JPH06302257A - Board type temperature fuse - Google Patents

Board type temperature fuse

Info

Publication number
JPH06302257A
JPH06302257A JP11004993A JP11004993A JPH06302257A JP H06302257 A JPH06302257 A JP H06302257A JP 11004993 A JP11004993 A JP 11004993A JP 11004993 A JP11004993 A JP 11004993A JP H06302257 A JPH06302257 A JP H06302257A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
temperature fuse
insulating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11004993A
Other languages
Japanese (ja)
Inventor
Mitsuaki Uemura
充明 植村
Toshihiko Kawamoto
敏彦 川元
Kazuo Ariyama
和男 有山
Ritsu Nishide
律 西出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP11004993A priority Critical patent/JPH06302257A/en
Publication of JPH06302257A publication Critical patent/JPH06302257A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a board type temperature fuse which can have the insulating distance from electrodes to the lateral ends of an insulating board sufficiently, while maintaining the small size of the temperature fuse. CONSTITUTION:On one side surface of an insulating board 1, layer electrodes 2 are provided placing an interval in the width direction, a low melting point fusible alloy wire 4 is bridged between the tips of the electrodes 2, lead wires 3 are connected to the electrodes 2 from the rear end sides of the electrodes, and an insulating layer 6 is provided to cover the whole surface of one side surface of the above insulating board 1. The rear ends 21 of the electrodes 2 are positioned placing an interval (a) from the rear end 11 of the insulating board 1, the interval between the layer electrodes 2 and 2 is made 0.9mm to 1.5mm, and an insulating covered wire is used as the above lead wires 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヒュ−ズエレメントに低
融点可溶合金線を使用した合金タイプの基板型温度ヒュ
−ズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy type substrate temperature fuse which uses a low melting point fusible alloy wire for a fuse element.

【0002】[0002]

【従来の技術】電気機器を過電流から保護し、電気機器
の熱的損傷、ひいては火災の発生を未然に防止する電気
部品として温度ヒュ−ズが存在する。この温度ヒュ−ズ
として、ヒュ−ズエレメントに低融点可溶合金線を用い
た合金タイプの温度ヒュ−ズが汎用されている。この合
金タイプの温度ヒュ−ズの基本的な構造は、リ−ド線間
に低融点可溶合金片を橋設し、その低融点可溶合金片上
にフラツクスを塗布し、このフラツクス塗布合金片を絶
縁体で包囲した構成であり、被保護機器における過電流
で発熱し易い箇所に取り付けて使用され、その作動過程
は次の通りである。
2. Description of the Related Art There is a temperature fuse as an electric component for protecting an electric device from an overcurrent and preventing a thermal damage of the electric device and a fire from occurring. As this temperature fuse, an alloy type temperature fuse in which a low melting point fusible alloy wire is used for a fuse element is widely used. The basic structure of this alloy type temperature fuse is that a low melting point fusible alloy piece is bridged between lead wires, and a flux is applied to the low melting point fusible alloy piece. Is surrounded by an insulator, and is used by being attached to a protected device where heat is likely to be generated due to an overcurrent, and its operation process is as follows.

【0003】すなわち、被保護機器が過電流で発熱する
と、その発生熱により低融点可溶合金片が溶融し、この
溶融金属が表面張力で既に溶融しているフラツクスを押
しのけて球状化し、この球状化が進んで分断され、機器
への通電が遮断される。
That is, when the equipment to be protected generates heat due to an overcurrent, the generated heat melts the low melting point alloy piece, and the molten metal pushes away the already melted flux due to surface tension to form a spherical shape. Progressing, the power supply to the equipment is cut off.

【0004】本出願人においては、合金タイプの温度ヒ
ュ−ズとして、基板型温度ヒュ−ズを開発した。この基
板型温度ヒュ−ズの基本的構造は、絶縁基板の片面上に
巾方向に間隔を隔てて層状電極を設け、これら電極の先
端部間に低融点可溶合金線を橋設し、各電極に電極後端
側からリ−ド線を接続し、上記絶縁基板片面の全面に絶
縁層を被覆した構成であり、絶縁基板面を被保護機器に
接触させて使用される。
The applicant of the present invention has developed a substrate type temperature fuse as an alloy type temperature fuse. The basic structure of this substrate-type temperature fuse is that layered electrodes are provided on one surface of an insulating substrate at intervals in the width direction, and low melting point fusible alloy wires are bridged between the tips of these electrodes. A lead wire is connected to the electrode from the rear end side of the electrode, and the entire surface of one surface of the insulating substrate is covered with an insulating layer. The insulating substrate surface is used in contact with a protected device.

【0005】この基板型温度ヒュ−ズにおいては、温度
ヒュ−ズの全表面中、絶縁基板面が占める割合が高く、
他の方式の温度ヒュ−ズに較べ機器との接触面積を広く
し得、しかも、絶縁基板例えば、セラミックス板が良好
な熱良伝導性を有するので、被保護機器からの発生熱を
高感度で受熱できる。
In this substrate type temperature fuse, the ratio of the insulating substrate surface to the entire surface of the temperature fuse is high,
Compared to other types of temperature fuses, the contact area with the device can be made wider, and since the insulating substrate, such as the ceramic plate, has good thermal conductivity, the heat generated from the protected device can be detected with high sensitivity. Can receive heat.

【0006】図3は本出願人が初期に開発した基板型温
度ヒュ−ズの説明図であり、1’は絶縁基板を、2’,
2’は絶縁基板の片面側に設けた層状電極を、3’,
3’は電極に後端側から接続したリ−ド線を、4’は両
電極2’,2’の先端部間に橋設した低融点可溶合金線
を、5’は低融点可溶合金線に塗布したフラックスを、
6’は絶縁基板片面の全面に設けた絶縁被覆層をそれぞ
れ示している。
FIG. 3 is an explanatory view of a substrate type temperature fuse which was initially developed by the present applicant, and 1'is an insulating substrate and 2 ',
2'is a layered electrode provided on one side of the insulating substrate, 3 ',
3'is a lead wire connected to the electrode from the rear end side, 4'is a low melting point fusible alloy wire bridged between the tips of both electrodes 2'and 2 ', 5'is a low melting point fusible The flux applied to the alloy wire,
6'indicates an insulating coating layer provided on the entire surface of one surface of the insulating substrate.

【0007】図3に示した基板型温度ヒュ−ズにおいて
は、温度ヒュ−ズの作動時、溶融した低融点可溶合金が
分断された際、両電極間2’,2’に作用する回路電圧
で両電極の後端21’,21’間に空気との接触界面に
沿って放電導通が生じることのないように、両電極
2’,2’間の間隔d’を回路電圧に耐え得る絶縁距離
に設定してある。また、溶融した低融点可溶合金がフラ
ツクスの膨張圧力下、絶縁基板と絶縁被覆層との接着界
面を剥離して絶縁被覆層端から圧出することのないよう
に、電極先端22’と絶縁基板先端12’との間を所定
の間隔bで隔て、また、電極先端22’と絶縁基板横端
13’との間を所定の間隔cで隔ててある。而して、こ
の基板型温度ヒュ−ズの巾Lは層状電極の巾をfとすれ
ば、L=(d’+2c+2f)である。しかしながら、
この巾Lは相当に広く、基板型温度ヒュ−ズの小型化が
困難である。
In the substrate type temperature fuse shown in FIG. 3, a circuit that acts on both electrodes 2'and 2'when the molten low melting point fusible alloy is divided during operation of the temperature fuse. The distance d'between the two electrodes 2 ', 2'can withstand the circuit voltage so that the voltage does not cause discharge conduction along the contact interface with air between the rear ends 21', 21 'of both electrodes. The insulation distance is set. In addition, the melted low melting point alloy is insulated from the electrode tip 22 'so that it does not peel off the adhesive interface between the insulating substrate and the insulating coating layer under the expansion pressure of the flux and squeeze out from the edge of the insulating coating layer. The substrate tip 12 'is separated by a predetermined distance b, and the electrode tip 22' and the insulating substrate lateral edge 13 'are separated by a predetermined distance c. Thus, the width L of this substrate type temperature fuse is L = (d '+ 2c + 2f), where f is the width of the layered electrode. However,
This width L is considerably wide, and it is difficult to miniaturize the substrate type temperature fuse.

【0008】図4は本出願人がその後に提案した基板型
温度ヒュ−ズを示し、図3の基板型温度ヒュ−ズを小型
化のために改良したものである。図4に示す基板型温度
ヒュ−ズにおいては、両電極後端21’,21’間の間
隔を上記と同様d’に設定しているが、両電極先端部2
2’,22’間の間隔を、溶融した低融点可溶合金の球
状化分断で通電を遮断するのに必要な間隔dに設定して
ある。電極先端22’と絶縁基板先端12’との間との
間の間隔は、上記と同様、bに設定し、電極先端22’
と絶縁基板横端13’との間の間隔を上記と同様にcに
設定し、電極の巾も上記と同様fに設定してある。従っ
て、基板型温度ヒュ−ズの巾LはL=(d+2c+2
f)である。
FIG. 4 shows a substrate-type temperature fuse proposed by the applicant thereafter, and is an improvement of the substrate-type temperature fuse of FIG. 3 for miniaturization. In the substrate type temperature fuse shown in FIG. 4, the distance between the rear ends 21 'and 21' of both electrodes is set to d'as described above.
The interval between 2'and 22 'is set to the interval d required to cut off the electric current by spheroidizing the melted low melting point soluble alloy. The distance between the electrode tip 22 'and the insulating substrate tip 12' is set to b as in the above, and the electrode tip 22 'is set.
The distance between the insulating substrate and the lateral edge 13 'of the insulating substrate is set to c as in the above, and the width of the electrode is set to f as in the above. Therefore, the width L of the substrate type temperature fuse is L = (d + 2c + 2
f).

【0009】而るに、溶融した低融点可溶合金の球状化
分断で通電を遮断するのに必要な間隔(物理的に分断し
ても、その瞬時には分断間に作用する回路電圧のもとで
ア−クが生じており、球状化の進行により分断距離が所
定の距離に達してア−クが消滅したときに、実質上通電
が遮断される)dは、その間が液状のフラックスで満た
されているために、同回路電圧のもとで空気との接触界
面に沿っての両電極の後端間での放電導通を防止するの
に必要な上記した距離d’に較べて短い。従って、図4
に示す基板型温度ヒュ−ズは、図3に示す基板型温度ヒ
ュ−ズに較べて巾寸法を小さくできる。
[0009] Therefore, the interval required to cut off the energization due to the spheroidization of the molten low melting point soluble alloy (even if it is physically divided, the circuit voltage that acts between the divisions at that moment is also And arc occurs, and when the dividing distance reaches a predetermined distance due to the progress of spheroidization and the arc disappears, the electricity is substantially cut off) d is a liquid flux between them. Since it is filled, it is shorter than the above-mentioned distance d'which is necessary to prevent discharge conduction between the rear ends of both electrodes along the contact interface with air under the same circuit voltage. Therefore, FIG.
The width dimension of the substrate type temperature fuse shown in FIG. 3 can be made smaller than that of the substrate type temperature fuse shown in FIG.

【0010】[0010]

【発明が解決しようとする課題】上記した基板型温度ヒ
ュ−ズの被保護機器への取付け構造の如何によっては、
絶縁基板の各横端が接地電位になって各電極と絶縁基板
各横端との間に回路電圧の対地電圧分が作用するので、
各電極から絶縁基板各端までの距離をこの対地電圧に耐
え得るように設定しておくことが安全である。
SUMMARY OF THE INVENTION Depending on how the above-mentioned board type temperature fuse is attached to a protected device,
Since each lateral end of the insulating substrate is at the ground potential and the ground voltage of the circuit voltage acts between each electrode and each lateral end of the insulating substrate,
It is safe to set the distance from each electrode to each end of the insulating substrate so as to withstand this ground voltage.

【0011】而るに、上記図4に示した基板型温度ヒュ
−ズにおいては、基板横端13’と電極2’との間の最
小間隔c’が極端に狭く、上記の対地電圧に耐え得ず、
その間隔を対地電圧に耐え得るように広くすると、巾寸
法が図3に示した基板型温度ヒュ−ズとほとんど異なる
ことがなく、小型化を保障できなくなってしまう。
In the substrate type temperature fuse shown in FIG. 4, however, the minimum distance c'between the lateral edge 13 'of the substrate and the electrode 2'is extremely narrow, and the above ground voltage can be endured. Not get
If the distance is wide enough to withstand the voltage to ground, the width dimension is almost the same as that of the substrate type temperature fuse shown in FIG. 3, and miniaturization cannot be guaranteed.

【0012】本発明の目的は、絶縁基板の片面上に巾方
向に間隔を隔てて層状電極を設け、これら電極の先端部
間に低融点可溶合金線を橋設し、各電極に電極後端側か
らリ−ド線を接続し、上記絶縁基板片面の全面に絶縁層
を被覆した温度ヒュ−ズにおいて、温度ヒュ−ズの小型
化を保持しつつ、各電極から絶縁基板の各横端までの絶
縁距離を充分に長くとることのできる基板型温度ヒュ−
ズを提供することにある。
An object of the present invention is to provide layered electrodes on one surface of an insulating substrate at intervals in the width direction, bridge low melting point fusible alloy wires between the tips of these electrodes, and attach each electrode to the rear electrode. In a temperature fuse in which a lead wire is connected from the end side and an insulating layer is coated on the entire surface of one side of the insulating substrate, while maintaining miniaturization of the temperature fuse, each lateral end of the insulating substrate from each electrode is maintained. Substrate type temperature fuse that can take a sufficiently long insulation distance to
Is to provide

【0013】[0013]

【課題を解決するための手段】本発明の基板型温度ヒュ
−ズは、絶縁基板の片面上に巾方向に間隔を隔てて層状
電極を設け、これら電極の先端部間に低融点可溶合金線
を橋設し、各電極に電極後端側からリ−ド線を接続し、
上記絶縁基板片面の全面に絶縁層を被覆した温度ヒュ−
ズにおいて、各電極後端を絶縁基板後端から間隔を隔て
て位置させ、層状電極間の間隔を0.9mm〜1.5m
mにし、上記リ−ド線に絶縁被覆線を使用したことを特
徴とする構成である。
In the substrate type temperature fuse of the present invention, layered electrodes are provided on one surface of an insulating substrate at intervals in the width direction, and a low melting point fusible alloy is provided between the tips of these electrodes. Bridge the wires, connect the lead wires from the electrode rear end side to each electrode,
A temperature fuse in which the entire surface of one side of the insulating substrate is covered with an insulating layer.
, The rear end of each electrode is spaced apart from the rear end of the insulating substrate, and the distance between the layered electrodes is 0.9 mm to 1.5 m.
m, and an insulating coated wire is used for the lead wire.

【0014】[0014]

【作用】一方の電極後端から他方の電極後端に至る直線
経路が、絶縁基板と絶縁被覆層との接着界面で構成さ
れ、この界面の絶縁性が、温度ヒュ−ズ作動時の溶融さ
れた低融点可溶合金の分断間の溶融フラックス空間の絶
縁性よりも高絶縁性であるから、電極全長にわたって電
極間隔を低融点可溶合金線の溶断による電流遮断に必要
な最小限の間隔(0.9mm〜1.5mm)に設定すれ
ば、低融点可溶合金の分断による通電遮断の際、両電極
後端間での放電導通を回避できる。従って、電極全長に
わたって電極間隔を0.9mm〜1.5mmにして、当
該間隔を従来よりも狭くし、その分、各電極と絶縁基板
の各横端との絶縁距離を増大することができる。
The linear path from the rear end of one electrode to the rear end of the other electrode is constituted by the adhesive interface between the insulating substrate and the insulating coating layer, and the insulating property of this interface is melted during the operation of the temperature fuse. Since it has a higher insulation than the insulation of the molten flux space between the low melting point fusible alloys, the electrode spacing over the entire length of the electrode is the minimum distance required for current interruption due to fusing of the low melting point fusible alloy wire ( If it is set to 0.9 mm to 1.5 mm), it is possible to avoid discharge conduction between the rear ends of both electrodes when the energization is cut off by cutting the low melting point fusible alloy. Therefore, the electrode interval can be set to 0.9 mm to 1.5 mm over the entire length of the electrode to make the interval narrower than in the conventional case, and the insulation distance between each electrode and each lateral end of the insulating substrate can be increased accordingly.

【0015】[0015]

【実施例】以下、図面により本発明の実施例を説明す
る。図1は本発明の実施例を示す平面説明図である。図
1において、1は良好な熱伝導性を有する絶縁基板であ
り、通常、セラミックス板が使用される。2,2は絶縁
基板1の片面上に巾方向に間隔を隔てて設けた層状電極
であり、銀ペ−スト等の導電性塗料の焼き付け、銅箔積
層絶縁基板の銅箔のエッチング等により形成してある。
各電極2の後端21は絶縁基板後端11に対し所定の距
離aを隔てて位置させてある。bは電極先端22と絶縁
基板先端12との間隔を、cは電極2と絶縁基板横端1
3との間隔をそれぞれ示している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory plan view showing an embodiment of the present invention. In FIG. 1, reference numeral 1 is an insulating substrate having good thermal conductivity, and a ceramic plate is usually used. Reference numerals 2 and 2 are layered electrodes provided on one surface of the insulating substrate 1 at intervals in the width direction, and are formed by baking a conductive paint such as silver paste or etching the copper foil of the copper foil laminated insulating substrate. I am doing it.
The rear end 21 of each electrode 2 is located at a predetermined distance a from the rear end 11 of the insulating substrate. b is the distance between the electrode tip 22 and the insulating substrate tip 12, and c is the electrode 2 and the insulating substrate lateral edge 1.
3 and 3 are shown respectively.

【0016】3は絶縁被覆リ−ド線であり、単線導体3
1にプラスチック絶縁層を押出被覆してあり、被覆層端
32を電極後端21にほぼ一致させた状態で口出導体3
3を半田付け、溶接等により電極2に接続してある。
Reference numeral 3 denotes an insulating coated lead wire, which is a single wire conductor 3
1 is extrusion-coated with a plastic insulating layer, and the end 32 of the coating layer is substantially aligned with the rear end 21 of the electrode.
3 is connected to the electrode 2 by soldering, welding or the like.

【0017】4は両電極2,2の先端部間に溶接等によ
り橋設した低融点可溶合金線である。5は低融点可溶合
金線4上に塗布したフラックスである。6は絶縁基板片
面の全面に設けた絶縁被覆層であり、例えば、エポキシ
樹脂液の滴下塗装により設けることができる。
Reference numeral 4 denotes a low melting point fusible alloy wire bridged by welding or the like between the tips of the electrodes 2 and 2. 5 is a flux applied on the low melting point fusible alloy wire 4. An insulating coating layer 6 is provided on the entire surface of one surface of the insulating substrate, and can be provided by, for example, dropping coating of an epoxy resin liquid.

【0018】上記の基板型温度ヒュ−ズは、既述した通
り被保護機器に取り付けて使用される。この被保護機器
の過電流に基づく発熱で低融点可溶合金線が溶融される
と、その溶融金属が表面張力により溶融フラックスを押
しのけつつ球状化分断していき、この分断距離がア−ク
消滅距離に達すると電極間の通電が遮断され、電極間に
回路電圧が作用する。
The above-mentioned substrate type temperature fuse is used by being attached to the protected equipment as described above. When the low melting point fusible alloy wire is melted by the heat generated by the overcurrent of the protected equipment, the molten metal pushes away the molten flux due to the surface tension and spheroidizes and divides. When the distance is reached, the energization between the electrodes is cut off and the circuit voltage acts between the electrodes.

【0019】今、溶融金属が電極先端部上に完全に乗載
した状態で分断して通電が遮断されたとすると〔電極が
溶融金属(溶融半田)で濡れやすいために、通常の分断
態様である〕、その分断間の経路が溶融フラックスで満
たされた状態であり、その溶融フラックスが低融点可溶
合金線の酸化物を溶解した絶縁性の低いものであるた
め、この経路の単位距離当たりの絶縁強度は、絶縁基板
と絶縁被覆層との接着界面の単位距離当たりの絶縁強度
に較べて低い。
Now, assuming that the molten metal is completely mounted on the tip portion of the electrode and the current is cut off by dividing the electrode, [this is a normal dividing mode because the electrode is easily wet with the molten metal (molten solder). ] The route between the divisions is in a state of being filled with the molten flux, and since the molten flux has a low insulating property in which the oxide of the low melting point soluble alloy wire is dissolved, The insulation strength is lower than the insulation strength per unit distance at the adhesive interface between the insulating substrate and the insulating coating layer.

【0020】従って、電極2,2間の間隔dを低融点可
溶合金線の溶断による電流遮断に必要な間隔に設定すれ
ば、溶融した低融点可溶合金の分断によるア−ク遮断後
での同一箇所での再放電導通並びに電極間が絶縁基板と
絶縁被覆層との接着界面である両電極下端21,21間
での放電導通を排除して確実に通電を遮断できる。この
低融点可溶合金線の溶断による電流遮断に必要な間隔
は、定格電圧250Vのもとで、0.9mm〜1.5mmであり、上記
の電極間隔dは0.9mm〜1.5mmに設定してある。
Therefore, if the distance d between the electrodes 2 and 2 is set to a distance required for current interruption due to melting of the low melting point fusible alloy wire, after arc interruption due to cutting of the molten low melting point fusible alloy. It is possible to eliminate the conduction of re-discharge at the same location and the conduction of discharge between the lower ends 21 and 21 of both electrodes, which is the adhesive interface between the insulating substrate and the insulating coating layer between the electrodes, and to reliably cut off the energization. The interval required for interrupting the current by melting the low melting point fusible alloy wire is 0.9 mm to 1.5 mm under a rated voltage of 250 V, and the electrode interval d is set to 0.9 mm to 1.5 mm. .

【0021】基板型温度ヒュ−ズにおいて、取付け固定
上、両横端がア−ス電位に曝される場合、電極2と絶縁
基板横端13との間には回路電圧の対地電圧が作用し、
この電圧値が相間電圧の1/√3倍であり、この対地電
圧の絶縁に必要な距離は、電極間隔の1/√3倍であ
る。而るに、上記の基板型温度ヒュ−ズにおいて、絶縁
基板横端13と電極2との間の距離cは、溶融低融点可
溶合金が絶縁基板と絶縁被覆層との接着界面を剥離して
外部に圧出することのないように、所定の距離に設定し
てあり、その距離は通常、1.20mmである。従って、この
距離は、対地電圧の絶縁に必要な距離〔(0.9mm〜1.5mm)
の1/√3倍〕よりも長く、基板型温度ヒュ−ズの両横
端をア−ス電位に保持しても、絶縁上問題がない。
In the substrate type temperature fuse, when both lateral ends are exposed to the ground potential due to mounting and fixing, a circuit voltage to ground acts between the electrode 2 and the insulating substrate lateral end 13. ,
This voltage value is 1 / √3 times the interphase voltage, and the distance required for insulation of this ground voltage is 1 / √3 times the electrode interval. Therefore, in the above-mentioned substrate type temperature fuse, the distance c between the lateral edge 13 of the insulating substrate and the electrode 2 is such that the molten low melting point fusible alloy peels off the adhesive interface between the insulating substrate and the insulating coating layer. It is set to a predetermined distance so that it will not be pressed out to the outside, and the distance is usually 1.20 mm. Therefore, this distance is the distance required to insulate the earth voltage ((0.9 mm to 1.5 mm)
1 / √3 times of the above], there is no problem in insulation even if both lateral ends of the substrate type temperature fuse are held at the ground potential.

【0022】本発明の基板型温度ヒュ−ズにおいては、
リ−ド線3に絶縁被覆線を使用し、電極後端21を絶縁
基板後端11よりも内側に位置させることにより、リ−
ド導体31並びに電極後端21の露出を排除し、空気と
の接触沿面に電気ストレスが作用するのを防止し、両電
極後端21,21間の絶縁強度を大にしているので、電
極間の間隔を低融点可溶合金線の溶断による電流遮断に
必要な間隔に設定しても、溶融した低融点可溶合金の分
断によるア−ク遮断後での同一箇所での再放電導通並び
に両電極下端間での放電導通を排除して確実に通電を遮
断できるのであり、このことは、次の試験結果からも明
らかである。
In the substrate type temperature fuse of the present invention,
An insulated coating wire is used for the lead wire 3, and the rear end 21 of the electrode is positioned inside the rear end 11 of the insulating substrate, so that
The exposure of the conductor 31 and the rear end 21 of the electrode is eliminated, the electric stress is prevented from acting on the contact surface with air, and the insulation strength between the rear ends 21 and 21 of both electrodes is increased. Even if the interval is set to the interval required for current interruption due to the melting of the low melting point fusible alloy wire, re-discharging conduction and It is possible to eliminate the discharge continuity between the lower ends of the electrodes and reliably cut off the energization, which is also clear from the following test results.

【0023】試験結果 a=0.5mm,b=1.4mm,c=1.2mm,d=
1.1mm,電極巾=1.4mmとし、絶縁基板に厚さ0.
6mmのセラミックス板を使用し、層状電極を銀ペ−ス
トの焼き付けにより設け、絶縁被覆リ−ド線に導体直径
0.51mmのものを使用し、低融点可溶合金線に厚み
0.3mm,巾0.4mmの断面四角形,融点98℃のもの
を使用し、絶縁被覆層に厚み1.8mmのエポキシ樹脂層
を使用して定格電圧250V用の基板型温度ヒュ-ズを50
個製作し、定格電圧250Vを課電した状態で温度120℃
のオイルに浸漬して作動させ、解体したところ、低融点
可溶合金線の分断箇所以外には、放電跡は観察されなか
った。
Test results a = 0.5 mm, b = 1.4 mm, c = 1.2 mm, d =
1.1 mm, electrode width = 1.4 mm, and the thickness of the insulating substrate is 0.
A ceramic plate of 6 mm is used, a layered electrode is provided by baking a silver paste, an insulating coating lead wire having a conductor diameter of 0.51 mm is used, and a low melting point fusible alloy wire is 0.3 mm thick. Use a 0.4 mm wide rectangular cross section with a melting point of 98 ° C, and use an epoxy resin layer with a thickness of 1.8 mm as the insulating coating layer, and use a substrate temperature fuse of rated voltage 250 V for 50
Individually manufactured, the temperature is 120 ° C with the rated voltage of 250V applied.
When it was soaked in the oil of No. 3 and operated to be disassembled, no trace of discharge was observed except at the cut portion of the low melting point fusible alloy wire.

【0024】図2は本発明の別実施例の基板型温度ヒュ
−ズを示し、低融点可溶合金線片4を橋設する電極先端
部2aの巾eをリ−ド線口出導体33を接続する電極胴
部2bの巾fに較べて狭くし、電極先端部2aと絶縁基
板横端13までの間隔を溶融低融点可溶合金が絶縁基板
と絶縁被覆層との接着界面を剥離して外部に圧出するの
を防止するのに必要な間隔cに設定し、電極胴部2bと
絶縁基板横端13までの間隔を基板型温度ヒュ−ズの両
横端をア−ス電位に保持したときの対地電圧の絶縁に必
要な間隔gに設定してあり、他の構成は図1に示した実
施例と同じである。この図2に示す実施例においては、
図1に示す実施例に較べ、巾を2(f−e)狭くでき
る。
FIG. 2 shows a substrate-type temperature fuse of another embodiment of the present invention, in which the width e of the electrode tip 2a bridging the low melting point fusible alloy wire piece 4 is set to the lead wire lead conductor 33. Is narrower than the width f of the electrode body 2b connecting the electrodes, and the gap between the electrode tip 2a and the lateral edge 13 of the insulating substrate is melted. The distance between the electrode body 2b and the lateral end 13 of the insulating substrate is set to the ground potential at both lateral ends of the substrate type temperature fuse. The gap g is set so as to insulate the ground voltage when it is held, and the other structure is the same as that of the embodiment shown in FIG. In the embodiment shown in FIG.
The width can be narrowed by 2 (fe) as compared with the embodiment shown in FIG.

【0025】[0025]

【発明の効果】本発明の基板型温度ヒュ−ズは上述した
通りの構成であり、絶縁基板の片面上に巾方向に間隔を
隔てて層状電極を設け、これら電極の先端部間に低融点
可溶合金線を橋設し、各電極に電極後端側からリ−ド線
を接続し、上記絶縁基板片面の全面に絶縁層を被覆した
温度ヒュ−ズにおいて、温度ヒュ−ズの通電遮断性能に
支障を来すことなく、両電極の間隔を従来例に較べて狭
くでき、その結果、電極と絶縁基板横端との間隔を広く
してその間の絶縁距離を長くできるので、巾両端を接地
電位に保持した状態で使用しても対地絶縁を充分に保障
できる。
The substrate-type temperature fuse of the present invention has the above-described structure, and the layered electrodes are provided on one surface of the insulating substrate at intervals in the width direction and have a low melting point between the tips of these electrodes. In a temperature fuse in which a fusible alloy wire is bridged, a lead wire is connected to each electrode from the rear end side of the electrode, and an insulating layer is coated on the entire surface of one side of the above-mentioned insulating substrate, the energization of the temperature fuse is cut off. The distance between both electrodes can be made smaller than the conventional example without affecting the performance, and as a result, the distance between the electrode and the lateral edge of the insulating substrate can be widened and the insulation distance between them can be lengthened. Even if it is used while it is kept at the ground potential, sufficient insulation from the ground can be guaranteed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】本発明の別実施例を示す説明図である。FIG. 2 is an explanatory diagram showing another embodiment of the present invention.

【図3】従来例を示す説明図である。FIG. 3 is an explanatory diagram showing a conventional example.

【図4】上記とは別の従来例を示す説明図である。FIG. 4 is an explanatory diagram showing another conventional example different from the above.

【符号の説明】[Explanation of symbols]

1 絶縁基板 2 層状電極 3 絶縁被覆線 4 低融点可溶合金線 d 層状電極間の間隔 1 Insulating substrate 2 Layered electrode 3 Insulation coated wire 4 Low melting point fusible alloy wire d Space between layered electrodes

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月4日[Submission date] June 4, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】[0014]

【作用】一方の電極後端から他方の電極後端に至る直線
経路が、絶縁基板と絶縁被覆層との接着界面で構成さ
れ、この界面の絶縁性が、温度ヒューズ作動時の溶融さ
れた低融点可溶合金の分断間の溶融フラックス空間の絶
縁性よりも高絶縁性であるから、電極全長にわたって電
極間隔を低融点可溶合金線の溶断による電流遮断に必要
な間隔(0.9mm〜1.5mm)に設定すれば、低融
点可溶合金の分断による通電遮断の際、両電極後端間で
の放電導通を回避できる。従って、電極全長にわたって
電極間隔を0.9mm〜1.5mmにして、当該間隔を
従来よりも狭くし、その分、各電極と絶縁基板の各横端
との絶縁距離を増大することができる。
The linear path from the rear end of one electrode to the rear end of the other electrode is composed of the adhesive interface between the insulating substrate and the insulating coating layer, and the insulating property of this interface is the low melting point when the thermal fuse is activated. Since the insulation is higher than the insulation of the molten flux space between the sections of the melting point fusible alloy, an electrode interval is required over the entire length of the electrode to cut off the current by melting the low melting point fusible alloy wire.
By setting the interval (0.9mm~1.5mm) such, upon energization block by dividing the low-melting fusible alloy, it is possible to avoid the discharge conduction between the electrodes rear. Therefore, the electrode interval can be set to 0.9 mm to 1.5 mm over the entire length of the electrode to make the interval narrower than in the conventional case, and the insulation distance between each electrode and each lateral end of the insulating substrate can be increased accordingly.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西出 律 大阪市中央区島之内1丁目11番28号 内橋 エステック株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ritsu Nishide 1-1-11 Shimanouchi, Chuo-ku, Osaka Uchihashi STEC Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板の片面上に巾方向に間隔を隔てて
層状電極を設け、これら電極の先端部間に低融点可溶合
金線を橋設し、各電極に電極後端側からリ−ド線を接続
し、上記絶縁基板片面の全面に絶縁層を被覆した温度ヒ
ュ−ズにおいて、各電極後端を絶縁基板後端から間隔を
隔てて位置させ、層状電極間の間隔を溶融した低融点可
溶合金の球状化分断で通電を遮断するのに必要な間隔に
設定し、上記リ−ド線に絶縁被覆線を使用したことを特
徴とする基板型温度ヒュ−ズ。
1. A layered electrode is provided on one surface of an insulating substrate at intervals in the width direction, a low melting point fusible alloy wire is bridged between the tips of these electrodes, and each electrode is relieved from the rear end side of the electrode. -In a temperature fuse in which a wire is connected and the entire surface of one surface of the insulating substrate is covered with an insulating layer, the rear end of each electrode is located at a distance from the rear end of the insulating substrate to melt the gap between the layered electrodes. A substrate-type temperature fuse characterized in that an insulating coating wire is used for the lead wire, which is set at an interval required to cut off the electric current by spheroidizing the low melting point soluble alloy.
【請求項2】層状電極間の間隔が0.9mm〜1.5mmである請
求項1記載の基板型温度ヒュ−ズ。
2. The substrate type temperature fuse according to claim 1, wherein the distance between the layered electrodes is 0.9 mm to 1.5 mm.
JP11004993A 1993-04-12 1993-04-12 Board type temperature fuse Pending JPH06302257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11004993A JPH06302257A (en) 1993-04-12 1993-04-12 Board type temperature fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11004993A JPH06302257A (en) 1993-04-12 1993-04-12 Board type temperature fuse

Publications (1)

Publication Number Publication Date
JPH06302257A true JPH06302257A (en) 1994-10-28

Family

ID=14525811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11004993A Pending JPH06302257A (en) 1993-04-12 1993-04-12 Board type temperature fuse

Country Status (1)

Country Link
JP (1) JPH06302257A (en)

Similar Documents

Publication Publication Date Title
KR102213303B1 (en) Fuse element and fuse device
US8767368B2 (en) Protective element and method for producing the same
US7718308B2 (en) Temperature fuse and battery using the same
US6384708B1 (en) Electrical fuse element
WO2010084817A1 (en) Protection element
US4533896A (en) Fuse for thick film device
US6462925B2 (en) Excess current interrupting structure
WO2016009988A1 (en) Chip fuse and fuse element
JPH0433230A (en) Chip type fuse
JP4037248B2 (en) Circuit protection element and manufacturing method thereof
JPH06302257A (en) Board type temperature fuse
JPH10308157A (en) Fuse
JP3252025B2 (en) Substrate type temperature fuse
JPH06302259A (en) Board type temperature fuse
JP3866366B2 (en) Method for manufacturing circuit protection element
KR101504132B1 (en) The complex protection device of blocking the abnormal state of current and voltage
JPH06302258A (en) Board type temperature fuse
JP2799996B2 (en) Temperature sensor
JP4234818B2 (en) Resistance thermal fuse and manufacturing method thereof
JPS6314357Y2 (en)
JP2002050271A (en) Thermal fuse
RU169172U1 (en) SURFACE INSERT FOR SURFACE MOUNTING
JPH06302260A (en) Board type temperature fuse
JP2501183Y2 (en) Alloy type temperature fuse
JPH0436530Y2 (en)