JP3606638B2 - Antibacterial textile product and method for producing the same - Google Patents

Antibacterial textile product and method for producing the same Download PDF

Info

Publication number
JP3606638B2
JP3606638B2 JP15759595A JP15759595A JP3606638B2 JP 3606638 B2 JP3606638 B2 JP 3606638B2 JP 15759595 A JP15759595 A JP 15759595A JP 15759595 A JP15759595 A JP 15759595A JP 3606638 B2 JP3606638 B2 JP 3606638B2
Authority
JP
Japan
Prior art keywords
antibacterial
fine powder
fiber product
resin binder
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15759595A
Other languages
Japanese (ja)
Other versions
JPH0913279A (en
Inventor
眞志 内田
靖夫 栗原
一郎 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinanen Zeomic Co Ltd
Original Assignee
Sinanen Zeomic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinanen Zeomic Co Ltd filed Critical Sinanen Zeomic Co Ltd
Priority to JP15759595A priority Critical patent/JP3606638B2/en
Publication of JPH0913279A publication Critical patent/JPH0913279A/en
Application granted granted Critical
Publication of JP3606638B2 publication Critical patent/JP3606638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は洗濯耐久性、手感触性に優れた抗菌効果を有する繊維製品およびその製造方法に関するものである。
【従来の技術】
従来より繊維製品に抗菌性を付与する加工方法が種々開発され、実用化されている。例えば、抗菌物質として、第4級アンモニウム塩やジフェニルエーテル系化合物を繊維に含浸加工させたものがある。しかしこれらの化合物はいずれも有機物質であり、熱や洗濯に対しては耐久性が弱いという欠点があった。また銀ゼオライト等をアクリル、ポリエステル、ナイロン、アセテート等の合成樹脂に練り込み繊維化したものも提案されている。このような製品の洗濯耐久性は良好である。しかし適用できる繊維素材は合成繊維または半合成繊維であり、風合の良い天然繊維には適用できないことや、繊維を紡績し、織布に加工する工程で種々の化学品を使用するために抗菌成分が脱離する等の問題があった。
【0002】
【発明が解決しようとする課題】
本発明の目的は、抗菌性を有する繊維製品および天然繊維素材の持つ手感触性を損うことなく素材に抗菌性を付与する方法を提供することである。
【課題を解決するための手段】
本発明は、表面に抗菌剤微粒子分散層を設けたことを特徴とする抗菌性繊維製品を提供するものである。
本発明の上記抗菌性繊維製品は、例えば、抗菌剤微粉末と自己架橋型樹脂バインダーとを配合してなる混合溶液を繊維製品表面に塗布し、該繊維表面に抗菌剤微粒子が分散した層を設けることにより製造される。好ましくは、抗菌剤微粉末と自己架橋型樹脂バインダーとを配合してなる混合溶液を繊維製品表面に塗布した後、95℃以下の温度で熱処理する。好ましくは、抗菌剤微粉末の最大粒子は10μm以下である。
【0003】
本発明に使用される繊維素材としては、木綿、亜麻、黄麻等の植物繊維、羊毛、モヘア、アンゴラ、カシミア、絹等の動物繊維など天然繊維素材が好ましい。しかし合成繊維や半合成繊維も同様に使用できる。例えば、ポリアミド、ポリビニルアルコール、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリエステル、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ポリウレタン、ポリフルオロエチレン、ポリアルキレンパラオキシベンゾエート、ポリフェノール、ポリクラール等の合成繊維、アセテート、プロミックス等の半合成繊維を挙げることができる。使用可能な繊維形態としては織物、編物、不織布、糸、バラ毛、スライバー等のいずれのものも挙げられる。
【0004】
本発明に使用される抗菌剤は、固体、液体又は気体状の抗菌性成分を無機微粉体に担持させることにより調製される。抗菌性成分としては、例えば、銀、亜鉛、銅、水銀、鉛、すず、ビスマス、カドミウム、タリウム等の金属のイオンやその化合物;安定化塩素、次亜塩素酸、クロラミン、ヨウ化エチレン等のハロゲン化合物;アルコール類、フェノール類、エーテル類、グアニジン類、チアゾール類、第四級アンモニウム塩類、チオカーバメイト類等を挙げることができる。また無機微粉体としては結晶性アルミノケイ酸塩(以下ゼオライトという)、無定形アルミノケイ酸塩(以下AASという)、含水酸化チタン等の含水酸化物、シリカゲル、チタン酸バリウム等の層間化合物、活性アルミナ、けいそう土、活性炭等を挙げることができる。但し、抗菌性能が高く少量で効果があり、持続性や人体に対する安全性が高い点から、ゼオライト、AAS、含水酸化チタン等の含水酸化物の微粉体に銀または銀イオンを担持させたものが好ましい。なおAASの製造方法としては例えば、特開昭61−174111号等に記載の方法が挙げられる。
【0005】
抗菌剤に含まれる銀の含有率は、1〜30重量%とすることが抗菌性能の持続性の点より好ましい。
本発明に用いる抗菌剤は、樹脂バインダーへの分散性が良く、塗布加工面が平滑で手触り感を損わない点より、最大粒子径が10μm以下、好ましくは5μm以下のものが適当である。
本発明に用いる自己架橋型樹脂バインダーとしては、例えばポリウレタン、ポリアミノ酸塩、アクリル酸エステル樹脂、ポリビニルアルコール、グリオキザール系樹脂、シリコーン樹脂、エポキシ樹脂、アセタール系樹脂、ゴム系樹脂等を主成分とするものが挙げられる。これらのうちポリウレタン、ポリアミノ酸塩、アクリル酸エステル樹脂のうち少なくとも1種の樹脂を配合したものが、塗布加工した表面が平滑さを保ち、すぐれた手触り感を有する点より好ましい。
本発明において抗菌剤微粉末と自己架橋型樹脂バインダーの混合液にさらに風合を調整する目的で柔軟剤を加えることもできる。柔軟剤としては、例えばエポキシ変性シリコーンオイルエマルジョンやアミノ変性シリコーンオイルエマルジョンを挙げることができる。抗菌剤微粉末の添加量は、樹脂バインダーに対して1〜20重量%が適当である。
【0006】
本発明の抗菌性繊維製品を製造するには、まず、抗菌剤微粉末と自己架橋型樹脂バインダーとを混合する。抗菌剤微粉末と自己架橋型樹脂バインダーとの混合比(重量比)は、固形分で1:20〜10:1、好ましくは1:5〜1:1が適当である。抗菌剤微粉末と自己架橋型樹脂バインダーは、抗菌剤微粉末がバインダー中に充分に分散されるように混合することが必要である。従って、混合には、サンドミル、ロールミル、ボールミル等の液状試料の分散機器を使用することが好ましい。特にハイスピードディスパーザと呼ばれる高速分散攪拌機が抗菌剤微粉末の凝集を起こさない点で好ましい。
抗菌剤微粉末と自己架橋型樹脂バインダーの混合溶液を繊維製品に塗布する方法は、繊維製品が布であるか糸であるかにより異なる。繊維布に塗布加工する方法は、噴霧スプレーノズル、グラビアコータ、キャストコーティング、ブレードコータ等の繊維布樹脂塗布加工機器を使用して行うのが好ましい。また繊維糸に加工する方法としては、繊維を紡績加工する際に糸ゲージにそってバインダーを糸表面に塗布する方法が簡便である。
繊維製品に適用する抗菌剤微粉末の塗布量は、繊維布で0.01〜1g/m、繊維糸で0.02〜5重量%が抗菌性の耐久性の点より好ましい。
【0007】
抗菌剤微粉末と自己架橋型樹脂バインダーの混合液を繊維製品に塗布した後、95℃以下の温度で熱処理して、バインダー成分を完全にキュアリングさせる。加熱温度が95℃よりも高いとキュアリングが急激に進み、手触り感の劣化を生じるので、95℃以下、より好ましくは65℃以下で処理することが望ましい。加熱時間は15〜120分が適当である。
本発明の抗菌性繊維製品の具体例としては、衣料分野としてソックス、アンダーウエア、ブラウス、背広、ネクタイ等、寝装分野としてシーツ、ピロケース、ふとんカバー等、インテリア分野としてカーテン、テーブルクロス、ランチョンマット、イスカバー、その他ハンカチ、タオル、手袋、スリッパ、帽子等が挙げられるが、本発明はこれらに限定されるものではない。
【0008】
【発明の効果】
本発明の抗菌性繊維製品は、洗濯耐久性が良好で、天然繊維素材の持つ独特の手触り感が保持されている。また、本発明により抗菌性を付与した繊維製品は、紡績・織布に加工する工程や、洗濯、漂白等の処理の際に種々の化学品を使用しても、抗菌性成分が脱離するなどの問題がない。
【0009】
【実施例】
以下実施例および参考例により本発明を更に詳しく説明する。
参考例1(抗菌性アルミノケイ酸塩の調製)
110℃で2時間加熱乾燥したA型ゼオライト微粉末(NaO・Al・1.9 SiO、最大粒子径9.0μm)、Y型ゼオライト微粉末(NaO・Al・2.5 SiO、最大粒子径4.0μm)、及び特開昭61−174111号に従って合成した無定形アルミノケイ酸塩微粉末(0.9 NaO・Al・2.4 SiO、最大粒子径4.5μm)に水を加えて1.3リットルのスラリーとし、その後攪拌して脱気し、さらに適量の0.5N硝酸溶液と水を加えてpHを5.8〜7.0に調整し全容1.8リットルとした。次にイオン交換のために抗菌性金属イオンを含む混合水溶液を加えて全容4.8リットルとし、このスラリーを25〜48℃で24時間攪拌し、平衡状態に到達させた。イオン交換のための溶液として硝酸銀、硝酸亜鉛、硝酸アンモニウムの各水溶液を用いた。イオン交換終了後、アルミノケイ酸塩相を濾過し、温水にてアルミノケイ酸塩相中の過剰の銀、亜鉛、アンモニウムイオンがなくなるまで洗浄した。次に試料を110℃で2時間加熱し、乾燥、粉砕し、抗菌性アルミノケイ酸塩微粉末を得た。得られた試料のデータを表1に示す。
【0010】
参考例2(抗菌性酸化チタンの調製)
市販の含水酸化チタン(最大粒径8.0μm)1kgに参考例1で使用した銀、亜鉛、アンモニウムイオンを含む混合水溶液2リットルを加え、室温にて48時間攪拌した。イオン交換終了後、濾過し、温水にて過剰の銀、亜鉛、アンモニウムイオンがなくなるまで洗浄した。次に試料を100℃で2時間加熱し、乾燥、粉砕し、抗菌性酸化チタン微粉末を得た。得られた試料のデータを表1に示す。
【0011】
実施例及び比較例(繊維製品の加工)
参考例1および2で得られた抗菌剤微粉末100重量部及び自己架橋型アクリル酸エステル樹脂(固形分30重量%、粘度180cps(18℃))100重量部と水800重量部を配合し、ハイスピードディスパーザで10分間高速分散攪拌した。これをスプレー機にて基布(木綿100%、目付30g/m平織布)に所定量塗布加工した。その後60〜85℃で30〜60分間熱処理した。得られた加工布について添着した抗菌剤微粉末の量等を分析した。結果を表2に示す。
実施例で用いた自己架橋型アクリル酸エステル樹脂に変えて、グリオキザール樹脂(スミテックスレジンNS−19(住友化学工業製))を用いて同様に塗布し、キュアリング温度110℃、30分間で処理し、比較例の加工布を作成し、同様に抗菌剤微粉末の量等を分析した。結果を表2に示す。
【0012】
試験例1(手触り性・抗菌性試験)
実施例と比較例で得られた加工布について手触り性を評価した。評価方法は実験者10名が未加工の基布と加工布の両者を下記の基準で判定した。良と回答した人数を表3に示す。比較例1〜3に示すように、加熱温度が高過ぎると、手触り・風合いが劣化することがわかる。
(手触り性評価基準)
良 :基布と比べて同等の手触り・風合を有する
やや良:基布と比べてやや手触り・風合が異なる
不良 :基布と比べてゴアゴアした感触があり、風合が異なる
また加工布について5cm×5cmの大きさに切り取り、これに大腸菌と表皮ブドウ球菌の菌液(10個/ml)0.5mlをふりかけ、37℃で6時間培養した。培養後、菌液を滅菌済みリン酸緩衝液で洗い出し、この液中の生菌数を測定した。結果を表3に示す。加熱温度によって抗菌性が変化することはなかった。
【0013】
試験例2(洗濯性・耐薬品性試験)
実施例と比較例で得られた加工布について洗濯や漂白剤に対する耐久性を評価した。洗濯性についてはJIS・L・217による103法で20回洗濯した後試験例1の大腸菌による抗菌性試験を行った。耐薬品性については市販の酸素系漂白剤(粒状物の5重量%水溶液)と塩素系漂白剤(原液)に室温で24時間浸漬後、1回洗濯し、試験例1の大腸菌による抗菌性試験を行った。結果を表4に示す。高温で加熱処理した比較例1〜3では、洗濯後の抗菌性が大幅に低下してしまうことがわかる。
【0014】
【表1】

Figure 0003606638
【0015】
【表2】
Figure 0003606638
【0016】
【表3】
Figure 0003606638
【0017】
【表4】
Figure 0003606638
[0001]
[Industrial application fields]
The present invention relates to a textile product having an antibacterial effect excellent in washing durability and hand touch and a method for producing the same.
[Prior art]
Various processing methods for imparting antibacterial properties to textile products have been developed and put into practical use. For example, antibacterial substances include those obtained by impregnating fibers with quaternary ammonium salts or diphenyl ether compounds. However, all of these compounds are organic substances and have a drawback that they are not durable against heat and washing. Also proposed is a material obtained by kneading silver zeolite or the like into a synthetic resin such as acrylic, polyester, nylon, or acetate to form a fiber. Such products have good washing durability. However, applicable fiber materials are synthetic fibers or semi-synthetic fibers, which cannot be applied to natural fibers with a good texture, and are antibacterial due to the use of various chemicals in the process of spinning fibers and processing them into woven fabrics. There were problems such as desorption of components.
[0002]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for imparting antibacterial properties to a material without impairing the hand feel of the fiber product and natural fiber material having antibacterial properties.
[Means for Solving the Problems]
The present invention provides an antibacterial fiber product characterized in that an antibacterial fine particle dispersion layer is provided on the surface.
The antibacterial fiber product of the present invention comprises, for example, a mixed solution obtained by blending antibacterial agent fine powder and a self-crosslinking resin binder on the fiber product surface, and a layer in which the antibacterial agent fine particles are dispersed on the fiber surface. Produced by providing. Preferably, a mixed solution obtained by blending the antibacterial agent fine powder and the self-crosslinking resin binder is applied to the surface of the fiber product and then heat-treated at a temperature of 95 ° C. or lower. Preferably, the maximum particle of the antibacterial agent fine powder is 10 μm or less.
[0003]
As the fiber material used in the present invention, natural fiber materials such as plant fibers such as cotton, flax and jute, and animal fibers such as wool, mohair, Angola, cashmere and silk are preferable. However, synthetic fibers and semi-synthetic fibers can be used as well. For example, synthetic fibers such as polyamide, polyvinyl alcohol, polyvinylidene chloride, polyvinyl chloride, polyester, polyacrylonitrile, polyethylene, polypropylene, polyurethane, polyfluoroethylene, polyalkylene paraoxybenzoate, polyphenol, polyclar, acetate, promix, etc. Mention may be made of synthetic fibers. Usable fiber forms include woven fabrics, knitted fabrics, non-woven fabrics, yarns, loose hairs, slivers and the like.
[0004]
The antibacterial agent used in the present invention is prepared by supporting a solid, liquid or gaseous antibacterial component on an inorganic fine powder. Antibacterial components include, for example, metal ions such as silver, zinc, copper, mercury, lead, tin, bismuth, cadmium, thallium and their compounds; stabilized chlorine, hypochlorous acid, chloramine, ethylene iodide, etc. Halogen compounds; alcohols, phenols, ethers, guanidines, thiazoles, quaternary ammonium salts, thiocarbamates and the like can be mentioned. Inorganic fine powders include crystalline aluminosilicate (hereinafter referred to as zeolite), amorphous aluminosilicate (hereinafter referred to as AAS), hydrous oxide such as hydrous titanium oxide, silica gel, intercalation compounds such as barium titanate, activated alumina, Examples thereof include diatomaceous earth and activated carbon. However, since antibacterial performance is high and effective in a small amount, and sustainability and safety to the human body are high, fine particles of hydrous oxides such as zeolite, AAS, hydrous titanium oxide, etc. are supported with silver or silver ions. preferable. In addition, as a manufacturing method of AAS, the method as described in Unexamined-Japanese-Patent No. 61-174111 etc. is mentioned, for example.
[0005]
The content of silver contained in the antibacterial agent is preferably 1 to 30% by weight from the viewpoint of durability of antibacterial performance.
As the antibacterial agent used in the present invention, those having a maximum particle diameter of 10 μm or less, preferably 5 μm or less are suitable from the viewpoints of good dispersibility in the resin binder, smooth coating processing surface and no loss of touch feeling.
The self-crosslinking resin binder used in the present invention includes, for example, polyurethane, polyamino acid salt, acrylic ester resin, polyvinyl alcohol, glyoxal resin, silicone resin, epoxy resin, acetal resin, rubber resin, etc. as a main component. Things. Among these, a blend of at least one resin among polyurethane, polyamino acid salt, and acrylate resin is preferable from the viewpoint that the coated surface is smooth and has an excellent touch feeling.
In the present invention, a softening agent may be added to the mixed solution of the antibacterial agent fine powder and the self-crosslinking resin binder for the purpose of further adjusting the texture. Examples of the softener include an epoxy-modified silicone oil emulsion and an amino-modified silicone oil emulsion. The addition amount of the antibacterial fine powder is suitably 1 to 20% by weight with respect to the resin binder.
[0006]
In order to manufacture the antibacterial fiber product of the present invention, first, the antibacterial agent fine powder and the self-crosslinking resin binder are mixed. The mixing ratio (weight ratio) between the antibacterial fine powder and the self-crosslinking resin binder is 1:20 to 10: 1, preferably 1: 5 to 1: 1 in terms of solid content. It is necessary to mix the antibacterial agent fine powder and the self-crosslinking resin binder so that the antibacterial agent fine powder is sufficiently dispersed in the binder. Therefore, it is preferable to use a liquid sample dispersion device such as a sand mill, a roll mill, or a ball mill for mixing. In particular, a high-speed dispersion stirrer called a high-speed disperser is preferable because it does not cause aggregation of the antibacterial agent fine powder.
The method of applying the mixed solution of the antibacterial fine powder and the self-crosslinking resin binder to the fiber product differs depending on whether the fiber product is a cloth or a thread. The method for applying and processing the fiber cloth is preferably performed using a fiber cloth resin applying and processing apparatus such as a spray spray nozzle, a gravure coater, a cast coating, and a blade coater. As a method for processing into fiber yarn, a method of applying a binder to the yarn surface along a yarn gauge when spinning the fiber is simple.
The coating amount of the antibacterial agent fine powder applied to the textile product is preferably 0.01 to 1 g / m 2 for the fiber cloth and 0.02 to 5% by weight for the fiber yarn from the viewpoint of antibacterial durability.
[0007]
After applying a mixed liquid of the antibacterial agent fine powder and the self-crosslinking resin binder to the fiber product, it is heat-treated at a temperature of 95 ° C. or lower to completely cure the binder component. When the heating temperature is higher than 95 ° C., the curing progresses rapidly and the touch feeling is deteriorated. Therefore, it is desirable to treat at 95 ° C. or less, more preferably 65 ° C. or less. The heating time is suitably 15 to 120 minutes.
Specific examples of the antibacterial fiber product of the present invention include socks, underwear, blouses, suits, ties, etc. for clothing, sheets, pillow cases, futon covers, etc. for bedding, curtains, tablecloths, place mats for interior , Chair covers, handkerchiefs, towels, gloves, slippers, hats, and the like, but the present invention is not limited to these.
[0008]
【The invention's effect】
The antibacterial fiber product of the present invention has good washing durability and retains the unique feel of a natural fiber material. In addition, the antibacterial component can be removed even when various chemical products are used in the textile product imparted with antibacterial properties according to the present invention in the process of spinning and woven fabric, and in the processing such as washing and bleaching. There is no problem.
[0009]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Reference Examples.
Reference Example 1 (Preparation of antibacterial aluminosilicate)
A-type zeolite fine powder (Na 2 O · Al 2 O 3 · 1.9 SiO 2 , maximum particle size 9.0 μm) heated and dried at 110 ° C. for 2 hours, Y-type zeolite fine powder (Na 2 O · Al 2 O 3 · 2.5 SiO 2, a maximum particle size 4.0 .mu.m), and JP-synthesized amorphous aluminosilicate powder according No. 61-174111 (0.9 Na 2 O · Al 2 O 3 · 2.4 SiO 2 (maximum particle size 4.5 μm) is added to water to make a slurry of 1.3 liters, stirred and degassed, and then an appropriate amount of 0.5N nitric acid solution and water are added to adjust the pH to 5.8 to The total volume was adjusted to 7.0 to 1.8 liters. Next, a mixed aqueous solution containing antibacterial metal ions was added for ion exchange to a total volume of 4.8 liters, and this slurry was stirred at 25 to 48 ° C. for 24 hours to reach an equilibrium state. Silver nitrate, zinc nitrate, and ammonium nitrate aqueous solutions were used as solutions for ion exchange. After completion of the ion exchange, the aluminosilicate phase was filtered and washed with warm water until the excess silver, zinc, and ammonium ions in the aluminosilicate phase disappeared. Next, the sample was heated at 110 ° C. for 2 hours, dried and pulverized to obtain an antibacterial aluminosilicate fine powder. The data of the obtained sample is shown in Table 1.
[0010]
Reference Example 2 (Preparation of antibacterial titanium oxide)
2 liters of a mixed aqueous solution containing silver, zinc and ammonium ions used in Reference Example 1 was added to 1 kg of commercially available hydrous titanium oxide (maximum particle size 8.0 μm) and stirred at room temperature for 48 hours. After completion of the ion exchange, it was filtered and washed with warm water until there was no excess silver, zinc or ammonium ions. Next, the sample was heated at 100 ° C. for 2 hours, dried and pulverized to obtain an antibacterial titanium oxide fine powder. The data of the obtained sample is shown in Table 1.
[0011]
Examples and comparative examples (processing of textile products)
100 parts by weight of the antibacterial agent fine powder obtained in Reference Examples 1 and 2, 100 parts by weight of a self-crosslinking acrylic ester resin (solid content 30% by weight, viscosity 180 cps (18 ° C.)) and 800 parts by weight of water were blended, The mixture was dispersed and stirred at high speed for 10 minutes with a high-speed disperser. A predetermined amount of this was applied to a base fabric (100% cotton, 30 g / m 2 plain woven fabric) with a spray machine. Thereafter, heat treatment was performed at 60 to 85 ° C. for 30 to 60 minutes. The amount of the antibacterial fine powder attached to the obtained processed cloth was analyzed. The results are shown in Table 2.
Instead of the self-crosslinking acrylic ester resin used in the examples, a glyoxal resin (Sumitex Resin NS-19 (manufactured by Sumitomo Chemical Co., Ltd.)) was applied in the same manner and treated at a curing temperature of 110 ° C. for 30 minutes. Then, a processed cloth of a comparative example was prepared, and the amount of the antibacterial agent fine powder was similarly analyzed. The results are shown in Table 2.
[0012]
Test Example 1 (Hand / Antimicrobial Test)
The touch of the work cloths obtained in Examples and Comparative Examples was evaluated. As for the evaluation method, 10 experimenters judged both the unprocessed base fabric and the processed fabric according to the following criteria. Table 3 shows the number of people who answered good. As shown in Comparative Examples 1 to 3, it can be seen that when the heating temperature is too high, the touch and texture are deteriorated.
(Hand touch evaluation criteria)
Good: Slightly good feel and feel compared to the base fabric. Slightly good: Slightly different touch and feel compared to the base fabric. Defective: Goa Goa feel compared to the base fabric. Was cut into a size of 5 cm × 5 cm, and 0.5 ml of a bacterial solution of E. coli and Staphylococcus epidermidis (10 5 cells / ml) was sprinkled on this and cultured at 37 ° C. for 6 hours. After culturing, the bacterial solution was washed out with a sterilized phosphate buffer, and the number of viable bacteria in this solution was measured. The results are shown in Table 3. Antibacterial properties did not change with heating temperature.
[0013]
Test example 2 (washing / chemical resistance test)
The durability against washing and bleaching agents was evaluated for the processed fabrics obtained in the examples and comparative examples. About washability, after wash | cleaning 20 times by 103 method by JIS * L217, the antimicrobial property test by colon_bacillus | E._coli of the test example 1 was done. For chemical resistance, it is immersed in a commercially available oxygen bleach (particulate 5% by weight aqueous solution) and chlorine bleach (stock solution) at room temperature for 24 hours, washed once, and tested for antibacterial activity using Escherichia coli in Test Example 1. Went. The results are shown in Table 4. It can be seen that in Comparative Examples 1 to 3 heat-treated at a high temperature, the antibacterial properties after washing are significantly reduced.
[0014]
[Table 1]
Figure 0003606638
[0015]
[Table 2]
Figure 0003606638
[0016]
[Table 3]
Figure 0003606638
[0017]
[Table 4]
Figure 0003606638

Claims (5)

表面に水系自己架橋型樹脂バインダーを用いて抗菌剤微粒子分散層を設けたことを特徴とする抗菌性繊維製品。An antibacterial fiber product characterized in that an antibacterial fine particle dispersion layer is provided on the surface using a water-based self-crosslinking resin binder . 水系自己架橋型樹脂バインダーが、ポリウレタン、ポリアミノ酸塩およびアクリル酸エステル樹脂からなる群から選ばれる少なくとも1種である請求項1記載の抗菌性繊維製品。The antibacterial fiber product according to claim 1, wherein the water-based self-crosslinking resin binder is at least one selected from the group consisting of polyurethane, polyamino acid salt and acrylate resin. 抗菌剤微粉末と水系自己架橋型樹脂バインダーとを配合してなる混合溶液を繊維製品表面に塗布した後、95℃以下の温度で熱処理して、該繊維表面に抗菌剤微粒子が分散した層を設けることを特徴とする抗菌性繊維製品の製造方法。 After applying a mixed solution composed of the antibacterial agent fine powder and the water - based self-crosslinking resin binder to the surface of the fiber product , heat treatment is performed at a temperature of 95 ° C. or less to form a layer in which the antibacterial agent fine particles are dispersed on the fiber surface. A method for producing an antibacterial fiber product, comprising: providing an antibacterial fiber product. 抗菌剤微粉末の最大粒子が10μm以下である請求項3記載の方法。The method according to claim 3, wherein the antimicrobial fine powder has a maximum particle size of 10 μm or less. 自己架橋型樹脂バインダーが、ポリウレタン、ポリアミノ酸塩およびアクリル酸エステル樹脂からなる群から選ばれる少なくとも1種である請求項3または4記載の方法。The method according to claim 3 or 4, wherein the self-crosslinking resin binder is at least one selected from the group consisting of polyurethane, polyamino acid salt and acrylate resin.
JP15759595A 1995-06-23 1995-06-23 Antibacterial textile product and method for producing the same Expired - Lifetime JP3606638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15759595A JP3606638B2 (en) 1995-06-23 1995-06-23 Antibacterial textile product and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15759595A JP3606638B2 (en) 1995-06-23 1995-06-23 Antibacterial textile product and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0913279A JPH0913279A (en) 1997-01-14
JP3606638B2 true JP3606638B2 (en) 2005-01-05

Family

ID=15653151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15759595A Expired - Lifetime JP3606638B2 (en) 1995-06-23 1995-06-23 Antibacterial textile product and method for producing the same

Country Status (1)

Country Link
JP (1) JP3606638B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513246A (en) * 2000-06-02 2004-04-30 ミリケン・アンド・カンパニー Yarns and fabrics having a wash-resistant and non-conductive topically applied metal-based finish
US7132378B2 (en) * 2003-04-23 2006-11-07 Milliken & Company Fabrics having a topically applied silver-based finish with a cross-linked binder system for improved high-temperature wash durability
JP4873923B2 (en) * 2005-09-16 2012-02-08 小林製薬株式会社 Deodorizing and / or sanitizing sheet
JP4930985B2 (en) * 2006-09-06 2012-05-16 憲司 中村 Manufacturing method and product of fiber material with functional fine particles fixed
US7754625B2 (en) 2006-12-22 2010-07-13 Aglon Technologies, Inc. Wash-durable and color stable antimicrobial treated textiles
KR100915991B1 (en) * 2007-11-15 2009-09-10 위니아만도 주식회사 Preparation method of fabric type bactericidal agent using silver ion-containing ceramics
JP2009215201A (en) * 2008-03-10 2009-09-24 Ritsuko Tanaka Deodorant antimicrobial powder material
JP4789270B2 (en) * 2008-07-08 2011-10-12 株式会社たまき Method for applying fiber treatment agent
JP4963118B2 (en) * 2008-08-21 2012-06-27 山梨県 Silver dyeing method for animal fibers, silver dyeing control method using 2-mercaptoethanesulfonate aqueous solution, and animal fibers to which these methods are applied
KR102088250B1 (en) * 2019-06-21 2020-03-12 항균소재 주식회사 Antimicrobial Yarn for furniture textile and Manufacturing method thereof

Also Published As

Publication number Publication date
JPH0913279A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
JP6612375B2 (en) Disinfecting compositions for fabrics and related substrates, and providing antibacterial, antiviral, and antifungal disinfection, cleaning durability and required with multifunctional properties
US5126138A (en) Antimicrobial flourochemically treated plastic (nylon) surfaces
WO1997031709A1 (en) Antimicrobial compositions
JP3606638B2 (en) Antibacterial textile product and method for producing the same
WO2006013378A1 (en) Anti-microbial fibres and their production
JP2004513246A (en) Yarns and fabrics having a wash-resistant and non-conductive topically applied metal-based finish
US7232777B1 (en) Yarns and fabrics having a wash-durable antimicrobial silver particulate finish
CN102337669A (en) Method for processing antibacterial wool fiber
JP2010275678A (en) Ultrafine fiber and ultrafine fiber fabric having antibacterial property and water absorption
JP2013185292A (en) Antibacterial processing agent for fiber, method for producing the same and method for producing antibacterial fiber
JPH11124729A (en) Antimicrobial fiber and its production
JP6577332B2 (en) Antibacterial synthetic fiber fabric with excellent antibacterial performance
JP4590019B1 (en) Ultrafine fiber and ultrafine fiber fabric having antibacterial and water absorption properties
WO2012049978A1 (en) Antibacterial fiber treatment agent, manufacturing method thereof, and antibacterial fiber manufacturing method
JP3273269B2 (en) Method for imparting antibacterial and antifungal properties to textiles
JP2945264B2 (en) Antimicrobial fiber and method for producing the same
JP3792984B2 (en) Antibacterial and antifungal processing methods for fibers
JPH08113874A (en) Antibacterial textile product and its production
JP3401076B2 (en) Manufacturing method of antibacterial fiber
JPH07229063A (en) Antimicrobial fiber product and its production
JPH04126820A (en) Antimicrobial polyvinyl alcohol-based synthetic fiber and formed product using the same
JPH01260068A (en) Production of antimicrobial material
JP2000178870A (en) Antimicrobially processing method for textile product
JPH07109672A (en) Production of antibacterial textile product
JP6653583B2 (en) Antibacterial fiber fabric with excellent antibacterial performance

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041005

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term