JPH06302411A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPH06302411A
JPH06302411A JP5086540A JP8654093A JPH06302411A JP H06302411 A JPH06302411 A JP H06302411A JP 5086540 A JP5086540 A JP 5086540A JP 8654093 A JP8654093 A JP 8654093A JP H06302411 A JPH06302411 A JP H06302411A
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
coercive force
hot
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5086540A
Other languages
Japanese (ja)
Inventor
Sei Arai
聖 新井
Osamu Kobayashi
理 小林
Fumio Takagi
富美男 高城
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5086540A priority Critical patent/JPH06302411A/en
Publication of JPH06302411A publication Critical patent/JPH06302411A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To acquire magnetic characteristic which is higher than conventional one in an R-Fe-B-Ag permanent magnet by casting/hot working method. CONSTITUTION:After hot working is performed at a temperature of 500 deg.C or higher for an R, Fe, B, Ag-based alloy ingot whose 10 to 20% consists of R, 4 to 8% consists of B, 4% or less (exceptng 0) consists of Ag and a remainder thereof consists of Fe and impurities which are inevitable in manufacturing, it is thermally treated at a temperature range of 800 t0 1100 deg.C. Thereby, high characteristic, especially high coercive force can be acquired. Furthermore, Fe is partially displaced with Co of 50% or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、R(ただしRはYを含
む希土類元素の少なくとも1種),Fe,B,Agを原
料基本成分とする永久磁石の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a permanent magnet containing R (where R is at least one kind of rare earth element containing Y), Fe, B and Ag as raw material basic components.

【0002】[0002]

【従来の技術】R−Fe−B系の永久磁石の製造方法の
一つとして、鋳造インゴットを熱間加工して異方性化す
る製造方法が提案されている。
2. Description of the Related Art As one of methods for manufacturing an R-Fe-B system permanent magnet, a manufacturing method has been proposed in which a cast ingot is hot-worked to be anisotropic.

【0003】特開昭64-704号公報には、R,Fe,B,
Cuを基本成分とする合金を溶解・鋳造後、該鋳造イン
ゴットを 500℃以上の温度で熱間加工することにより結
晶粒を微細化し、またその結晶軸(磁化容易軸)を特定
の方向に配向せしめて、該鋳造合金を磁気的に異方性化
することを特徴とする希土類−鉄系永久磁石が開示され
ている。特開平2-250922号公報には、鋳造インゴットを
熱間圧延した後、高温から低温への二段熱処理を施すこ
とにより高特性化を可能とする製造方法が開示されてい
る。
Japanese Patent Laid-Open No. 64-704 discloses R, Fe, B,
After melting and casting an alloy containing Cu as a basic component, the cast ingot is subjected to hot working at a temperature of 500 ° C or higher to refine the crystal grains and to orient the crystal axis (axis of easy magnetization) in a specific direction. At least, a rare earth-iron-based permanent magnet is disclosed which is characterized by magnetically anisotropy of the cast alloy. Japanese Unexamined Patent Publication No. 2-250922 discloses a manufacturing method capable of achieving high characteristics by hot rolling a cast ingot and then performing a two-step heat treatment from high temperature to low temperature.

【0004】添加元素としてAgを採用した従来技術と
しては、特開平2-3206号公報が挙げられる。この特許で
は8〜30%のR、2〜28%のB、6%以下のM(た
だしMはCu,Ag,Au,Znのうち少なくとも1
種)からなるインゴットを熱間加工後、250℃以上で熱
処理を施す製造方法が開示されている。Ag添加の効果
としては、熱間加工時の融点を低下させて、配向度を向
上させるという効果が示されている。
As a conventional technique using Ag as an additive element, Japanese Patent Laid-Open No. 2-3206 can be cited. In this patent, 8 to 30% R, 2 to 28% B, and 6% or less M (where M is at least 1 of Cu, Ag, Au, and Zn).
A manufacturing method is disclosed in which an ingot composed of seeds is hot-worked and then heat-treated at 250 ° C. or higher. As the effect of adding Ag, the effect of lowering the melting point during hot working and improving the degree of orientation is shown.

【0005】[0005]

【発明が解決しようとする課題】R−Fe−B系合金に
Agを添加することによって、確かに熱間加工時の粒界
相の融点は低下する。しかし本発明者らが詳細な調査を
行った結果、前出の特開平2-3206号公報に示されている
組成域にある合金であっても、組成によっては必ずしも
配向度が向上せず、磁気特性が低い値にとどまってしま
う場合があった。
By adding Ag to the R-Fe-B type alloy, the melting point of the grain boundary phase during hot working is certainly lowered. However, as a result of a detailed investigation by the present inventors, even an alloy in the composition range shown in the above-mentioned JP-A No. 2-3206, does not necessarily improve the degree of orientation depending on the composition, In some cases, the magnetic properties remained low.

【0006】また熱処理温度においても、温度範囲を適
当に選択しない場合は保磁力が非常に低い値の留まって
しまうという問題点を有していた。
Further, also in the heat treatment temperature, there is a problem that the coercive force remains at a very low value unless the temperature range is properly selected.

【0007】本発明は、以上の従来技術の欠点を解決す
るものであり、その目的とするところは、高性能かつ低
コストな希土類永久磁石とその製造方法を提供すること
にある。
The present invention solves the above-mentioned drawbacks of the prior art, and an object of the present invention is to provide a high-performance and low-cost rare earth permanent magnet and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】本発明の永久磁石の製造
方法は、原子百分比で10〜20%のR(ただしRはY
を含む希土類元素の少なくとも1種)、4〜8%のB、
4%以下(ただし0を除く)のAg、および残部がFe
およびその他の製造上不可避な不純物からなる合金を、
溶解・鋳造後、該鋳造インゴットを500℃以上の温度で
熱間加工した後、800〜1100℃の温度範囲で熱処理を施
すことを特徴とする。
The method of manufacturing a permanent magnet according to the present invention uses 10 to 20% R in terms of atomic percentage (where R is Y).
At least one of rare earth elements including) 4 to 8% of B,
4% or less (excluding 0) Ag and the balance Fe
And other alloys containing inevitable impurities,
After melting and casting, the cast ingot is hot-worked at a temperature of 500 ° C. or higher, and then heat-treated at a temperature range of 800 to 1100 ° C.

【0009】さらに前記Feの50原子%以下をCoで
置換することを特徴とする。
Further, it is characterized in that 50 atomic% or less of Fe is replaced with Co.

【0010】[0010]

【作用】まず本発明の合金組成域の限定理由について述
べる。Rについては10〜20%とすることが望まし
い。添加量が10%より少ない場合には、主相であるR
2Fe14B相の他に、軟磁性相であるα−Feの磁石組
織中に於ける残存、R2Fe1 7相の形成が起き保磁力を
低下させるとともに、熱間加工温度での液相量の低下を
招いて配向度が上昇せず、磁気特性が不足することにな
る。逆にRが20%より多くなった場合には液相量の過
剰にともない、液体による静水圧応力の増加が起き、主
相結晶粒の一軸配向が妨げられる。
First, the reasons for limiting the alloy composition range of the present invention will be described. R is preferably 10 to 20%. If the addition amount is less than 10%, the main phase R
Other 2 Fe 14 B phase, in remaining magnets tissue of alpha-Fe is a soft phase, with the formation of R 2 Fe 1 7 phase lowers the coercive force occurs, the liquid in the hot working temperature The degree of orientation is not increased due to the decrease in the phase amount, and the magnetic properties are insufficient. On the contrary, when R is more than 20%, the hydrostatic stress due to the liquid increases with the excess amount of the liquid phase, which hinders the uniaxial orientation of the main phase crystal grains.

【0011】B量に関しては4%未満では主相量が十分
でないため磁気的なポテンシャルが低く、またR2Fe
17相などの軟磁性相が出現し易くなり、保磁力の低下を
招く。添加量が8%より多くなると、鋳造インゴットに
おける結晶粒径が粗大となり、熱間加工性が著しく低下
してしまう。
When the amount of B is less than 4%, the amount of main phase is not sufficient, so that the magnetic potential is low, and R 2 Fe
A soft magnetic phase such as the 17th phase is likely to appear, resulting in a decrease in coercive force. If the addition amount is more than 8%, the crystal grain size in the cast ingot becomes coarse and the hot workability is remarkably reduced.

【0012】Agは既に述べたように、熱間加工時に於
ける液相の融点を下げることによって熱間加工性を向上
させる。さらに鋳造組織における主相粒径の微細化も可
能となり、磁気特性の向上に大きく寄与する。しかし添
加量が4%を超える値になると磁性相の減少にともなう
残留磁束密度の低下が起るとともに、保磁力も低下する
ため、添加量は4%以下とすることが望ましい。
As described above, Ag improves the hot workability by lowering the melting point of the liquid phase during hot working. Further, the grain size of the main phase in the cast structure can be reduced, which greatly contributes to the improvement of magnetic properties. However, if the added amount exceeds 4%, the residual magnetic flux density is reduced due to the decrease of the magnetic phase, and the coercive force is also reduced. Therefore, the added amount is preferably 4% or less.

【0013】CoはR−Fe−B系磁石においてキュリ
ー点を増加させるのに有効な元素であり、基本的に主相
におけるFeのサイトを置換するが、異方性磁界が小さ
くなるため、添加量が増すにつれて保磁力が小さくな
る。そのため添加量は50原子%以下とすることが望ま
しい。
Co is an element effective in increasing the Curie point in the R-Fe-B system magnet, and basically replaces the Fe site in the main phase, but since the anisotropic magnetic field becomes small, it is added. The coercive force decreases as the amount increases. Therefore, it is desirable that the added amount be 50 atomic% or less.

【0014】次に製造方法について述べる。Next, the manufacturing method will be described.

【0015】鋳造・熱間加工法による本発明の磁石の製
造方法においては、まず鋳造インゴットの熱間加工は十
分な加工性を確保するために主相の再結晶温度以上とす
ることが望ましく、本発明の合金に関していえば500℃
以上とすることが望ましい。
In the method for producing a magnet of the present invention by the casting / hot working method, first, the hot working of the cast ingot is preferably performed at the recrystallization temperature of the main phase or more in order to secure sufficient workability, 500 ° C for the alloy of the present invention
It is desirable to set the above.

【0016】次に熱間加工後の熱処理条件について述べ
る。上述の特願平2-250922号公報には、鋳造インゴット
を熱間圧延した後、高温から低温への二段熱処理を施す
ことにより高特性化を可能とする製造方法が開示されて
いる。しかしこのような二段熱処理は添加元素としてC
uを選んだ場合などには当てはまるものの、Agを添加
した場合には逆に保磁力を低下させてしまうことが本発
明者らが実験を行った結果明かとなった。
Next, heat treatment conditions after hot working will be described. The above-mentioned Japanese Patent Application No. 2-250922 discloses a manufacturing method capable of achieving high characteristics by hot rolling a cast ingot and then performing a two-step heat treatment from a high temperature to a low temperature. However, such a two-step heat treatment causes C as an additional element.
As a result of the experiments conducted by the present inventors, it was revealed that the coercive force was lowered when Ag was added, although it is true when u is selected.

【0017】具体的に言えば熱間加工後800〜1100℃で
熱処理を行うことにより高保磁力が得られ、その後の低
温熱処理を行うと保磁力が低下してしまうということが
明かとなった。言い換えれば、Ag添加の場合は熱間加
工後に一度の熱処理を行うだけで高保磁力を得ることが
出来る。CuとAgの場合でなぜこのような熱処理性の
違いが出るのかは今のところはっきりとはわかっていな
い。しかし1000℃で熱処理した両者の磁石組織を見る
と、Cu添加の組織においては主相粒が成長するととも
に主相同士が拡散接合のような状態となり、粒同士のセ
パレーションが非常に悪くなっている。このためCu添
加磁石では高温熱処理後に磁束密度は上がるものの保磁
力は減少するという傾向がみられるものと考えられる。
これに対しAg添加磁石において、同じく1000℃で熱処
理したサンプルにおいては、全体的な組織の均質化は達
成されているものの、Cu添加磁石のように主相の粒成
長が起らず、また主相同士のセパレーションもうまく行
われている。このような現象の違いは主相と液相との濡
れ性などの諸性質が、添加元素によって変化するためと
考えられる。
More specifically, it was revealed that a high coercive force can be obtained by performing a heat treatment at 800 to 1100 ° C. after hot working, and a coercive force is lowered when a subsequent low temperature heat treatment is performed. In other words, in the case of adding Ag, a high coercive force can be obtained by performing only one heat treatment after hot working. It is not yet clear exactly why such a difference in heat treatability occurs between Cu and Ag. However, looking at the magnet structures of both heat treated at 1000 ° C., in the structure with Cu added, the main phase grains grow and the main phases become a state of diffusion bonding, and the separation between the grains is very poor. . Therefore, it is considered that the Cu-added magnet has a tendency that the magnetic flux density increases after the high temperature heat treatment, but the coercive force decreases.
On the other hand, in the case of the Ag-added magnet, which was also heat-treated at 1000 ° C., homogenization of the entire structure was achieved, but grain growth of the main phase did not occur unlike the Cu-added magnet, and The phases are separated well. It is considered that such a difference in phenomenon is caused by various properties such as wettability between the main phase and the liquid phase depending on the additive element.

【0018】なお800℃より低い温度で熱処理を行った
場合には、主相粒中に存在する軟磁性相であるα-Fe
が拡散により完全に消滅せず、磁気特性に悪影響を及ぼ
す。さらに粒界相の状態が変わることにより、保磁力は
低下してしまう。また逆に1100℃より高い温度では主相
結晶粒の急激な粗大化をまねき磁気特性が劣化するため
温度領域を800〜1100℃とする必要がある。
When the heat treatment is performed at a temperature lower than 800 ° C., α-Fe which is a soft magnetic phase existing in the main phase grains is used.
Does not disappear completely due to diffusion, which adversely affects the magnetic properties. Further, the coercive force is lowered due to the change of the state of the grain boundary phase. On the contrary, at a temperature higher than 1100 ° C, the main phase crystal grains are abruptly coarsened and the magnetic properties are deteriorated, so that it is necessary to set the temperature range to 800 to 1100 ° C.

【0019】800〜1100℃の温度範囲で熱処理した後の
冷却速度は、上述したような800℃以下の領域を通る時
間を短くして保磁力の低下を防ぐことが好ましく、この
ためある程度の急冷をすることが望ましい。
The cooling rate after the heat treatment in the temperature range of 800 to 1100 ° C. is preferably to prevent the decrease of the coercive force by shortening the time for passing through the region of 800 ° C. or less as described above. It is desirable to

【0020】次に本発明の実施例について述べる。Next, examples of the present invention will be described.

【0021】[0021]

【実施例】【Example】

(実施例1)表1の組成からなる合金を溶解・鋳造後、
インゴットからサンプルを切り出し、アルゴン雰囲気
中、950℃にて1×10-2s-1の歪速度で最終加工度80%の
ホットプレスを行なった。ホットプレス時のプレス方向
は、柱状晶組織の発達方向に垂直な方向とした。プレス
したサンプルについてアルゴン雰囲気中にて1000℃×12
hの熱処理を行なった後、加熱炉より取り出し、2.8barr
のアルゴン中で加圧冷却を行なった。この時の冷却速度
はおよそ20℃/minであり、充分な急冷となっていた。そ
の結果得られた磁気特性を表2に示す。表から明らかな
ように、合金組成が本発明の組成域にあるサンプルにお
いて高い磁気特性を得ることできる。
(Example 1) After melting and casting an alloy having the composition shown in Table 1,
A sample was cut out from the ingot and subjected to hot pressing at a strain rate of 1 × 10 -2 s -1 in an argon atmosphere at 950 ° C with a final working ratio of 80%. The pressing direction during hot pressing was perpendicular to the columnar crystal structure development direction. Pressed sample 1000 ℃ × 12 in argon atmosphere
After heat treatment for h, remove it from the heating furnace and remove it by 2.8 barr.
Pressure cooling was performed in argon. At this time, the cooling rate was about 20 ° C./min, indicating a sufficient rapid cooling. The magnetic characteristics obtained as a result are shown in Table 2. As is clear from the table, high magnetic properties can be obtained in the samples whose alloy composition is in the composition range of the present invention.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】(実施例2)Pr15.5Fe78.5-x5.0
xなる合金組成からなるインゴットを実施例1と同様
の条件でホットプレスおよび熱処理を施したサンプルに
ついてAgの添加量(x)と保磁力およびエネルギー積
の関係を図1に示した。図から明らかなように添加量が
4原子%以下(ただし0を除く)の場合に高保磁力と高
いエネルギー積を得ることが可能となる。
(Example 2) Pr 15.5 Fe 78.5-x B 5.0 A
FIG. 1 shows the relationship between the addition amount (x) of Ag and the coercive force and energy product of a sample obtained by hot pressing and heat treating an ingot having an alloy composition of g x under the same conditions as in Example 1. As is clear from the figure, it is possible to obtain a high coercive force and a high energy product when the added amount is 4 atomic% or less (excluding 0).

【0025】(実施例3)表1のNo.1からなる組成の合
金インゴットを、実施例1と同様な条件でホットプレス
を行なった後に、アルゴン雰囲気中にて、500〜1200℃
の各温度にて12hの熱処理を施し、この後実施例1と同
様な条件で冷却を行なった。この際に得られた保磁力と
熱処理温度の関係を図2に示す。
Example 3 An alloy ingot having the composition No. 1 in Table 1 was hot-pressed under the same conditions as in Example 1, and then in an argon atmosphere at 500 to 1200 ° C.
Heat treatment was performed for 12 hours at each temperature, and then cooling was performed under the same conditions as in Example 1. The relationship between the coercive force obtained at this time and the heat treatment temperature is shown in FIG.

【0026】図から明らかなように熱処理温度を800〜1
100℃の温度範囲で行なうことにより高い保磁力を得る
ことが可能となる。
As can be seen from the figure, the heat treatment temperature is 800 to 1
It becomes possible to obtain a high coercive force by carrying out in the temperature range of 100 ° C.

【0027】(実施例4)表1に示した組成の合金を、
アルゴン雰囲気中で高周波誘導溶解炉を用いて溶解し、
ついで水冷銅金型中に鋳造して肉厚20mmのインゴットを
得た。鋳造組織においてはインゴットの肉厚方向に柱状
晶が発達した組織が形成されていた。
Example 4 Alloys having the compositions shown in Table 1 were
Melts using a high frequency induction melting furnace in an argon atmosphere,
Then, it was cast in a water-cooled copper mold to obtain an ingot with a wall thickness of 20 mm. In the cast structure, a structure in which columnar crystals developed in the thickness direction of the ingot was formed.

【0028】次ぎに、このようにして得られた鋳造イン
ゴットを所定の大きさに切り出し、低炭素鋼(SS41)製
のシースに入れて脱気し、密封した。これを950℃の大
気炉中にて加熱保持した後、圧下方向が柱状晶の発達方
向と垂直になるように、加工度30%の熱間圧延を空気中
で4回行い、最終的に加工度が76%になるようにした。
またこの熱間圧延時においては、合金の押される方向に
平行になるように主相(R2Fe14B相)の磁化容易軸
は配向した。
Next, the cast ingot thus obtained was cut into a predetermined size, put in a sheath made of low carbon steel (SS41), deaerated and sealed. After heating and holding this in an atmospheric furnace at 950 ° C, hot rolling with a working rate of 30% was performed 4 times in air so that the rolling direction was perpendicular to the columnar crystal development direction, and finally working The degree is 76%.
Further, during this hot rolling, the easy axis of magnetization of the main phase (R 2 Fe 14 B phase) was oriented so as to be parallel to the pushing direction of the alloy.

【0029】得られた各圧延材について、実施例1と同
様の熱処理(1000℃×12h)および冷却を行なった際の
磁気特性を表3に示した。
Table 3 shows the magnetic characteristics of each of the obtained rolled materials after the same heat treatment (1000 ° C. × 12 hours) and cooling as in Example 1.

【0030】[0030]

【表3】 [Table 3]

【0031】以上のように鋳造・熱間圧延法によって作
製される磁石においても、合金組成が本発明の組成域に
ある場合に、磁気特性の良好な希土類永久磁石が得られ
る。
Also in the magnet produced by the casting / hot rolling method as described above, a rare earth permanent magnet having good magnetic properties can be obtained when the alloy composition is within the composition range of the present invention.

【0032】(実施例5)表1のNo.1に示した合金組成
からなるインゴットを実施例4と同様の条件で熱間圧延
した。得られた圧延材サンプルについてAr雰囲気中で
500〜1200℃の各温度で12hの熱処理を行なった後、加
熱炉より取り出し、2.8barrのアルゴン雰囲気中で加圧
冷却を行なった。この際の保磁力と熱処理温度との関係
を図3に示す。
Example 5 An ingot having the alloy composition shown in No. 1 of Table 1 was hot-rolled under the same conditions as in Example 4. About the obtained rolled material sample in Ar atmosphere
After performing heat treatment for 12 hours at each temperature of 500 to 1200 ° C., it was taken out of the heating furnace and pressure cooled in an argon atmosphere of 2.8 barr. The relationship between the coercive force and the heat treatment temperature at this time is shown in FIG.

【0033】図から明らかなように、熱間圧延後の熱処
理を800〜1100℃の温度範囲で行なうことにより高保磁
力を得ることができる。
As is clear from the figure, a high coercive force can be obtained by performing the heat treatment after hot rolling in the temperature range of 800 to 1100 ° C.

【0034】(実施例6)表1のNo.1〜5に示した合金
組成からなるインゴットを実施例4と同様の条件で熱間
圧延し、得られた圧延材サンプルについてAr雰囲気中
で1000℃×12hの熱処理を行なった。この熱処理後の冷
却を、2.8barrのアルゴン雰囲気中での加圧冷却したサ
ンプルと、加熱炉中で炉冷したサンプルの2種類につい
て、得られた磁気特性を測定した。結果を表4に示す。
なおアルゴン加圧冷却の場合の冷却速度はおよそ20℃/m
in、炉冷の場合の冷却速度はおよそ3℃/minであった。
Example 6 Ingots having the alloy compositions shown in Nos. 1 to 5 in Table 1 were hot-rolled under the same conditions as in Example 4, and the obtained rolled material sample was heated to 1000 in an Ar atmosphere. The heat treatment was performed at ℃ × 12h. Regarding the cooling after this heat treatment, the magnetic properties obtained were measured for two types of samples, a sample cooled under pressure in an argon atmosphere of 2.8 barr and a sample cooled in a heating furnace. The results are shown in Table 4.
The cooling rate for argon pressure cooling is approximately 20 ° C / m.
In the case of furnace cooling, the cooling rate was about 3 ° C / min.

【0035】[0035]

【表4】 [Table 4]

【0036】表から明らかなように熱処理後の冷却速度
を充分に速くすることによって高い磁気特性を得ること
ができる。
As is apparent from the table, high magnetic characteristics can be obtained by sufficiently increasing the cooling rate after the heat treatment.

【0037】[0037]

【発明の効果】叙上のごとく本発明のようにR,Fe,
B,Agを原料基本成分として適正な組成域にある合金
インゴットを500℃以上の温度で熱間加工し、さらに800
〜1100℃で熱処理する製造方法を取ることにより、
従来より優れた磁気特性が得られるとともに工程の短縮
が可能となり、低コストで高性能な磁石が得られるとい
う鋳造・熱間加工法の長所がさらに助長される。
As described above, according to the present invention, R, Fe,
An alloy ingot with B and Ag in the proper composition range as the basic components of the raw material is hot-worked at a temperature of 500 ° C or higher, and further 800
By taking the manufacturing method of heat treatment at ~ 1100 ° C,
The advantages of the casting / hot working method that the magnetic properties superior to the conventional ones can be obtained and the process can be shortened and a high-performance magnet can be obtained at low cost are further promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】 Ag添加量と磁気特性の関係図。FIG. 1 is a graph showing the relationship between the amount of added Ag and magnetic properties.

【図2】 ホットプレス磁石における保磁力と熱処理温
度の関係図。
FIG. 2 is a diagram showing the relationship between coercive force and heat treatment temperature in a hot press magnet.

【図3】 圧延磁石における保磁力と熱処理温度の関係
図。
FIG. 3 is a diagram showing the relationship between coercive force and heat treatment temperature in a rolled magnet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋岡 宏治 長野県諏訪市大和3丁目3番5号セイコー エプソン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Akioka 3-3-5 Yamato, Suwa, Nagano Seiko Epson Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原子百分比で10〜20%のR(ただし
RはYを含む希土類元素の少なくとも1種)、4〜8%
のB、4%以下(ただし0を除く)のAg、および残部
がFeおよびその他の製造上不可避な不純物からなる合
金を、溶解・鋳造後、該鋳造インゴットを500℃以上の
温度で熱間加工した後、800〜1100℃の温度範囲で熱処
理を施すことを特徴とする永久磁石の製造方法。
1. Atomic percentage of 10 to 20% R (where R is at least one rare earth element including Y), 4 to 8%
B, 4% or less (excluding 0) of Ag, and the balance Fe and other alloys unavoidable in manufacturing, after melting and casting, the cast ingot is hot worked at a temperature of 500 ° C or higher. And a heat treatment in the temperature range of 800 to 1100 ° C.
【請求項2】 Feの50原子%以下をCoで置換する
ことを特徴とする請求項1記載の永久磁石の製造方法。
2. The method for producing a permanent magnet according to claim 1, wherein 50 atomic% or less of Fe is replaced with Co.
JP5086540A 1993-04-13 1993-04-13 Manufacture of permanent magnet Pending JPH06302411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5086540A JPH06302411A (en) 1993-04-13 1993-04-13 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5086540A JPH06302411A (en) 1993-04-13 1993-04-13 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPH06302411A true JPH06302411A (en) 1994-10-28

Family

ID=13889840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5086540A Pending JPH06302411A (en) 1993-04-13 1993-04-13 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPH06302411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934175A (en) * 2014-03-20 2015-09-23 江西理工大学 High coercivity low dysprosium (terbium) NdFeB magnet based on crystal boundary modification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934175A (en) * 2014-03-20 2015-09-23 江西理工大学 High coercivity low dysprosium (terbium) NdFeB magnet based on crystal boundary modification
CN104934175B (en) * 2014-03-20 2019-08-16 江西理工大学 It is a kind of based on the crystal boundary modified low dysprosium of high-coercive force/terbium neodymium iron boron magnetic body

Similar Documents

Publication Publication Date Title
JPS586778B2 (en) Anisotropic permanent magnet alloy and its manufacturing method
EP3625807B1 (en) Hot deformed magnet, and a method for preparing said hot deformed magnet
JP2753432B2 (en) Sintered permanent magnet
JP2753429B2 (en) Bonded magnet
JP2625163B2 (en) Manufacturing method of permanent magnet powder
JP3594084B2 (en) Rare earth alloy ribbon manufacturing method, rare earth alloy ribbon and rare earth magnet
JPH06302411A (en) Manufacture of permanent magnet
JPH06302417A (en) Permanent magnet and its manufacture
JP2794755B2 (en) Manufacturing method of rare earth element-transition element-B magnet
JPH06302419A (en) Rare earth permanent magnet and its manufacture
JPH08273914A (en) Rare-earth magnet and its manufacture
JPH08264308A (en) Rare earth magnet and its manufacture
JP2753431B2 (en) Sintered permanent magnet
JPH05182851A (en) Manufacture of rare earth elements-fe-b magnet
JP3380575B2 (en) RB-Fe cast magnet
JPH06244046A (en) Manufacture of permanent magnet
JPH09246026A (en) Permanent magnet and its manufacture
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JP2818718B2 (en) Permanent magnet powder
JPH06310316A (en) Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture
JPH08273960A (en) Method for manufacturing rare earth permanent magnet
JPS5929084B2 (en) Manufacturing method of permanent magnet alloy
JPH01221820A (en) Manufacture of magnetic lead-piece with rectangular hysteresis and lead switch
JPH04321206A (en) Manufacture of rare earth element-fe-b-based magnet
JPH0533076A (en) Rare earth permanent magnet alloy and its production