JPH01260068A - Method of manufacturing antibacterial materials - Google Patents

Method of manufacturing antibacterial materials

Info

Publication number
JPH01260068A
JPH01260068A JP8618188A JP8618188A JPH01260068A JP H01260068 A JPH01260068 A JP H01260068A JP 8618188 A JP8618188 A JP 8618188A JP 8618188 A JP8618188 A JP 8618188A JP H01260068 A JPH01260068 A JP H01260068A
Authority
JP
Japan
Prior art keywords
antibacterial
boiling point
ions
resin composition
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8618188A
Other languages
Japanese (ja)
Other versions
JP2598957B2 (en
Inventor
Tatsuo Yamamoto
山本 達雄
Yasuo Kurihara
靖夫 栗原
Koji Sugiura
晃治 杉浦
Toshihiro Kato
加藤 利啓
Souji Inaguma
稲熊 荘士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAIRON KK
SHINAGAWA NENRYO KK
SHINANEN NEW CERAMIC KK
Shinagawa Fuel Co Ltd
Shinanen New Ceramic Corp
Original Assignee
BAIRON KK
SHINAGAWA NENRYO KK
SHINANEN NEW CERAMIC KK
Shinagawa Fuel Co Ltd
Shinanen New Ceramic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAIRON KK, SHINAGAWA NENRYO KK, SHINANEN NEW CERAMIC KK, Shinagawa Fuel Co Ltd, Shinanen New Ceramic Corp filed Critical BAIRON KK
Priority to JP63086181A priority Critical patent/JP2598957B2/en
Publication of JPH01260068A publication Critical patent/JPH01260068A/en
Application granted granted Critical
Publication of JP2598957B2 publication Critical patent/JP2598957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は抗菌性に優れた繊維材料の製造法に関し、更に
詳しくは抗菌性粉体を含有する樹脂組成物を用いて、従
来の樹脂加工により付与される吸水性、帯電防止性、透
湿性、防水性、防風性等の機能と同時に持続性ある抗菌
効果を繊維材料に付与する方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing fiber materials with excellent antibacterial properties, and more specifically, the present invention relates to a method for producing fiber materials with excellent antibacterial properties. This invention relates to a method for imparting to textile materials a sustainable antibacterial effect as well as functions such as water absorption, antistatic properties, moisture permeability, waterproofness, and windproof properties.

〔従来の技術〕[Conventional technology]

近年、ブラウス、シャツ、下着などに合成繊維や合繊混
紡繊維が多く使用されるようになってきており、これら
を抗菌防臭加工する必要性が増大しつつある。衣類に吸
収された汗は微生物の増殖を促し、悪臭の原因となった
り、皮膚炎・水虫・伝染性疾患等に悪影響を与える。こ
れらの防止のために衣類用の繊維に4級アンモニウム塩
を吸着させたもの(特開昭57−51874号)やイミ
ダゾール化合物を吸着させたもの(特開昭58−149
375号)が開示されている。しかるにこれら先行技術
に開示された方法により繊維に付与された抗菌性物質は
洗濯により容易に脱落や揮散してしまい、抗菌効果を長
時間持続させることはできなかった。
In recent years, synthetic fibers and synthetic blended fibers have come to be increasingly used in blouses, shirts, underwear, etc., and there is an increasing need to treat these with antibacterial and deodorizing properties. Sweat absorbed by clothing promotes the growth of microorganisms, causing foul odors and adversely affecting dermatitis, athlete's foot, infectious diseases, etc. In order to prevent this, clothing fibers made by adsorbing quaternary ammonium salts (Japanese Unexamined Patent Publication No. 57-51874) and imidazole compounds (Japanese Unexamined Patent Publication No. 58-149) have been developed.
No. 375) is disclosed. However, the antibacterial substances applied to the fibers by the methods disclosed in these prior art techniques easily fall off or volatilize during washing, making it impossible to maintain the antibacterial effect for a long period of time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

微生物による弊害を防ぐ抗菌加工には、(1)人体に対
して安全性が高<、(2)抗菌効果が大きく、(3)抗
菌効果の持続性が高< 、(4)処理方法が簡単で加工
費が安価なこと等が要求される。ところがこれらの点を
全て満足したものは従来知られていない。
Antibacterial processing to prevent harmful effects caused by microorganisms has the following properties: (1) High safety for the human body, (2) High antibacterial effect, (3) High sustainability of antibacterial effect, (4) Simple processing method. Therefore, low processing costs are required. However, there is no known material that satisfies all of these points.

そこで本発明の目的は、人体に対して極めて安全であり
、高い抗菌力を有する抗菌性ゼオライトなどの抗菌性無
機粉体を簡単に繊維材料に加工して持続性を有する抗菌
性繊維材料の製造法を提供することにある。
Therefore, the purpose of the present invention is to easily process antibacterial inorganic powder such as antibacterial zeolite, which is extremely safe for the human body and has high antibacterial activity, into a fiber material to produce a durable antibacterial fiber material. It is about providing law.

〔課題を解決するための手段〕 本発明は、抗菌性無機粉体、樹脂、沸点が100℃以上
の高沸点溶剤及び沸点が100℃以下の低沸点溶剤を含
有する樹脂組成物を基布に適用し、次いで基布に適用し
た樹脂組成物を硬化させること及び上記高沸点溶剤の沸
点と上記低沸点溶剤の沸点の差が50℃以上であること
を特徴とする抗菌性材料の製造法(以下A法という)に
関する。
[Means for Solving the Problems] The present invention provides a base fabric containing a resin composition containing an antibacterial inorganic powder, a resin, a high boiling point solvent with a boiling point of 100°C or higher, and a low boiling point solvent with a boiling point of 100°C or lower. and then curing the resin composition applied to the base fabric, and the difference between the boiling point of the high boiling point solvent and the boiling point of the low boiling point solvent is 50 ° C. or more ( (hereinafter referred to as method A).

さらに、本発明は、抗菌性無機粉体、樹脂、沸点が10
0℃以上である高沸点溶剤及び沸点が100℃以下であ
る低沸点溶剤を含有する樹脂組成物からフィルムを形成
し、次いで得られたフィルムを基布に被覆すること及び
上記高沸点溶剤の沸点及び低沸点溶剤の沸点の差が5℃
以上であることを特徴とする抗菌性材料の製造法(以下
B法という)に関する。
Furthermore, the present invention provides an antibacterial inorganic powder, a resin, and a boiling point of 10
Forming a film from a resin composition containing a high boiling point solvent having a boiling point of 0°C or higher and a low boiling point solvent having a boiling point of 100°C or lower, and then coating a base fabric with the obtained film, and the boiling point of the high boiling point solvent. and the difference in boiling point of low boiling point solvent is 5℃
The present invention relates to a method for producing an antibacterial material (hereinafter referred to as method B) characterized by the above.

以下本発明について説明する(以下特に断わらない限り
説明はA法及び、B法に共通である)。
The present invention will be explained below (unless otherwise specified, the explanation is common to Method A and Method B).

本発明において「抗菌性無機粉体」としては、抗菌性を
有する物質の粉体及び抗菌性を有する物質を無機担体に
担持した粉体等を例示することができる。上記無機担体
としてはゼオライト、無定形アルミノケイ酸塩、シリカ
ゲル、アルミナ、けいそう土等を用いることが好ましい
In the present invention, examples of the "antibacterial inorganic powder" include powder of a substance having antibacterial properties and powder in which a substance having antibacterial properties is supported on an inorganic carrier. As the inorganic carrier, zeolite, amorphous aluminosilicate, silica gel, alumina, diatomaceous earth, etc. are preferably used.

本発明においては、抗菌性無機粉体としては例えば抗菌
性ゼオライト又は無定形アルミノケイ酸塩を用いること
ができる。本発明においては、抗菌性ゼオライトとして
、例えば特開昭59−133235号、同60−181
0023号、同59−37956号及び特願昭62−3
07355号等に記載の、ゼオライト中のイオン交換可
能なイオンを抗菌性金属イオン及び/又はアンモニウム
イオンで置換したゼオライトをいずれも制限なく使用で
きる。又、抗菌性無定形アルミノケイ酸塩としては、例
えば特開昭61−174111号等に記載の無定形アル
ミノケイ酸塩中のイオン交換可能なイオンを抗菌性金属
イオン及び/又はアンモニウムイオンで置換した無定形
アルミノケイ酸塩を用いることができる。
In the present invention, antibacterial zeolite or amorphous aluminosilicate, for example, can be used as the antibacterial inorganic powder. In the present invention, as the antibacterial zeolite, for example, JP-A-59-133235, JP-A-60-181
No. 0023, No. 59-37956 and Patent Application No. 1986-3
Any zeolite described in No. 07355, etc., in which ion exchangeable ions in the zeolite are replaced with antibacterial metal ions and/or ammonium ions, can be used without limitation. Further, as the antibacterial amorphous aluminosilicate, for example, an amorphous aluminosilicate described in JP-A-61-174111 etc. in which ion-exchangeable ions are replaced with antibacterial metal ions and/or ammonium ions, etc. Shaped aluminosilicates can be used.

本発明においては、例えばゼオライト中のイオン交換可
能なイオン、例えばナトリウムイオン、カルシウムイオ
ン、カリウムイオン、マグネシウムイオン、鉄イオン等
のその一部又は全部をアンモニウムイオン及び抗菌性金
属イオンで置換した抗菌性ゼオライトを抗菌性無機粉体
として用いることができる。
In the present invention, for example, antibacterial properties are obtained by replacing part or all of ion exchangeable ions in zeolite, such as sodium ions, calcium ions, potassium ions, magnesium ions, iron ions, etc., with ammonium ions and antibacterial metal ions. Zeolites can be used as antibacterial inorganic powders.

ここでゼオライトとしては、天然ゼオライト及び合成ゼ
オライトのいずれも用いることができる。
As the zeolite, both natural zeolite and synthetic zeolite can be used.

ゼオライトは、一般に三次元骨格構造を有するアルミノ
シリケートであり、−形式としてXM27nO’A j
! 20s4S+024H20テ表示される。+ + 
テMはイオン交換可能なイオンを表わし通常は1又は2
価の金属のイオンである。nは(金属)イオンの原子価
である。XおよびYはそれぞれの金属酸化物、シリカ係
数、Zは結晶水の数を表示している。ゼオライトの具体
例としては例えば八−型ゼオライド、X−型ゼオライド
、Y−型ゼオライド、T−型ゼオライド、高シリカゼオ
ライト、ソーダライト、モルデナイト、アナルサイム、
クリノプチロライト、チャバサイト、エリオナイト等を
挙げることができる。ただしこれらに限定されるもので
はない。これら例示ゼオライトのイオン交換容量は、八
−型ゼオライド?meq/g % X−型ゼオライド6
、4meQ/g、 Y−型ゼオライド5meq/g。
Zeolites are generally aluminosilicates with a three-dimensional skeletal structure, - as a form XM27nO'A j
! 20s4S+024H20te is displayed. + +
TeM represents an ion that can be exchanged and is usually 1 or 2.
It is a valent metal ion. n is the valence of the (metal) ion. X and Y represent the respective metal oxide and silica coefficients, and Z represents the number of water of crystallization. Specific examples of zeolites include 8-type zeolide, X-type zeolide, Y-type zeolide, T-type zeolide, high silica zeolite, sodalite, mordenite, analcyme,
Examples include clinoptilolite, chabasite, and erionite. However, it is not limited to these. Is the ion exchange capacity of these exemplary zeolites an 8-type zeolide? meq/g% X-type zeolide 6
, 4 meQ/g, Y-type zeolide 5 meq/g.

T−型ゼオライド3.4meQ/g、ソーダライト11
.5meq/g 、クリノプチロライト2.6meq/
g、チャバサイト5 meq/g %エリオナイト3.
8meq/gであり、いずれもアンモニウムイオン及び
銀イオンでイオン交換するに充分の容量を有している。
T-type zeolide 3.4meQ/g, sodalite 11
.. 5 meq/g, clinoptilolite 2.6 meq/
g, chabasite 5 meq/g% erionite 3.
8 meq/g, and both have sufficient capacity for ion exchange with ammonium ions and silver ions.

抗菌性金属イオンの例としては、銀、銅、亜鉛、水銀、
錫、鉛、ビスマス、カドミウム、クロム又はタリウムの
イオン、好ましくは銀、銅、又は亜鉛のイオンが挙げる
ことができる。
Examples of antibacterial metal ions include silver, copper, zinc, mercury,
Mention may be made of ions of tin, lead, bismuth, cadmium, chromium or thallium, preferably silver, copper or zinc.

抗菌性の点から、上記抗菌性金属イオンは、ゼオライト
中に0.1〜15%含有されていることが適当である。
From the viewpoint of antibacterial properties, it is appropriate that the antibacterial metal ions are contained in the zeolite in an amount of 0.1 to 15%.

銀イオン0.1〜15%及び銅イオン又は亜鉛イオン0
61〜8%含有する抗菌性ゼオライトがより好ましい。
Silver ion 0.1-15% and copper ion or zinc ion 0
Antibacterial zeolite containing 61-8% is more preferred.

一方アンモニウムイオンは、ゼオライト中に20%まで
含有させることができるが、ゼオライト中のアンモニウ
ムイオンの含有量は0.5〜5%と、好ましくは0.5
〜2%とすることが、該ゼオライトの変色を有効に防止
するという観点から適当である。尚、本明細書において
、%とは110℃乾燥基準の重量%をいう。
On the other hand, ammonium ions can be contained up to 20% in zeolite, but the content of ammonium ions in zeolite is 0.5 to 5%, preferably 0.5%.
From the viewpoint of effectively preventing discoloration of the zeolite, it is appropriate to set the content to 2%. In this specification, % refers to % by weight on a dry basis at 110°C.

以下抗菌性ゼオライトの製造方法について説明する。The method for producing antibacterial zeolite will be explained below.

本発明に用いる抗菌性ゼオライトは、予め調製したアン
モニウムイオン及び銀イオン、銅イオン、亜鉛イオン等
の抗菌性金属イオンを含有する混合水溶液にゼオライト
を接触させて、ゼオライト中のイオン交換可能なイオン
と上記イオンとを置換させる。接触は、10〜70℃、
好ましくは40〜60℃で3〜24時間、好ましくは1
0〜24時間バッチ式又は連続式(例えばカラム法)に
よって行うことができる。尚上記混合水溶液のpHは3
〜10、好ましくは5〜7に調整することが適当である
。該調整により、銀の酸化物等のゼオライト表面又は細
孔内への析出を防止できるので好ましい。又、混合水溶
液中の各イオンは、通常いずれも塩として供給される。
The antibacterial zeolite used in the present invention is produced by contacting the zeolite with a mixed aqueous solution containing ammonium ions and antibacterial metal ions such as silver ions, copper ions, zinc ions, etc. prepared in advance. The above ions are replaced. The contact temperature is 10-70℃,
Preferably at 40-60°C for 3-24 hours, preferably 1
It can be carried out by a batch method or a continuous method (for example, a column method) for 0 to 24 hours. The pH of the above mixed aqueous solution is 3.
It is appropriate to adjust it to 10 to 10, preferably 5 to 7. This adjustment is preferable because it can prevent silver oxides and the like from being deposited on the zeolite surface or into the pores. Further, each ion in the mixed aqueous solution is usually supplied as a salt.

例えばアンモニウムイオンは、硝酸アンモニウム、硫酸
アンモニウム、酢酸アンモニウム、過塩素酸アンモニウ
ム、チオ硫酸アンモニウム、リン酸アンモニウム等、銀
イオンは、硝酸銀、硫酸銀、過塩素酸銀、酢酸銀、ジア
ンミン銀硝酸塩、ジアンミン銀硫酸塩等、銅イオンは硝
酸銅(■)、過塩素酸銅、酢酸銅、テトラシアノ銅酸カ
リウム、硫酸銅等、亜鉛イオンは硝酸亜鉛(■)、硫酸
加鉛、過塩素酸亜鉛、チオシアン酸亜鉛、酢酸亜鉛等、
水銀イオンは、過塩素酸水銀、硝酸水銀、酢酸水銀等、
錫イオンは、硫酸錫等、鉛イオンは、硫酸鉛、硝酸鉛等
、ビスマスイオンは、塩化ビスマス、ヨウ化ビスマス等
、カドミウムイオンは、過塩素酸カドミウム、硫酸カド
ミウム、硝酸カドミウム、酢酸カドミウム等、クロムイ
オンは、過塩素酸クロム、硫酸クロム、硫酸アンモニウ
ムクロム、硝酸クロム等、タリウムイオンは、過塩素酸
タリウム、硫酸タリウム、硝酸タリウム、酢酸タリウム
等を用いることができる。
For example, ammonium ions include ammonium nitrate, ammonium sulfate, ammonium acetate, ammonium perchlorate, ammonium thiosulfate, ammonium phosphate, etc. Silver ions include silver nitrate, silver sulfate, silver perchlorate, silver acetate, diammine silver nitrate, diammine silver sulfate, etc. Copper ions include copper nitrate (■), copper perchlorate, copper acetate, potassium tetracyanocuprate, copper sulfate, etc. Zinc ions include zinc nitrate (■), lead sulfate, zinc perchlorate, zinc thiocyanate, etc. Zinc acetate etc.
Mercury ions include mercury perchlorate, mercury nitrate, mercury acetate, etc.
Tin ions include tin sulfate, etc., lead ions include lead sulfate, lead nitrate, etc., bismuth ions include bismuth chloride, bismuth iodide, etc., and cadmium ions include cadmium perchlorate, cadmium sulfate, cadmium nitrate, cadmium acetate, etc. As the chromium ion, chromium perchlorate, chromium sulfate, ammonium chromium sulfate, chromium nitrate, etc. can be used, and as the thallium ion, thallium perchlorate, thallium sulfate, thallium nitrate, thallium acetate, etc. can be used.

ゼオライト中のアンモニウムイオン等の含有量は前記混
合水溶液中の各イオン(塩)濃度を調節することによっ
て、適宜制御することができる。
The content of ammonium ions and the like in the zeolite can be appropriately controlled by adjusting the concentration of each ion (salt) in the mixed aqueous solution.

例えば抗菌性ゼオライトがアンモニウムイオン及び銀イ
オンを含有する場合、前記混合水溶液中のアンモニウム
イオン1lltヲ0.2M/j!〜2.5 M /l銀
イオン濃度を0.002M/j!〜0.15 M / 
1とすることによって、適宜、アンモニウムイオン含有
量0.5〜5%、銀イオン含有量0.1〜5%の抗菌性
ゼオライトを得ることができる。又、抗菌性ゼオライト
がさらに銅イオン、亜鉛イオンを含有する場合、前記混
合水溶液中の銅イオン濃度は0゜IM/Il〜0.85
M/1、亜鉛イオン濃度は0.15M#〜1.2 M 
/ 1とすることによって、適宜銅イオン含有量0.1
〜8%、亜鉛イオン含有量0.1〜8%の抗菌性ゼオラ
イトを得ることができる。
For example, when the antibacterial zeolite contains ammonium ions and silver ions, the amount of ammonium ions in the mixed aqueous solution is 0.2 M/j! ~2.5 M/l silver ion concentration to 0.002 M/j! ~0.15M/
1, an antibacterial zeolite having an ammonium ion content of 0.5 to 5% and a silver ion content of 0.1 to 5% can be obtained as appropriate. Further, when the antibacterial zeolite further contains copper ions and zinc ions, the copper ion concentration in the mixed aqueous solution is 0°IM/Il to 0.85.
M/1, zinc ion concentration is 0.15M#~1.2M
/ 1, the copper ion content can be adjusted to 0.1.
~8% and an antibacterial zeolite with a zinc ion content of 0.1 to 8%.

前記の如き混合水溶液以外に各イオンを単独で含有する
水溶液を用い、各水溶液とゼオライトとを逐次接触させ
ることによって、イオン交換することもできる。各水溶
液中の各イオンの濃度は、前記混合水溶液中の各イオン
濃度に準じて定めることができる。
In addition to the mixed aqueous solution as described above, ion exchange can also be carried out by using an aqueous solution containing each ion individually and bringing each aqueous solution into contact with the zeolite sequentially. The concentration of each ion in each aqueous solution can be determined according to the concentration of each ion in the mixed aqueous solution.

イオン交換が終了したゼオライトは、充分に水洗した後
、乾燥する。乾燥は、常圧で105℃〜115℃、又は
減圧(1〜30 Torr) 下70℃〜90℃で行う
ことが好ましい。
After ion exchange, the zeolite is thoroughly washed with water and then dried. Drying is preferably carried out at 105°C to 115°C under normal pressure or 70°C to 90°C under reduced pressure (1 to 30 Torr).

尚、錫、ビスマスなど適当な水溶液塩類のないイオンや
有機イオンのイオン交換は、アルコールやアセトンなど
の有機溶媒溶液を用いて難溶性の塩基性塩が析出しない
ように反応させることができる。
Ion exchange of ions without suitable aqueous salts such as tin and bismuth or organic ions can be carried out using an organic solvent solution such as alcohol or acetone so that hardly soluble basic salts are precipitated.

本発明においては、無定形アルミノケイ酸塩中のイオン
交換可能なイオンの一部または全部を抗菌性金属イオン
で置換した抗菌性無定形アルミノケイ酸塩(以下AAS
という)を抗菌性無機粉体として用いることができる。
In the present invention, antibacterial amorphous aluminosilicate (hereinafter referred to as AAS) in which part or all of the ion-exchangeable ions in the amorphous aluminosilicate are replaced with antibacterial metal ions is used.
) can be used as an antibacterial inorganic powder.

ここで原料として用いるAAS (無定形アルミノケイ
酸塩)は、特に制限なく、従来から知られているものを
そのまま用いることができる。AASは一般に組成式x
M20・A 1 、’L・ySi02・zH20で表示
され、ここでMは一般にアルカリ金属元素(例えばナト
リウム、カリウム等)である。またxSySzはそれぞ
れ金属酸化物、シリカ、結晶水のモル比率を示している
。AASはゼオライトと称されている結晶性アルミノ珪
酸塩と異なり、X線回折分析でも回折パターンが現れな
い非晶質の物質であり、その合成工程にて数10Aの極
く微細なゼオライト結晶が生成し、その表面に5102
・Al2O2・M2Oなどが複雑に組合された非晶質物
質が付着した構造と考えられている。AASの製造は一
般にはアルミニウム塩溶液、ケイ素化合物溶液およびア
ルカリ金属塩溶液を所定の濃度で60℃以下の低温度域
で反応させ、結晶化が進行する前に水洗して製造される
AAS (amorphous aluminosilicate) used as a raw material here is not particularly limited, and conventionally known ones can be used as they are. AAS generally has the composition formula x
M20.A 1 ,'L.ySi02.zH20, where M is generally an alkali metal element (eg, sodium, potassium, etc.). Moreover, xSySz indicates the molar ratio of metal oxide, silica, and crystal water, respectively. Unlike the crystalline aluminosilicate called zeolite, AAS is an amorphous substance that does not show a diffraction pattern even in X-ray diffraction analysis, and the synthesis process produces extremely fine zeolite crystals of several tens of amperes. and 5102 on its surface
- It is thought to have a structure in which an amorphous substance consisting of a complex combination of Al2O2, M2O, etc. is attached. AAS is generally produced by reacting an aluminum salt solution, a silicon compound solution, and an alkali metal salt solution at a predetermined concentration at a low temperature of 60° C. or lower, and washing with water before crystallization proceeds.

製造法としては例えば特公昭52−58099号、特開
昭55−162418号などに記載された方法がある。
Examples of manufacturing methods include those described in Japanese Patent Publication No. 52-58099 and Japanese Patent Application Laid-Open No. 55-162418.

上記方法により得られるAASはアルカリ金属酸化物が
10%以上含まれている。該AASは、抗菌性AASの
製造用にそのまま用いることもできるがM、0含有率を
10%以下、好ましくは8%以下とすることが、樹脂等
に添加した際の樹脂等の経時的変色を有効に防止すると
いう観点から特に好ましい。ただし、この範囲に限定さ
れるものではない。
AAS obtained by the above method contains 10% or more of alkali metal oxide. The AAS can be used as it is for the production of antibacterial AAS, but it is recommended that the M, 0 content be 10% or less, preferably 8% or less, to avoid discoloration of the resin over time when added to the resin. This is particularly preferable from the viewpoint of effectively preventing. However, it is not limited to this range.

さらに上記AASは、抗菌性金属イオンでイオン交換さ
れている。抗菌性金属イオンの例としては、銀、銅、亜
鉛、水銀、錫、鉛、ビスマス、カドミウム、クロム又は
タリウムのイオン、好ましくは銀、銅、又は亜鉛のイオ
ンが挙げることができる。
Furthermore, the AAS is ion-exchanged with antibacterial metal ions. Examples of antimicrobial metal ions include ions of silver, copper, zinc, mercury, tin, lead, bismuth, cadmium, chromium or thallium, preferably silver, copper or zinc.

抗菌性金属のうち銀の添加量は0.1〜50%、好まし
くは0.5〜5%とすることが優れた抗菌力を示すとい
う観点から適当である。またさらに銅、亜鉛、水銀、錫
、鉛、ビスマス、カドミウム、クロム及びタリウムのい
ずれか1つあるいは2つ以上の金属を0.1〜10%含
有することが好ましい。
Among the antibacterial metals, it is appropriate to add silver in an amount of 0.1 to 50%, preferably 0.5 to 5%, from the viewpoint of exhibiting excellent antibacterial activity. Furthermore, it is preferable to contain 0.1 to 10% of one or more of copper, zinc, mercury, tin, lead, bismuth, cadmium, chromium, and thallium.

さらに抗菌性AASは、上記抗菌性金属に加えてアンモ
ニウムイオンをイオン交換により含有させることもでき
る。アンモニウムイオンは、AAS中に15%まで含有
させることができるが、AAS中のアンモニウムイオン
の含有量は0.5〜5%と、好ましくは0.5〜2%と
することが、該AASの変色を有効に防止するという観
点から適当である。
Furthermore, the antibacterial AAS can also contain ammonium ions in addition to the above-mentioned antibacterial metals by ion exchange. Ammonium ions can be contained up to 15% in AAS, but the content of ammonium ions in AAS is 0.5 to 5%, preferably 0.5 to 2%. This is suitable from the viewpoint of effectively preventing discoloration.

上記抗菌性AASは例えば以下の(1)及び(2)の方
法により製造することができる。
The antibacterial AAS can be produced, for example, by the following methods (1) and (2).

Q)  M、0(Mはアルカリ金属である)含有率が好
ましくは10%以下の無定形アルミノケイ酸塩と抗菌性
金属イオンとを接触させて、無定形アルミノケイ酸塩中
のイオン交換可能なイオンと抗菌性金属イオンとを交換
することにより抗菌性AASを製造することができる。
Q) Contacting an amorphous aluminosilicate with an M,0 (M is an alkali metal) content of preferably 10% or less with antibacterial metal ions to produce ion-exchangeable ions in the amorphous aluminosilicate. Antibacterial AAS can be produced by exchanging antibacterial metal ions with antibacterial metal ions.

(2)無定形アルミノケイ酸塩スラリーのpHを好まし
くは6以下に調整し、次いで該スラリー中の無定形アル
ミノケイ酸塩と抗菌性金属イオンとを接触させて、無定
形アルミノケイ酸塩中のイオン交換可能なイオンと抗菌
性イオンとを交換することにより抗菌性AASを製造す
ることができる。
(2) The pH of the amorphous aluminosilicate slurry is preferably adjusted to 6 or less, and then the amorphous aluminosilicate in the slurry is brought into contact with antibacterial metal ions to exchange ions in the amorphous aluminosilicate. Antibacterial AAS can be produced by exchanging available ions with antibacterial ions.

(1)の方法において無定形アルミノケイ酸塩(AAS
)としてM20含有率が好ましくは、10%以下のもの
を用いる。通常の方法で得られるAASは10%を超え
るM2Oを含有する。そこで前記方法により得られたA
ASを例えば水に懸濁させ、次いで得られたスラリーを
攪拌しながら酸水溶液を滴下することによりAAS中の
アルカリ金属及び/又はアルカリ土類金属を中和するこ
とによりM20含有率を10%以下に調整することがで
きる。酸水溶液として0.IN以下の濃度の希酸水溶液
を用い、攪拌条件及び反応規模によっても異なるが滴下
速度100m//30分以下で行うことが好ましい。
In method (1), amorphous aluminosilicate (AAS)
) whose M20 content is preferably 10% or less. AAS obtained by conventional methods contains more than 10% M2O. Therefore, A obtained by the above method
For example, AS is suspended in water, and then an aqueous acid solution is added dropwise to the resulting slurry while stirring to neutralize the alkali metals and/or alkaline earth metals in AAS, thereby reducing the M20 content to 10% or less. can be adjusted to 0 as an acid aqueous solution. It is preferable to use a dilute acid aqueous solution having a concentration of IN or lower, and to carry out the dropwise addition at a rate of 100 m//30 minutes or less, although this will vary depending on the stirring conditions and reaction scale.

さらに中和は、スラリーのpHが3〜6、好ましくは4
〜5の範囲にすることが好ましい。又、中和に使用でき
る酸としては硝酸、硫酸、過塩素酸、リン酸、塩酸など
の無機酸及びギ酸、酢酸、シ二つ酸、クエン酸などの有
機酸等を挙げることができる。
Furthermore, neutralization is performed until the pH of the slurry is 3 to 6, preferably 4.
It is preferable to set it in the range of 5 to 5. Examples of acids that can be used for neutralization include inorganic acids such as nitric acid, sulfuric acid, perchloric acid, phosphoric acid, and hydrochloric acid, and organic acids such as formic acid, acetic acid, citric acid, and citric acid.

中和して得られたM、0含有率10%以下のAASは濾
過し、水洗し、スラリーとしてそのまま(1)の方法に
用いることもできるし、あるいは乾燥してM、O含有率
10%以下のAASとしてもよい。
AAS with an M,O content of 10% or less obtained by neutralization can be filtered, washed with water, and used as a slurry in the method (1) as it is, or it can be dried to obtain an M,O content of 10%. The following AAS may be used.

(1)の方法において好ましくは、M、0含有率10%
以下のAASのスラリーと抗菌性金属イオン含有水溶液
とを混合して銀イオン、銅イオン、亜鉛イオン等の抗菌
性金属イオンを含有する混合水溶液にAASを接触させ
て、AAS中のイオン交換可能なイオンと上記イオンと
を置換させる。接触は、5〜70℃、好ましくは40〜
60℃で1〜24時間、好ましくは10〜24時間バッ
チ式又は連続式(例えばカラム法)によって行うことが
できる。
In the method (1), preferably M, 0 content is 10%
The following slurry of AAS and an aqueous solution containing antibacterial metal ions are mixed, and the AAS is brought into contact with the mixed aqueous solution containing antibacterial metal ions such as silver ions, copper ions, zinc ions, etc., so that the ions in AAS can be exchanged. The ion is replaced with the above ion. The contact is carried out at a temperature of 5-70°C, preferably 40-70°C.
It can be carried out at 60° C. for 1 to 24 hours, preferably for 10 to 24 hours, by a batch method or a continuous method (for example, a column method).

混合水溶液中の各イオンは、通常いずれも塩として供給
される。用いられる塩は前記抗菌性ゼオライトの製造の
際に用いることができる塩と同様のものを用いることが
できる。
Each ion in the mixed aqueous solution is usually supplied as a salt. The salt used can be the same as the salt that can be used in the production of the antibacterial zeolite.

AAS中のアンモニウムイオン等の含有量は前記混合水
溶液中の各イオン(塩)a度を調節することによって、
適宜制御することができる。例えば抗菌性AASが銀イ
オンを含有する場合、前記混合水溶液中の銀イオン濃度
を0.01M/β〜0.30M#とすることによって、
適宜銀イオン含有量0.5〜6%の抗菌性AASを得る
ことができる。又、抗菌性AASがさらに銅イオン、亜
鉛イオンを含有する場合、前記混合水溶液中の銅イオン
濃度は0.05M/β〜0.4 M / f、亜鉛イオ
ン濃度は0.05M/1〜0.4 M / fとするこ
とによって、適宜銅イオン含有量1〜8%、亜鉛イオン
含有量1〜8%の抗菌性AASを得ることができる。
The content of ammonium ions, etc. in AAS can be adjusted by adjusting the degree of each ion (salt) in the mixed aqueous solution.
It can be controlled as appropriate. For example, when the antibacterial AAS contains silver ions, by setting the silver ion concentration in the mixed aqueous solution to 0.01 M/β to 0.30 M#,
Antibacterial AAS having a silver ion content of 0.5 to 6% can be obtained as appropriate. In addition, when the antibacterial AAS further contains copper ions and zinc ions, the copper ion concentration in the mixed aqueous solution is 0.05 M/β to 0.4 M/f, and the zinc ion concentration is 0.05 M/1 to 0. .4 M/f, it is possible to obtain an antibacterial AAS having an appropriate copper ion content of 1 to 8% and a zinc ion content of 1 to 8%.

前記の如き混合水溶液以外に各イオンを単独で含有する
水溶液を用い、各水溶液とAASとを逐次接触させるこ
とによって、イオン交換することもできる。各水溶液中
の各イオンの濃度は、前記混合水溶液中の各イオン濃度
に準じて定めることができる。
In addition to the mixed aqueous solution as described above, ion exchange can also be carried out by using an aqueous solution containing each ion individually and bringing each aqueous solution into contact with AAS sequentially. The concentration of each ion in each aqueous solution can be determined according to the concentration of each ion in the mixed aqueous solution.

イオン交換が終了したAASは、充分に水洗した後、乾
燥する。乾燥は、常圧で105℃〜115℃、又は減圧
(1〜30Torr)下70℃〜90℃で行うことが好
ましい。
After ion exchange, the AAS is thoroughly washed with water and then dried. Drying is preferably carried out at 105°C to 115°C under normal pressure or at 70°C to 90°C under reduced pressure (1 to 30 Torr).

尚、錫、ビスマスなど適当な水溶性塩類のないイオンや
有機イオンのイオン交換は、アルコールやアセトンなど
の有機溶媒溶液を用いて難溶性の塩基性塩が析出しない
ように反応させることができる。
Ion exchange of ions without suitable water-soluble salts such as tin and bismuth or organic ions can be carried out using an organic solvent solution such as alcohol or acetone so that hardly soluble basic salts are precipitated.

一方(2)の方法は、常法により得られたAASのスラ
リーのpHを6以下、好ましくは3〜6、より好ましく
は4〜5に調整して、AAS中のM20含有率を10%
以下とすることができる。該pHの調整は前記(1)の
方法において例示した方法を同様に用いることができる
On the other hand, in method (2), the pH of the AAS slurry obtained by a conventional method is adjusted to 6 or less, preferably 3 to 6, more preferably 4 to 5, and the M20 content in AAS is reduced to 10%.
It can be as follows. For adjusting the pH, the method exemplified in the method (1) above can be used similarly.

次いでpHを調整したスラリーと抗菌性金属イオン含有
溶液とを混合して、該スラリー中のAASをイオン交換
することができる。イオン交換法等は(1)の方法と同
様の方法をそのまま使用することができる。
The pH-adjusted slurry can then be mixed with an antibacterial metal ion-containing solution to ion-exchange the AAS in the slurry. As the ion exchange method, a method similar to method (1) can be used as is.

尚、本発明に用いる抗菌性無機粉体は、水分含有量を0
.5〜20%、好ましくは1〜10%とすることが、良
好な分散性を得るという観点から好ましい。更に抗菌性
無機粉体の粒子径には特に制限はないが、より少量の粉
体で分散体に高い抗菌力を付与するという観点からは、
粒子径は比較的小さいことが好ましい。粉体の粒子径は
、例えば0.04〜20μm1好ましくは0.1〜10
μmであることができる。
The antibacterial inorganic powder used in the present invention has a moisture content of 0.
.. The content is preferably 5 to 20%, preferably 1 to 10%, from the viewpoint of obtaining good dispersibility. Furthermore, there is no particular restriction on the particle size of the antibacterial inorganic powder, but from the perspective of imparting high antibacterial activity to the dispersion with a smaller amount of powder,
Preferably, the particle size is relatively small. The particle size of the powder is, for example, 0.04 to 20 μm, preferably 0.1 to 10 μm.
It can be μm.

本発明に用いられる「樹脂」としては、例えば、ポリウ
レタン系樹脂、ポリアクリル樹脂、シリコン樹脂、エポ
キシ樹脂、アセタール樹脂、ケトン樹脂、アルキルカー
バメイト樹脂、尿素樹脂、メラミン樹脂、酢酸ビニル樹
脂、塩化ビニル樹脂、ナイロン樹脂、天然ゴム、ニトリ
ルゴム(NBR)、スチレンブタジェンゴム(SBR)
、クロロプレンゴム(CR)等を挙げることができる。
Examples of the "resin" used in the present invention include polyurethane resin, polyacrylic resin, silicone resin, epoxy resin, acetal resin, ketone resin, alkyl carbamate resin, urea resin, melamine resin, vinyl acetate resin, and vinyl chloride resin. , nylon resin, natural rubber, nitrile rubber (NBR), styrene butadiene rubber (SBR)
, chloroprene rubber (CR), and the like.

このうち本発明において透湿性や帯電防止性を同時にも
つという点からポリウレタン樹脂、アクリル樹脂、シリ
コン樹脂又はそれらの変性樹脂が特に望ましい。
Among these, polyurethane resins, acrylic resins, silicone resins, or modified resins thereof are particularly preferred in the present invention because they simultaneously have moisture permeability and antistatic properties.

本発明においては、溶媒として100℃以上の沸点を有
する高沸点溶剤及び100℃以下の沸点を有する低沸点
溶剤を用いる。
In the present invention, a high boiling point solvent having a boiling point of 100° C. or higher and a low boiling point solvent having a boiling point of 100° C. or lower are used as the solvent.

上記高沸点溶剤の例としては、水(100℃)トルエン
(110,6℃)、0−キシレン(144,4℃)、m
−キシレン(139,1℃)、p−キシレン(138,
4℃)、酢酸ブチル(126,3℃)、メチルイゾブチ
ルケトン(115,8℃)、メチルセロソルブ(124
,5℃)、エチルセロソルブ(135,1℃)、エチル
セロソルブアセテート(155℃)、N、N−ジメチル
ホルムアミド(153℃)、テトラクロルエチレン(1
21,2℃)、シクロヘキサン(156℃)、ミネラル
スピリット(130〜200℃)等を挙げることができ
、中でもN、N−ジメチルホルムアミドが好ましい(但
し、カッコ内は沸点を示す)。
Examples of the above-mentioned high boiling point solvents include water (100°C), toluene (110.6°C), 0-xylene (144.4°C), m
-xylene (139,1℃), p-xylene (138,
4°C), butyl acetate (126.3°C), methyl isobutyl ketone (115.8°C), methyl cellosolve (124°C),
, 5°C), ethyl cellosolve (135, 1°C), ethyl cellosolve acetate (155°C), N,N-dimethylformamide (153°C), tetrachlorethylene (1°C),
21.2°C), cyclohexane (156°C), and mineral spirits (130 to 200°C), among which N,N-dimethylformamide is preferred (note that the boiling point is shown in parentheses).

又、上記低沸点溶剤の例としては、酢酸エチル(79℃
)、メチルエチルケトン(79,6℃)、イソプロピル
アルコール(82,3℃)、ジクロルメタン(89,8
℃)、トリクロルエチレン(86,7℃)、ジクロルエ
タン(83,5℃)、トリクロルエタン(74,1℃)
、アセトン(56,3℃)及び水(100℃)等を挙げ
ることができ、中でもトリクロルエタンが好ましいく但
し、カッコ内は沸点を示す)。
Furthermore, as an example of the above-mentioned low boiling point solvent, ethyl acetate (79°C
), methyl ethyl ketone (79.6°C), isopropyl alcohol (82.3°C), dichloromethane (89.8°C)
℃), trichlorethylene (86.7℃), dichloroethane (83.5℃), trichloroethane (74.1℃)
, acetone (56.3°C) and water (100°C), among which trichloroethane is preferred (note that the boiling point is shown in parentheses).

尚、本発明においては、高沸点溶剤として上記溶剤の1
種又は2種以上、低沸点溶剤として上記溶剤の1種又は
2種以上を用いることがきる。
In the present invention, one of the above solvents is used as the high boiling point solvent.
One or more of the above solvents can be used as the low boiling point solvent.

ただし、本発明においては、高沸点溶剤の沸点と低沸点
溶剤の沸点の差が5℃以上、好ましくは9℃以上となる
ような組合せをする。
However, in the present invention, the combination is such that the difference between the boiling point of the high boiling point solvent and the boiling point of the low boiling point solvent is 5°C or more, preferably 9°C or more.

本発明においては上記のような高沸点溶剤及び低沸点溶
剤を併用することによって、キユアリング工程の初期に
低沸点溶媒が揮敗し、塗膜化し、その後高沸点溶媒が徐
々に揮散する際に抗菌性無機粉体の表面が露出するため
、高い抗菌力が得られる。
In the present invention, by using a high boiling point solvent and a low boiling point solvent together as described above, the low boiling point solvent evaporates at the beginning of the curing process and forms a coating film, and then when the high boiling point solvent gradually evaporates, the antibacterial effect is achieved. Because the surface of the inorganic powder is exposed, high antibacterial activity can be obtained.

本発明においては、前記抗菌性無機粉体、樹脂及び2種
以上の溶剤を混合するか、又は予じめ抗菌性無機粉体に
高沸点溶媒を吸着した後に混合して、樹脂組成物を調製
する。この混合においては抗菌性無機粉体を含む樹脂組
成物の粘度が1000〜200000cP 、好ましく
は2000〜500000cpであることが、ナイフコ
ーターまたはロールコータ−による塗布作業を容易にし
、均一な樹脂組成物を比較的短時間に得られるという観
点から好ましい。
In the present invention, a resin composition is prepared by mixing the antibacterial inorganic powder, resin, and two or more types of solvents, or by adsorbing a high boiling point solvent to the antibacterial inorganic powder in advance and then mixing them. do. In this mixing, the viscosity of the resin composition containing the antibacterial inorganic powder should be 1,000 to 200,000 cP, preferably 2,000 to 500,000 cP to facilitate coating with a knife coater or roll coater and to form a uniform resin composition. It is preferable from the viewpoint that it can be obtained in a relatively short time.

本発明に用いる抗菌性無機粉体、樹脂、高沸点溶剤及び
低沸点溶剤を含有する樹脂組成物中の抗菌性無機粉体の
含有量は、樹脂固形分重量に対して0.1〜30%、好
ましくは1〜20%とすることが高い抗菌力を示すとい
う観点から適当である。
The content of the antibacterial inorganic powder in the resin composition containing the antibacterial inorganic powder, resin, high boiling point solvent, and low boiling point solvent used in the present invention is 0.1 to 30% based on the solid weight of the resin. , preferably 1 to 20%, from the viewpoint of exhibiting high antibacterial activity.

さらに、樹脂及び溶剤(高沸点溶剤及び低沸点溶剤)の
重量比は、例えば5〜55:95〜45(樹脂:溶剤)
であることが樹脂組成物の粘度を前記範囲とし、かつ高
い抗菌力を発揮させるという観点から好ましい。又、高
沸点溶剤及び低沸点溶剤の重量比は5〜80:80〜5
(高沸点溶剤:低沸点溶剤)、好ましくは15〜70ニ
ア0〜15であることが好ましい。高沸点溶剤及び低沸
点溶剤の重量比は、上記範囲にすることにより、より高
い抗菌力を得ることができる。
Furthermore, the weight ratio of the resin and the solvent (high boiling point solvent and low boiling point solvent) is, for example, 5 to 55:95 to 45 (resin: solvent).
This is preferable from the viewpoint of keeping the viscosity of the resin composition within the above range and exhibiting high antibacterial activity. In addition, the weight ratio of the high boiling point solvent and the low boiling point solvent is 5 to 80:80 to 5.
(high boiling point solvent: low boiling point solvent), preferably 15 to 70 nia 0 to 15. Higher antibacterial activity can be obtained by setting the weight ratio of the high boiling point solvent and the low boiling point solvent to the above range.

本発明に用いる樹脂組成物は、種々の混合機を用いて製
造することができ、例えばすり分散力の高いパンバリミ
キサー、2本ロールミル、及ヒ二一グーやすり分散力の
弱い3本ロールミル、コロイドミル、ミキサー、デイス
パー、サンドミル及びボールミル等も使用できる。
The resin composition used in the present invention can be manufactured using various mixers, such as a Pan Bali mixer with high sand dispersion power, a two-roll mill, and a three-roll mill with low sand dispersion power. Colloid mills, mixers, dispers, sand mills, ball mills, etc. can also be used.

また樹脂組成物中には約1〜15重量%の架橋剤、例え
ばポリイミン樹脂、ブチル化メラミン樹脂、エポキシ樹
脂、およびインシアネートが含まれていてもよく、また
必要に応じて着色剤、安定剤、セル調整剤(界面活性剤
)等を含んでいてもよい。
The resin composition may also contain about 1 to 15% by weight of crosslinking agents, such as polyimine resins, butylated melamine resins, epoxy resins, and incyanates, and colorants and stabilizers as necessary. , a cell conditioner (surfactant), etc. may be included.

本発明において、基布として用いられる繊維材料は、本
発明の製造法によって、変質したりすることのないもの
であれば、その種類、形状等に格別の限定はない。例え
ば、木綿、羊毛、絹、麻などの天然繊維、レーヨン、キ
ュプラなどのセルロース繊維、ナイロン6、ナイロン6
6などのようなポリアミド繊維、ポリエチレンテレフタ
レート繊維などのようなポリエステル繊維、ポリアクリ
ルニトリル繊維などのようなアクリル繊維、水不溶化さ
れたポリビニルアルコール繊維、セルロースアセテート
繊維などから選ばれた少なくとも1種の繊維からなる織
布、編布、不織布、ネットおよびこれらの複合体などを
挙げることができる。
In the present invention, there are no particular limitations on the type, shape, etc. of the fiber material used as the base fabric, as long as it is not altered in quality by the manufacturing method of the present invention. For example, natural fibers such as cotton, wool, silk, and linen, cellulose fibers such as rayon and cupro, nylon 6, and nylon 6.
At least one type of fiber selected from polyamide fibers such as 6, polyester fibers such as polyethylene terephthalate fibers, acrylic fibers such as polyacrylonitrile fibers, water-insolubilized polyvinyl alcohol fibers, cellulose acetate fibers, etc. Examples include woven fabrics, knitted fabrics, nonwoven fabrics, nets, and composites thereof.

本発明の製造法(A法)においては、まず第1に前記樹
脂組成物を基布に適用する。該適用方法には特に制限は
なく、抗菌性無機粉体等の分解または溶解を引き起こす
ものでなければいずれの方法も用いることができる。適
用方法としてはスプレーコーティング(噴霧)、ナイフ
コーティング(方形コーティング機)、グラビアコーテ
ィング(グラビア印刷と同様)、ロールコーティング(
ローラー上で付着)、含浸コーティング(液浸漬後搾液
)等を例示できる。
In the manufacturing method (method A) of the present invention, first of all, the resin composition is applied to a base fabric. There are no particular restrictions on the application method, and any method can be used as long as it does not cause decomposition or dissolution of the antibacterial inorganic powder. Application methods include spray coating (atomization), knife coating (square coating machine), gravure coating (same as gravure printing), and roll coating (
(adhering on a roller), impregnation coating (squeezing after dipping in liquid), etc.

樹脂組成物の適用量は、用途等により種々選択できるが
、例えば5〜600g/m’、好ましくは10〜400
g/m″とすることが適当である。
The amount of the resin composition to be applied can be variously selected depending on the use etc., but for example, 5 to 600 g/m', preferably 10 to 400 g/m'.
g/m'' is appropriate.

次に、適用された樹脂組成物を硬化させる。硬化法とし
ては、ドライ・キユアリング(例えば通風式ドライヤー
を使用する)及びスチーム・キユアリング(例えば過熱
蒸気を使用する)を挙げることができる。さらに、架橋
剤を前記樹脂組成物に添加しておくこともでき、又前記
樹脂として放射線重合性樹脂を用い放射線照射すること
によっても行うことができる。具体的には、ドライキユ
アリングは、例えば50〜180℃で30秒〜10分間
の条件で行うことができる。
Next, the applied resin composition is cured. Curing methods can include dry curing (eg, using a draft dryer) and steam curing (eg, using superheated steam). Furthermore, a crosslinking agent can be added to the resin composition, or a radiation polymerizable resin can be used as the resin and irradiated with radiation. Specifically, dry curing can be performed, for example, at 50 to 180°C for 30 seconds to 10 minutes.

さらに上記適用及び硬化を同時に行うこともでき、その
ような方法として、例えばキャスティング法(例えば溶
液を回転する支持体に流延する方法)、エキストルージ
ョン法(例えば加熱溶解した樹脂をT型ダイスから押出
す方法)、カレンダー法(例えば2本以上のロール間で
圧延する方法)、延伸法(例えば二軸ロール等で延伸す
る方法)等を挙げることができる。
Furthermore, the above-mentioned application and curing can be carried out simultaneously, and examples of such methods include, for example, a casting method (e.g., a method in which a solution is cast onto a rotating support), an extrusion method (e.g., a method in which a heated melted resin is passed through a T-shaped die) Examples include an extrusion method), a calendar method (for example, a method of rolling between two or more rolls), a stretching method (for example, a method of stretching with biaxial rolls, etc.).

又、本発明の製造法(B法)においては、前記樹脂組成
物からフィルムを形成する。フィルムの形成は、公知の
方法(例えば押出し法、ロールナイフ法、延伸法等)に
より行うことができ、フィルム形成時の樹脂組成物の硬
化は、前記A法と同様に行うことができる。次いで得ら
れたフィルムを基布に被覆する。被覆法としては、エキ
ストルージョンラミネート法(溶融フィルムを押出し、
冷却固化する)、ホットメルトラミネート法(加熱塗布
する)、ドライラミネート法(フィルム上に接着剤を固
化後圧着する)、ウェットラミネート(溶剤を含んだ水
溶性接着剤を塗布し圧着する)等を挙げることができる
。尚本発明(B法)においてはフィルムの形成と基布へ
の被覆を同時に行うこともできる。
Moreover, in the production method (Method B) of the present invention, a film is formed from the resin composition. The film can be formed by a known method (for example, an extrusion method, a roll knife method, a stretching method, etc.), and the resin composition can be cured in the same manner as in Method A above. The resulting film is then applied to a base fabric. The coating method is extrusion lamination (extrusion of molten film,
hot melt lamination method (heat applied), dry lamination method (adhesive is applied to the film by pressure after solidification), wet lamination (applyed with a water-soluble adhesive containing a solvent and then pressure bonded), etc. can be mentioned. In the present invention (method B), the formation of the film and the coating on the base fabric can be performed simultaneously.

本発明によって得られる抗菌性材料は種々の繊維製品と
して利用できる。例えば医療用白衣、オペ衣(手術衣)
、食肉加工作業衣等のユニフォーム類、スポーツ用衣料
類、絨耗、カーペット、バックサイジングなどの敷物類
、シーツ、ペットカバー、枕カバーなどの装寝衣料類、
フキン、エプロン、テーブルクロスなどの台所用品類、
オムツカバー、壁紙、クロス等に使用できる。
The antibacterial material obtained by the present invention can be used as various textile products. For example, medical white coats, operating gowns (surgical gowns)
, uniforms such as meat processing work clothes, sports clothing, carpets, rugs such as back sizing, sleeping clothing such as sheets, pet covers, pillow cases, etc.
Kitchen utensils such as dishcloths, aprons, tablecloths,
Can be used for diaper covers, wallpaper, cloths, etc.

以下本発明を実施例により更に詳しく説明する。The present invention will be explained in more detail below with reference to Examples.

参考例(抗菌性ゼオライトの調製) 110℃で加熱乾燥したA−型ゼオライド粉末(Na2
0・Al1(]+・1.9St02・xH2O:平均粒
径1.5 μm )1 kgに水を加えて、183βの
スラリーとし、その後攪拌して脱気し、さらに適量の0
.5N硝酸溶液と水とを加えてpHを5〜7に調整し、
全容を1.81のスラリーとした。次にイオン交換の為
、0、015 Nの硝酸銀溶液31を加えて全容を4.
8βとし、このスラリー液を40〜60℃に保持し24
時間攪拌しつつ平衡状態に到達させた状態に保持した。
Reference example (preparation of antibacterial zeolite) A-type zeolide powder (Na2
Add water to 1 kg of 0・Al1(]+・1.9St02・xH2O: average particle size 1.5 μm) to make a slurry of 183β, then stir and degas, and then add an appropriate amount of 0
.. Adjust the pH to 5-7 by adding 5N nitric acid solution and water,
The entire slurry was made into a 1.81 slurry. Next, for ion exchange, 0.015N silver nitrate solution 31 was added and the entire volume was adjusted to 4.
8β, and this slurry liquid was maintained at 40 to 60°C and heated to 24°C.
The mixture was kept stirring for a period of time to reach an equilibrium state.

イオン交換終了後ゼオライト粉を濾過し温水でゼオライ
ト相中の過剰の銀イオンがなくなるまで水洗した。次に
サンプルを110℃で加  −熱乾燥し、抗菌性ゼオラ
イト粉体サンプルを得た。
After the ion exchange was completed, the zeolite powder was filtered and washed with warm water until excess silver ions in the zeolite phase disappeared. Next, the sample was heated and dried at 110°C to obtain an antibacterial zeolite powder sample.

得られたサンプルは銀を2.5%含有したものであった
The resulting sample contained 2.5% silver.

実施例1(ラミネートフィルム加工) 基布として東し製50デニール、32フイラメントのポ
リエステル100%のフィラメント糸で作った天竺編物
を用いた。下記の樹脂組成物1を離型紙に厚さ60μm
(ウェット60g/m″)でコーティングし、ドライヤ
ーで120〜135℃で2分間乾燥させてフィルムとし
た。この上に下記の樹脂組成物2を70g/m’塗布し
た後、上記基布を置きラミネートした。ドライヤーにて
120〜135℃で2分間乾燥しラミネート布を得た。
Example 1 (Laminated film processing) As a base fabric, a jersey knitted fabric made of 50 denier, 32 filament 100% polyester filament yarn manufactured by Toshi Co., Ltd. was used. Apply the following resin composition 1 to a release paper with a thickness of 60 μm.
(wet 60g/m'') and dried with a dryer at 120-135℃ for 2 minutes to form a film.After applying 70g/m' of the following resin composition 2 on top of this, the above base fabric was placed. The cloth was laminated and dried in a dryer at 120 to 135° C. for 2 minutes to obtain a laminated cloth.

同様の条件にて抗菌性無機粉体を含有しないラミネート
布も作成した。
A laminate cloth containing no antibacterial inorganic powder was also produced under similar conditions.

(樹脂組成物1) トルエン(bpllo、6℃)    20部抗菌性無
機粉体°(参考例)       3部(樹脂組成物2
) アセトン(b p 56.3℃)      10部ト
ルエン(bpllo、6℃)    50部実施例2(
コーティング加工) ユニチカ製綿100%紡績糸織物の織組織、経糸60番
手、緯糸60番手、打込密度、経112本/2.54c
m、 IJil OS本/2.54cmの平織布に下記
の樹脂組成物3をナイフコーター機を用いてコーティン
グし、予備乾燥として100℃で2分間加熱した。その
後140〜150℃で1分間キニアリングしてコーティ
ング布を得た。同様の条件にて抗菌性無機粉体を含有し
ないコーティング布も作成した。
(Resin composition 1) Toluene (bpllo, 6°C) 20 parts Antibacterial inorganic powder (Reference example) 3 parts (Resin composition 2
) Acetone (bp 56.3°C) 10 parts Toluene (bpllo, 6°C) 50 parts Example 2 (
Coating processing) Unitika's 100% cotton spun yarn fabric weaving structure, warp count 60, weft count 60, batting density, warp 112/2.54c
A 2.54 cm plain woven fabric was coated with the following resin composition 3 using a knife coater machine, and heated at 100° C. for 2 minutes as pre-drying. Thereafter, kinearing was performed at 140 to 150° C. for 1 minute to obtain a coated cloth. A coated cloth containing no antibacterial inorganic powder was also prepared under similar conditions.

(樹脂組成物3) 1.1.1−トリクロロエタン     50部(b 
p 86.7℃) トルエン(bpllo、6℃)    35部イソシア
ネート           1部(HL;日本ポリウ
レタン) 抗菌性無機粉体(参考例)      3部実施例3(
プリント加工) ポリエステルパレス(50デニール、36フイラメント
)に下記の樹脂組成物4を印捺した後、110℃で2分
間予備乾燥、さらに130〜150℃で5分間熱処理し
プリント布を得た。同様の条件にて抗菌性無機粉体を含
有しないプリント布も作成した。
(Resin composition 3) 1.1.1-trichloroethane 50 parts (b
p 86.7°C) Toluene (bpllo, 6°C) 35 parts Isocyanate 1 part (HL; Japan Polyurethane) Antibacterial inorganic powder (reference example) 3 parts Example 3 (
Printing Process) After printing the following resin composition 4 on a polyester palace (50 denier, 36 filaments), it was pre-dried at 110°C for 2 minutes and further heat-treated at 130-150°C for 5 minutes to obtain a printed cloth. A printed cloth containing no antibacterial inorganic powder was also produced under similar conditions.

(樹脂組成物4) ジクロルエタン(b p 83.5℃)  10部トル
エン(bpHo、6℃)     40!抗菌性無機粉
体(参考例)      3部実施例4(抗菌力テスト
) 実施例1〜3で得た布について、加工直後のものと洗濯
(JIS−L−0217−103法)を50回行った物
について抗菌力の比較試験を行った。
(Resin composition 4) Dichloroethane (bp 83.5°C) 10 parts Toluene (bpHo, 6°C) 40! Antibacterial inorganic powder (reference example) 3 parts Example 4 (antibacterial activity test) The fabrics obtained in Examples 1 to 3 were washed 50 times (JIS-L-0217-103 method) with those immediately after processing. A comparative test was conducted on the antibacterial activity of these products.

各市に大腸菌(105個/ml)15mt’降り掛け、
37℃で18時間培養した。菌液を生理食塩水にて洗い
流し、この液について存在する大腸菌数を測定した。結
果を表1に示す。
15 mt' of Escherichia coli (105 cells/ml) fell on each city,
The cells were cultured at 37°C for 18 hours. The bacterial solution was washed away with physiological saline, and the number of E. coli present in this solution was measured. The results are shown in Table 1.

比較例1 実施例1の樹脂組成物1及び2の代りに、下記の樹脂組
成物5及び6をそれぞれ用いた他は実施例1と同様にし
てラミネート布を得た。
Comparative Example 1 A laminate cloth was obtained in the same manner as in Example 1, except that the following resin compositions 5 and 6 were used in place of resin compositions 1 and 2 in Example 1, respectively.

(樹脂組成物5) メチルエチルケトン        45部抗菌性無機
粉体(参考例)      3部(樹脂組成物6) トルエン          60部 N、N−ジメチルホルムアミド   15部抗菌性無機
粉体(参考例)      3部比較例2 実施例2の樹脂組成物3の代りに下記の樹脂組成物7を
用いた他は実施例2と同様にしてコーティング布を得た
(Resin composition 5) Methyl ethyl ketone 45 parts Antibacterial inorganic powder (Reference example) 3 parts (Resin composition 6) Toluene 60 parts N,N-dimethylformamide 15 parts Antibacterial inorganic powder (Reference example) 3 parts Comparative example 2 A coated cloth was obtained in the same manner as in Example 2, except that Resin Composition 7 below was used instead of Resin Composition 3 in Example 2.

(樹脂組成物7) 1.1.1−)リクロロエタン     80部抗菌性
無機粉体(参考例)      3部比較例3 実施例、3の樹脂組成物4の代りに下記の樹脂組成物8
を用いた他は実施例3と同様にしてプリント布を得た。
(Resin composition 7) 1.1.1-) Lichloroethane 80 parts Antibacterial inorganic powder (reference example) 3 parts Comparative example 3 The following resin composition 8 was used instead of resin composition 4 in Example 3.
A printed cloth was obtained in the same manner as in Example 3 except that the following was used.

(樹脂組成物8) ブタジェンラテックス       25部(Fixe
r45ON;大日本インキ)顔料          
     io部(白色;Ryudye−トTA705
;大日本インキ)乳化増粘剤            
65部(Reducer400 :大日本インキ)トル
エン          50部 抗菌性無機粉体(参考例)      3部比較例4 比較例1〜3で得た各市の抗菌力の比較試験を実施例4
と同様にして行った。結果を表1に示す。
(Resin composition 8) Butadiene latex 25 parts (Fixe
r45ON; Dainippon Ink) pigment
io part (white; Ryudye-to TA705
; Dainippon Ink) Emulsifying thickener
65 parts (Reducer 400: Dainippon Ink) Toluene 50 parts Antibacterial inorganic powder (reference example) 3 parts Comparative Example 4 A comparative test of the antibacterial activity of each city obtained in Comparative Examples 1 to 3 was conducted in Example 4.
I did it in the same way. The results are shown in Table 1.

表     1 実施例5 実施例2の樹脂組成物3の溶剤(1,1,1−) ’J
クロロエタン及びトルエン)の代りに表2に示す2種の
溶剤を各42.5部用い(但し、単独の溶剤を用いた場
合には溶剤量を85部とした)、かつ抗菌性無機粉体を
0.5部とした他は実施例2と同様にしてコーティング
布を作成し、その抗菌力を実施例4と同様にして試験し
た。結果を表2に示す。
Table 1 Example 5 Solvent (1,1,1-)'J of resin composition 3 of Example 2
Instead of chloroethane and toluene, 42.5 parts each of the two solvents shown in Table 2 were used (however, if a single solvent was used, the amount of solvent was 85 parts), and antibacterial inorganic powder was used. A coated cloth was prepared in the same manner as in Example 2, except that the amount was changed to 0.5 parts, and its antibacterial activity was tested in the same manner as in Example 4. The results are shown in Table 2.

実施例6 基布として東し製50デニール、32フイラメントのポ
リエステル100%フィラメント糸で作った天竺絹物を
用いた。下記の樹脂組成物1を離型紙に厚さ60μm(
ウェット60g/m’)でコーティングし、その上に上
記基布を置き、ドライヤーで120〜135℃で2分間
乾燥させてラミネート布を得た。抗菌性試験を実施例4
と同様に行いその結果を表3に示す。
Example 6 As a base fabric, jersey silk fabric made from Toshi's 50 denier, 32 filament 100% polyester filament yarn was used. The following resin composition 1 was spread on release paper to a thickness of 60 μm (
The base fabric was placed thereon and dried at 120 to 135°C for 2 minutes using a dryer to obtain a laminate fabric. Antibacterial test Example 4
The results are shown in Table 3.

比較例5.6 実施例6の樹脂組成物1の溶剤(メチルエチルケl−ン
、トルエン及びN、N−ジメチルホルムアミド)の代り
にメチルエチルケトン45部(比較例5)又はトルエン
30部及びN、N−ジメチルホルムアミド15部(比較
例6)を用いた他は実施例6と同様にしてラミネート布
を得、その抗菌力を求めた(表3)。
Comparative Example 5.6 45 parts of methyl ethyl ketone (Comparative Example 5) or 30 parts of toluene and N,N- in place of the solvent (methyl ethyl coke, toluene and N,N-dimethylformamide) in Resin Composition 1 of Example 6. A laminate cloth was obtained in the same manner as in Example 6, except that 15 parts of dimethylformamide (Comparative Example 6) was used, and its antibacterial activity was determined (Table 3).

実施例7 樹脂組成物lの代りに樹脂組成物2を用いた以外は実施
例6と同様にしてラミネート布を得、その抗菌力を求め
たく表3)。
Example 7 A laminate cloth was obtained in the same manner as in Example 6 except that resin composition 2 was used instead of resin composition 1, and its antibacterial activity was determined (Table 3).

比較例7.8 実施例7の樹脂組成物2の溶剤(トルエン、N。Comparative example 7.8 Solvent of resin composition 2 of Example 7 (toluene, N.

N−ジメチルホルムアミド及びジメチルケトン)の代り
にジメチルケトン75部(比較例7)又はトルエン60
部及びN、N−ジメチルホルムアミド15部(比較例8
)を用いた他は実施例7と同様にしてラミネート布を得
、その抗菌力を求めた(表3)。
75 parts of dimethyl ketone (Comparative Example 7) or 60 parts of toluene instead of N-dimethylformamide and dimethyl ketone)
parts and 15 parts of N,N-dimethylformamide (Comparative Example 8
) was used in the same manner as in Example 7 to obtain a laminate cloth, and its antibacterial activity was determined (Table 3).

比較例9.10 実施例2の樹脂組成物3の溶剤(1,1,1−) !J
クロロエタン及びトルエン)の代りに1.1.1−)リ
クロロエタン85部(比較例9)又はトルエン85部(
比較例10)を用いた他は実施例2と同様にしてコーテ
ィング布を得、その抗菌力を求めた(表4)。
Comparative Example 9.10 Solvent (1,1,1-) of Resin Composition 3 of Example 2! J
85 parts of 1.1.1-)lichloroethane (Comparative Example 9) or 85 parts of toluene (1.1.1-) instead of chloroethane and toluene)
A coated cloth was obtained in the same manner as in Example 2, except that Comparative Example 10) was used, and its antibacterial activity was determined (Table 4).

比較例11.12 実施例3の樹脂組成物4の溶剤(トルエン及びジクロル
エタン)の代りにジクロルエタン50部(比較例11)
又はトルエン50部(比較例12)を用いた他は実施例
3と同様にしてプリント布を得、その抗菌力を求めたく
表4)。
Comparative Example 11.12 50 parts of dichloroethane instead of the solvent (toluene and dichloroethane) in Resin Composition 4 of Example 3 (Comparative Example 11)
Alternatively, a printed cloth was obtained in the same manner as in Example 3, except that 50 parts of toluene (Comparative Example 12) was used, and its antibacterial activity was determined (Table 4).

実施例8 (ラミネート加工法) 基布として東し製50デニール、32フイラメントのポ
リエステル100%天竺編物を用いた。
Example 8 (Lamination Processing Method) A 50 denier, 32 filament 100% polyester jersey knitted fabric manufactured by Toshi Co., Ltd. was used as the base fabric.

下表の樹脂組成物9〜11をそれぞれ調製した。Resin compositions 9 to 11 shown in the table below were prepared, respectively.

樹脂組成物を3本ロールオフセフトグラビアコータを用
いて、離型紙上に塗布し、次いで70〜100℃で1分
間乾燥した。尚、樹脂組成物の塗布量は50g/rn”
とした。次いで乾燥した樹脂組成物に基布をのせ、熱ロ
ール(120〜140℃)にて圧力をかけてラミネート
した。
The resin composition was applied onto a release paper using a three roll off theft gravure coater, and then dried at 70 to 100°C for 1 minute. The amount of resin composition applied was 50g/rn"
And so. Next, a base fabric was placed on the dried resin composition and laminated by applying pressure with a hot roll (120 to 140°C).

(樹脂組成物9) ポリウレタン樹脂         100部(しイミ
ン140603;大日精化工業製)トルエン     
     35部 メチルエチルケトン        35部抗菌性無機
粉体           6部(樹脂組成物10) ポリウレタン樹脂         100部(レサミ
ン[JD603 ;大日精化工業製)トルエン    
     70部 抗菌性無機粉体           6部(樹脂組成
物11) ポリウレタン樹脂         100部(レザミ
ンLID603;大日精化工業製)メチルエチルケトン
        70部抗菌性無機粉体       
    6部各樹脂組成物で得たラミネート布について
実施例4と同様にして抗菌力を測定した。(大腸菌数)
表     5 *(9)の樹脂塑性より抗菌成分をぬいたもの〔発明の
効果〕 本発明によれば、比較的容易に高い抗菌力を有し、かつ
抗菌力の維持性に優れた抗菌性材料を提供することがで
きる。
(Resin composition 9) Polyurethane resin 100 parts (Shiimine 140603; manufactured by Dainichiseika Chemical Industry Co., Ltd.) Toluene
35 parts Methyl ethyl ketone 35 parts Antibacterial inorganic powder 6 parts (Resin composition 10) Polyurethane resin 100 parts (Resamin [JD603; manufactured by Dainichiseika Chemical Industries, Ltd.) Toluene
70 parts Antibacterial inorganic powder 6 parts (Resin composition 11) Polyurethane resin 100 parts (Rezamin LID603; manufactured by Dainichiseika Industries) Methyl ethyl ketone 70 parts Antibacterial inorganic powder
Antibacterial activity was measured in the same manner as in Example 4 for laminate cloths obtained using 6 parts of each resin composition. (Number of E. coli)
Table 5 *Resin plasticity of (9) minus antibacterial component [Effects of the invention] According to the present invention, an antibacterial material that has high antibacterial power relatively easily and has excellent maintainability of antibacterial power can be provided.

Claims (4)

【特許請求の範囲】[Claims] (1)抗菌性無機粉体、樹脂、沸点が100℃以上であ
る高沸点溶剤及び沸点が100℃以下である低沸点溶剤
を含有する樹脂組成物を基布に適用し、次いで基布に適
用した樹脂組成物を硬化させること及び上記高沸点溶剤
の沸点と上記低沸点溶剤の沸点の差が5℃以上であるこ
とを特徴とする抗菌性材料の製造法。
(1) A resin composition containing an antibacterial inorganic powder, a resin, a high boiling point solvent with a boiling point of 100°C or higher, and a low boiling point solvent with a boiling point of 100°C or lower is applied to the base fabric, and then applied to the base fabric. A method for producing an antibacterial material, characterized by curing the resin composition and the difference between the boiling point of the high boiling point solvent and the boiling point of the low boiling point solvent being 5° C. or more.
(2)抗菌性無機粉体が抗菌性ゼオライト又は抗菌性無
定形アルミノケイ酸塩である請求項(1)記載の製造法
(2) The production method according to claim (1), wherein the antibacterial inorganic powder is an antibacterial zeolite or an antibacterial amorphous aluminosilicate.
(3)抗菌性無機粉体、樹脂、沸点が100℃以上であ
る高沸点溶剤及び沸点が100℃以下である低沸点溶剤
を含有する樹脂組成物からフィルムを形成し、次いで得
られたフィルムを基布に被覆すること及び上記高沸点溶
剤の沸点及び低沸点溶剤の沸点の差が5℃以上であるこ
とを特徴とする抗菌性材料の製造法。
(3) A film is formed from a resin composition containing an antibacterial inorganic powder, a resin, a high boiling point solvent with a boiling point of 100°C or higher, and a low boiling point solvent with a boiling point of 100°C or lower, and then the obtained film is A method for producing an antibacterial material, characterized in that the antibacterial material is coated on a base fabric, and the difference between the boiling points of the high boiling point solvent and the low boiling point solvent is 5° C. or more.
(4)抗菌性無機粉体が抗菌性ゼオライト又は抗菌性無
定形アルミノケイ酸塩である請求項(3)記載の製造法
(4) The production method according to claim (3), wherein the antibacterial inorganic powder is an antibacterial zeolite or an antibacterial amorphous aluminosilicate.
JP63086181A 1988-04-07 1988-04-07 Manufacturing method of antibacterial material Expired - Lifetime JP2598957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63086181A JP2598957B2 (en) 1988-04-07 1988-04-07 Manufacturing method of antibacterial material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63086181A JP2598957B2 (en) 1988-04-07 1988-04-07 Manufacturing method of antibacterial material

Publications (2)

Publication Number Publication Date
JPH01260068A true JPH01260068A (en) 1989-10-17
JP2598957B2 JP2598957B2 (en) 1997-04-09

Family

ID=13879594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63086181A Expired - Lifetime JP2598957B2 (en) 1988-04-07 1988-04-07 Manufacturing method of antibacterial material

Country Status (1)

Country Link
JP (1) JP2598957B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130598U (en) * 1991-05-23 1992-11-30 株式会社ビツグマリン wet suit
JPH08246334A (en) * 1995-03-06 1996-09-24 Toyobo Co Ltd Antimicrobial and deodorant web
US5614555A (en) * 1992-09-18 1997-03-25 Ono Pharmaceutical Co., Ltd. Amidinophenol derivatives
CN111021070A (en) * 2019-12-06 2020-04-17 武汉纺织大学 A kind of multi-layer fabric with polyurethane coating and preparation method thereof
CN113863023A (en) * 2021-10-18 2021-12-31 武汉纺织大学 Lasting antibacterial leather and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951757B1 (en) * 2008-07-16 2010-04-08 한국세라믹기술원 Fiber coating composition and textile product containing zeolite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270200A (en) * 1975-12-09 1977-06-10 Yuuichi Imagawa Production of fiber processing article with deoeorizing property
JPS5649078A (en) * 1979-09-26 1981-05-02 Nippon Ion Kk Production of novel material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5270200A (en) * 1975-12-09 1977-06-10 Yuuichi Imagawa Production of fiber processing article with deoeorizing property
JPS5649078A (en) * 1979-09-26 1981-05-02 Nippon Ion Kk Production of novel material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130598U (en) * 1991-05-23 1992-11-30 株式会社ビツグマリン wet suit
US5614555A (en) * 1992-09-18 1997-03-25 Ono Pharmaceutical Co., Ltd. Amidinophenol derivatives
US5622984A (en) * 1992-09-18 1997-04-22 Ono Pharmaceutical Company, Limited Amidinophenol derivatives
JPH08246334A (en) * 1995-03-06 1996-09-24 Toyobo Co Ltd Antimicrobial and deodorant web
CN111021070A (en) * 2019-12-06 2020-04-17 武汉纺织大学 A kind of multi-layer fabric with polyurethane coating and preparation method thereof
CN111021070B (en) * 2019-12-06 2022-04-29 武汉纺织大学 Multilayer fabric with polyurethane coating and preparation method thereof
CN113863023A (en) * 2021-10-18 2021-12-31 武汉纺织大学 Lasting antibacterial leather and preparation method thereof
CN113863023B (en) * 2021-10-18 2023-05-09 武汉纺织大学 Durable antibacterial leather and its preparation method

Also Published As

Publication number Publication date
JP2598957B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
US6584668B2 (en) Method of manufacturing yarns and fabrics having a wash-durable non-electrically conductive topically applied metal-based finish
JPH01172301A (en) Production of dispersion containing antibacterial powder
WO2008065110A2 (en) Method for providing textiles with desensitised silver components
JPH01316303A (en) Fungicide for aqueous system
JP2003533613A5 (en)
JPH01260068A (en) Method of manufacturing antibacterial materials
DE2941334A1 (en) TEXTILE MATERIAL
WO2021199049A1 (en) Use of aqueous dispersions of magnesium compounds for functional finishing of textiles
JP3606638B2 (en) Antibacterial textile product and method for producing the same
JPH04194074A (en) Processing of cloth having antibacterial and deodorizing property
JP2810942B2 (en) Manufacturing method of towels having antibacterial properties and water absorbency and repeatedly washing
EP2993252A1 (en) Impregnatable matrix of plant, animal or synthetic origin or mixtures of same, containing a uniformly distributed antimicrobial compound, method for impregnating said matrix with a compound, and use thereof in the production of antimicrobial elements
JP3280135B2 (en) Manufacturing method of antibacterial fiber products
JPH0359175A (en) Production of moisture-permeable material
JP3792984B2 (en) Antibacterial and antifungal processing methods for fibers
JP2000178870A (en) Antibacterial processing method for textile products
JP2001288014A (en) Zinc pyrithione-containing dispersion for antibacterial and antifungal processing and method for antibacterial and antifungal processing of fibers using the dispersion
JPH06100403A (en) Antimicrobial and mildewproofing composition
JP2709942B2 (en) Manufacturing method of work gloves
JP3401076B2 (en) Manufacturing method of antibacterial fiber
JP3558460B2 (en) Antibacterial agent
JPH08205985A (en) Production of antimicrobial matting
DE60123780T2 (en) ANTIMICROBIAL TRANSFER SUBSTRATES AND METHOD FOR THEIR USE
JPH06235116A (en) Antimicrobial fiber and web
JP3949773B2 (en) Antibacterial fiber