton were mixed and spun at a weight ratio of 4: 6 to produce a mixed yarn by a conventional method, and this mixed yarn was used as a warp yarn and a weft yarn. A plain weave fabric was produced using After the dyeing + 10 times of washing, the antibacterial property of this woven fabric was examined by the above-mentioned method, and the results shown in Table 2 were obtained.

【0045】[0045]

【表2】 [Table 2]

【0046】上記表2の実施例1〜3の結果から、抗菌
性金属イオン保持無機微粒子と共に金属イオン移行剤を
使用した場合には、繊維の当初の抗菌性が高く、しかも
染色や洗濯などの後処理などを経た場合にもその抗菌性
が長期間に亙って良好に維持されて抗菌剤の優れた徐放
効果が奏されることがわかる。それに対して、比較例1
〜3の結果から、金属イオン移行剤を使用しない比較例
1〜3の場合は当初の抗菌性も実施例1に比べて低く、
しかも抗菌性は染色や洗濯などの後処理を経ると大幅に
低下することがわかる。
From the results of Examples 1 to 3 in Table 2 above, when the metal ion transfer agent was used together with the antibacterial metal ion-retaining inorganic fine particles, the initial antibacterial property of the fiber was high, and further, the dyeing or washing was not performed. It can be seen that the antibacterial property is maintained well over a long period of time even after post-treatment and the like, and an excellent sustained release effect of the antibacterial agent is exhibited. On the other hand, Comparative Example 1
From the results of 3 to 3, in the case of Comparative Examples 1 to 3 in which the metal ion transfer agent is not used, the initial antibacterial property is lower than that of Example 1,
Moreover, it can be seen that the antibacterial property is significantly reduced after post-treatment such as dyeing and washing.

【0047】[0047]

【発明の効果】抗菌性金属イオン保持無機微粒子と共に
金属イオン移行剤を用いている本発明の抗菌性繊維およ
びそれから得られた繊維製品は、当初の抗菌性性が高
く、しかも染色などの後処理、洗濯、着用や使用などを
経てもその抗菌性が直ちに失われることがなく、抗菌性
金属イオンを繊維の内部から表面部分に徐々に移行し
て、長期間に亙って耐久性のある高い抗菌性を維持する
ことができる。
INDUSTRIAL APPLICABILITY The antibacterial fiber of the present invention which uses a metal ion transfer agent together with the antibacterial metal ion-retaining inorganic fine particles and the fiber product obtained therefrom have high initial antibacterial properties and further have a post-treatment such as dyeing. It does not lose its antibacterial properties immediately after being washed, worn, used, etc., and gradually transfers antibacterial metal ions from the inside of the fiber to the surface part, which is highly durable over a long period of time. The antibacterial property can be maintained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 俊一 岡山県倉敷市玉島乙島7471番地 株式会社 クラレ内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shunichi Hasegawa 7471 Tamashima Otoshima, Kurashiki City, Okayama Prefecture Kuraray Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 抗菌作用を有する金属イオンを保持させ
た無機微粒子および金属イオン移行剤を含有する繊維形
成性重合体を用いて形成されていることを特徴とする抗
菌性繊維。
1. An antibacterial fiber, which is formed by using a fiber-forming polymer containing inorganic fine particles retaining metal ions having an antibacterial action and a metal ion transfer agent.
【請求項2】 重合完了後の繊維形成性有機重合体中
に、該重合体が紡糸口金から紡出されるまでの任意の段
階で、金属イオンを保持させた無機微粒子および金属イ
オン移行剤を混合して紡出を行うことを特徴とする抗菌
性繊維の製造方法。
2. The fiber-forming organic polymer after the completion of the polymerization is mixed with the inorganic fine particles retaining the metal ion and the metal ion transfer agent at any stage until the polymer is spun from the spinneret. A method for producing an antibacterial fiber, characterized by comprising spinning.
【請求項3】 請求項1の抗菌性繊維から製造された繊
維製品。
3. A fiber product produced from the antibacterial fiber of claim 1.
JP3928494A 1993-02-25 1994-02-15 Antimicrobial fiber and method for producing the same Expired - Lifetime JP2945264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3928494A JP2945264B2 (en) 1993-02-25 1994-02-15 Antimicrobial fiber and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5928393 1993-02-25
JP5-59283 1993-02-25
JP3928494A JP2945264B2 (en) 1993-02-25 1994-02-15 Antimicrobial fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06306705A true JPH06306705A (en) 1994-11-01
JP2945264B2 JP2945264B2 (en) 1999-09-06

Family

ID=26378620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3928494A Expired - Lifetime JP2945264B2 (en) 1993-02-25 1994-02-15 Antimicrobial fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2945264B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190197A (en) * 2002-12-13 2004-07-08 Teijin Fibers Ltd Antibacterial fiber and antibacterial fiber product
KR100481358B1 (en) * 2002-11-25 2005-04-07 주식회사 효성 A multifunctional polyester fiber and its manufacturing process
KR100452250B1 (en) * 1995-03-27 2005-06-27 니혼에뽁끄 가부시끼가이샤 Textile Products Containing Superconducting Materials
CN104389038A (en) * 2014-11-04 2015-03-04 佛山市优特医疗科技有限公司 Antibacterial fiber as well as product and preparation method thereof
CN105696354A (en) * 2016-02-04 2016-06-22 宁波格兰家居用品有限公司 Post-treatment method for silver-plated textile fabrics
CN114808170A (en) * 2021-01-28 2022-07-29 中国科学院上海硅酸盐研究所 Light-color fiber with sterilization and heat storage functions, preparation method thereof and fiber product
CN115044991A (en) * 2022-06-24 2022-09-13 狮丹努集团股份有限公司 Preparation method of zinc ion antibacterial fine denier polyester yarn and polyester yarn

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452250B1 (en) * 1995-03-27 2005-06-27 니혼에뽁끄 가부시끼가이샤 Textile Products Containing Superconducting Materials
KR100481358B1 (en) * 2002-11-25 2005-04-07 주식회사 효성 A multifunctional polyester fiber and its manufacturing process
JP2004190197A (en) * 2002-12-13 2004-07-08 Teijin Fibers Ltd Antibacterial fiber and antibacterial fiber product
CN104389038A (en) * 2014-11-04 2015-03-04 佛山市优特医疗科技有限公司 Antibacterial fiber as well as product and preparation method thereof
CN105696354A (en) * 2016-02-04 2016-06-22 宁波格兰家居用品有限公司 Post-treatment method for silver-plated textile fabrics
CN114808170A (en) * 2021-01-28 2022-07-29 中国科学院上海硅酸盐研究所 Light-color fiber with sterilization and heat storage functions, preparation method thereof and fiber product
CN114808170B (en) * 2021-01-28 2024-04-12 中国科学院上海硅酸盐研究所 Light-colored sterilization heat storage functional fiber, preparation method thereof and fiber product
CN115044991A (en) * 2022-06-24 2022-09-13 狮丹努集团股份有限公司 Preparation method of zinc ion antibacterial fine denier polyester yarn and polyester yarn

Also Published As

Publication number Publication date
JP2945264B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
US6841244B2 (en) Anti-microbial fiber and fibrous products
JP2014505801A (en) Fiber with improved antibacterial performance
US20070243380A1 (en) Anti-Microbial Fibres and Their Production
JP2004513246A (en) Yarns and fabrics having a wash-resistant and non-conductive topically applied metal-based finish
DE102005031711A1 (en) Antimicrobial textile material containing metallic silver nano-particles, used for production of, e.g. underwear, towels, cleaning cloths, awnings, bandages and work clothing for medicine or the food industry
JPH09132869A (en) Antimicrobial fiber and fiber product using the fiber
JPH11124729A (en) Antimicrobial fiber and its production
JP2004530055A (en) Bioactive fiber products
JP2945264B2 (en) Antimicrobial fiber and method for producing the same
US6528162B1 (en) Acrylic synthetic fiber, use thereof, and process for producing acrylic synthetic fiber
JP3606638B2 (en) Antibacterial textile product and method for producing the same
JP3392554B2 (en) Antibacterial fibrous material
JP2006241627A (en) Antibacterial fiber, method for producing the same and antibacterial textile product
JPH0913225A (en) Sheath-core type deodorant and antimicrobial conjugate fiber
DE69722058T2 (en) Absorbent fiber and fabric for acidic or basic gases
JPH01246204A (en) Antimicrobial formed products and their production
JPH0816284B2 (en) Modified polyurethane elastic fiber
JPH09157978A (en) Textile product comprising deodorizing/antimicrobial acrylic synthetic fiber
JP2944236B2 (en) Antibacterial antifungal deodorant nonwoven fabric with hydrophilicity
JP3401076B2 (en) Manufacturing method of antibacterial fiber
JPH0533265A (en) Antibacterial and antifungal deodorant staple fiber having hydrophilic nature
JP3048431B2 (en) Method for producing antibacterial antifungal deodorant long fiber and method for producing antibacterial antifungal deodorant long fiber nonwoven fabric
JPH02169740A (en) Bacteriostatic deodorizing cloth
JP2905629B2 (en) Deodorant and deodorant fiber
JPH06235116A (en) Antimicrobial fiber and web

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 15

EXPY Cancellation because of completion of term