WO2016009988A1 - Chip fuse and fuse element - Google Patents

Chip fuse and fuse element Download PDF

Info

Publication number
WO2016009988A1
WO2016009988A1 PCT/JP2015/070032 JP2015070032W WO2016009988A1 WO 2016009988 A1 WO2016009988 A1 WO 2016009988A1 JP 2015070032 W JP2015070032 W JP 2015070032W WO 2016009988 A1 WO2016009988 A1 WO 2016009988A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuse element
fuse
melting point
insulating
point metal
Prior art date
Application number
PCT/JP2015/070032
Other languages
French (fr)
Japanese (ja)
Inventor
吉弘 米田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020167033589A priority Critical patent/KR102368741B1/en
Priority to CN201580036045.7A priority patent/CN106663574B/en
Publication of WO2016009988A1 publication Critical patent/WO2016009988A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/12Two or more separate fusible members in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/0013Means for preventing damage, e.g. by ambient influences to the fuse
    • H01H85/0021Means for preventing damage, e.g. by ambient influences to the fuse water or dustproof devices
    • H01H85/003Means for preventing damage, e.g. by ambient influences to the fuse water or dustproof devices casings for the fusible element

Definitions

  • the present invention relates to a fuse element and a fuse element that are mounted on a current path and blown by self-heating when a current exceeding a rating flows, and the current element path is cut off.
  • the present invention relates to an element and a fuse element.
  • a fuse element that melts by self-heating when a current exceeding the rating flows and interrupts the current path has been used.
  • the fuse element for example, a holder-fixed fuse in which solder is enclosed in a glass tube, a chip fuse in which an Ag electrode is printed on the surface of a ceramic substrate, or a screw fixing in which a part of a copper electrode is thinned and incorporated in a plastic case or Plug-in fuses are often used.
  • a high melting point solder containing Pb having a melting point of 300 ° C. or higher is preferable for the fuse element in terms of fusing characteristics so as not to melt by the heat of reflow.
  • Pb-containing solder is only limitedly recognized, and it is considered that the demand for Pb-free solder will increase in the future.
  • the fuse element can be surface-mounted by reflow and has excellent mountability to the fuse element, it can handle a large current by raising its rating, and the current path is quickly interrupted when overcurrent exceeds the rating. It is required to have fast fusing properties.
  • the fuse element 50 has a plurality of energization paths by arranging a plurality of element portions 51A to 51C in parallel.
  • the plurality of element portions 51A to 51C are connected across the first and second electrodes 53 and 54 formed on the surface 52a of the insulating substrate 52, respectively, and serve as current energization paths. By doing so, it melts by self-heating (Joule heat).
  • the fuse element 50 cuts off the current path between the first and second electrodes 53 and 54 by melting all the element portions 51A to 51C.
  • the element portion 51 when the interval between the element portions 51A to 51C arranged in parallel with the miniaturization of the fuse element becomes close, as shown in FIG.
  • the element portion 51 When a large amount of current flows through the element portion 51 having a low resistance value to generate heat, the element portion 51 may be partially melted by heat generation and may contact the adjacent element portion 51.
  • the element part 51 becomes large, and the element parts 51A to 51C cannot be melted sequentially, and the entire element part 51 is melted as shown in FIG. Therefore, since the electric power required until fusing increases, the current path cannot be cut off quickly.
  • the element portion 51 when the element portion 51 is enlarged, arc discharge generated at the time of fusing becomes large-scale, and there is a possibility that the insulation after fusing may be impaired due to explosive scattering of molten metal.
  • an object of the present invention is to provide a fuse element and a fuse element that are excellent in quick fusing property and insulation after fusing, even in a fuse element that is downsized.
  • a fuse element according to the present invention is mounted on an insulating substrate and the insulating substrate, and in parallel, the current exceeding the rating is blown by self-heating to cut off the energization path.
  • a fuse element having a plurality of element parts, or a plurality of parallel fuse elements, and a plurality of the element parts or the fuse elements provided in parallel between the plurality of element parts or the plurality of fuse elements. And an insulating part for preventing connection.
  • the fuse element according to the present invention includes a plurality of element portions arranged in parallel and an insulating portion provided between the plurality of element portions to prevent connection between the element portions arranged in parallel.
  • the part melts due to self-heating due to energization with a current exceeding the rating.
  • the fuse element is prevented from melting and expanding due to its own heat generation and coming into contact with adjacent element portions and agglomerating when the element portions are sequentially melted.
  • the fuse element increases in size by melting and aggregating adjacent element parts, increasing the fusing time due to the increase in power required for fusing, and molten metal due to the large scale of arc discharge that occurs during fusing It is possible to prevent the explosive splashing and the insulation deterioration after fusing.
  • FIGS. 3A and 3B are diagrams showing a fusing state of a fuse element using a single plate-like element, in which FIG. 3A shows a state in which a current exceeding the rating starts to be applied, and FIG.
  • FIG. 3B shows a state in which the element has melted and aggregated (C) shows a state in which the element is blown out explosively with arc discharge.
  • FIG. 4 is a cross-sectional view of a fuse element in which an insulating portion is provided on the surface of an insulating substrate.
  • FIG. 5 is a cross-sectional view of a fuse element in which an insulating portion is provided on the top surface of the cover member.
  • FIG. 6 is a cross-sectional view of a fuse element in which an insulating portion is provided by filling and hardening a material constituting the insulating portion between element portions.
  • FIGS. 7A and 7B are plan views showing the fuse element.
  • FIG. 7A is a view in which both sides of the element portion are integrally supported
  • FIG. 7B is a view in which one side of the element portion is integrally supported
  • FIG. 8 is a perspective view showing a fuse element in which three elements are arranged in parallel.
  • 9A and 9B are diagrams showing a manufacturing process of a fuse element using the fuse element shown in FIG. 1, wherein FIG. 9A is a perspective view of the insulating substrate, FIG. 9B is a state in which the fuse element is mounted on the insulating substrate, and FIG. ) Is a state in which a flux is provided on the fuse element, (D) is a state in which a cover member is mounted, and (E) is a state of mounting on a circuit board.
  • FIG. 10A and 10B are diagrams showing a fuse element in which an overhang portion is provided on the first and second electrodes.
  • FIG. 10A is a plan view of an insulating substrate
  • FIG. 10B is a perspective view.
  • FIG. 11 is a diagram showing a manufacturing process of another fuse element using the fuse element shown in FIG. 1, (A) is a perspective view of the insulating substrate, (B) is a state in which the fuse element is mounted on the insulating substrate, (C) shows a state where flux is provided on the fuse element, and (D) shows a state where a cover member is mounted and a state where the cover member is mounted on the circuit board.
  • FIG. 12 is a perspective view showing another fuse element using another fuse element.
  • FIG. 12 is a perspective view showing another fuse element using another fuse element.
  • FIG. 13 is a plan view showing an insulating substrate on which first and second divided electrodes are formed.
  • 14A and 14B are diagrams showing a fusing state of a fuse element according to a reference example, in which FIG. 14A is a state before fusing, FIG. 14B is a state in which an outer element portion is melted and integrated with an inner element portion, and FIG. Indicates a state in which all the element portions are fused at the same time.
  • the fuse element 1 As shown in FIGS. 1A and 1B, the fuse element 1 according to the present invention includes an insulating substrate 2, first and second electrodes 3 and 4 provided on the insulating substrate 2, and first and second electrodes. A fuse element 5 that is mounted between two electrodes 3 and 4, is blown by self-heating when a current exceeding the rating is applied, and interrupts a current path between the first electrode 3 and the second electrode 4; And a cover member 6 covering the surface 2a of the insulating substrate 2 on which the fuse element 5 is provided.
  • a plurality of element portions 7 are arranged in parallel with the fuse element 5, and an insulating portion 8 for preventing connection between the parallel element portions 7 is provided between the plurality of element portions 7.
  • the fuse element 1 realizes a small and highly rated fuse element.
  • the dimensions of the insulating substrate 2 are as small as 3 to 4 mm ⁇ 5 to 6 mm, the resistance value is 0.5 to 1 m ⁇ , 50-60A rating and higher rating are being achieved.
  • the present invention can be applied to fuse elements having all sizes, resistance values, and current ratings.
  • the insulating substrate 2 is formed in a square shape by an insulating member such as alumina, glass ceramics, mullite, zirconia.
  • the insulating substrate 2 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board.
  • First and second electrodes 3 and 4 are formed at opposite ends of the insulating substrate.
  • the first and second electrodes 3 and 4 are each formed by a conductive pattern such as Cu or Ag wiring, and in the case of a wiring material such as Cu that is easily oxidized, the surface is appropriately protected with Sn plating or the like as an anti-oxidation measure. A layer is provided.
  • the fuse element 1 has a cover member 6 mounted on the surface 2a of the insulating substrate 2 to protect the inside and prevent the molten fuse element 5 from scattering.
  • the cover member 6 has a side wall 6 a mounted on the surface 2 a of the insulating substrate 2 and a top surface 6 b constituting the upper surface of the fuse element 1.
  • the fuse element 1 has terminal portions provided at both ends of the fuse element 5 from between the surface 2a of the insulating substrate 2 and the top surface 6b.
  • a gap leading out 10 is provided.
  • the cover member 6 can be formed using an insulating member such as a thermoplastic plastic, a ceramic, a glass epoxy substrate, or the like.
  • fuse element 5 mounted between the first and second electrodes 3 and 4 is melted by self-heating (Joule heat) when a current exceeding the rating is applied, and the first electrode 3 and the second electrode The current path to 4 is cut off.
  • the fuse element 5 is mounted between the first and second electrodes 3 and 4 via a connecting material such as solder and then connected to the insulating substrate 2 by reflow soldering or the like.
  • the fuse element 5 is connected to a plurality of element portions 7 mounted between the first and second electrodes 3 and 4 formed on the insulating substrate 2 and connection terminals of a circuit board on which the fuse element 1 is mounted. Terminal portion 10.
  • each of the element portions 7A to 7C is mounted between the first and second electrodes 3 and 4 formed on the insulating substrate 2, so that a plurality of energizations of the fuse element 5 are performed. Configure the route.
  • the plurality of element portions 7A to 7C are fused by self-heating (Joule heat) when a current exceeding the rating is applied.
  • the fuse element 5 cuts off the current path between the first and second electrodes 3 and 4 by melting all of the element portions 7A to 7C (FIG. 2C).
  • the fuse element 5 is blown over a wide range even when arc discharge occurs when a current exceeding the rating is applied and melted, and a new current path is formed by the scattered metal.
  • the fuse element 5 has a plurality of element portions 7A to 7C mounted between the first and second electrodes 3 and 4 in parallel.
  • a large amount of current flows through the lower element portion 7 and is melted sequentially by self-heating, and arc discharge occurs only when the last remaining element portion 7 is melted. Therefore, according to the fuse element 5, even when an arc discharge occurs when the last remaining element portion 7 is melted, the size of the fuse element 5 becomes small according to the volume of the element portion 7, and the explosive scattering of the molten metal is prevented.
  • the insulation after fusing can be greatly improved. Further, since the fuse element 5 is blown for each of the plurality of element portions 7A to 7C, less heat energy is required for fusing each element portion 7 and can be cut off in a short time.
  • the fuse element 1 is provided with an insulating portion 8 between the plurality of element portions 7 to prevent connection between the element portions 7 arranged in parallel.
  • the fuse element 5 prevents the element portion 7 from melting and expanding due to its own heat generation and coming into contact with the adjacent element portion 7 and agglomerating when the element portion 7 is sequentially melted.
  • the fuse element 5 is increased in size by melting and agglomerating adjacent element portions 7, and due to an increase in fusing time due to an increase in power required for fusing and an increase in the scale of arc discharge generated at the time of fusing. It is possible to prevent explosive scattering of molten metal and a decrease in insulation after fusing.
  • the insulating portion 8 is erected by, for example, printing an insulating material such as solder resist or glass on the surface 2a of the insulating substrate 2. Further, since the insulating portion 8 has insulating properties, it does not have wettability with respect to the melting element, and therefore it is not always necessary to completely isolate the adjacent element portions 7 from each other. That is, even if there is a gap with the top surface 6b of the cover member 6, the pulling action due to wettability does not work, and the molten element does not flow from the gap to the side of the element portion arranged in parallel. Further, when the element portion 7 is melted by its own heat generation, the element portion 7 swells in a dome shape in the region between the first and second electrodes 3 and 4.
  • the insulating part 8 has a height that is more than half of the height from the surface 2a of the insulating substrate 2 to the top surface 6b of the cover member 6, the molten element is prevented from coming into contact with the element parts 7 arranged in parallel. it can.
  • the insulating portion 8 may be formed at a height from the surface 2a of the insulating substrate 2 to the top surface 6b of the cover member 6 to isolate the element portions 7 from each other.
  • the insulating portion 8 may be formed on the top surface 6 b of the cover member 6.
  • the insulating portion 8 may be integrally formed on the top surface 6b of the cover member 6, or may be erected by printing an insulating material such as solder resist or glass on the top surface 6b. Also in this case, if the insulating portion 8 has a height that is more than half of the height from the top surface 6b of the cover member 6 to the surface 2a of the insulating substrate 2, the insulating element 8 is in contact with the element portions 7 in parallel. Can be prevented.
  • the insulating portion 8 is provided on the insulating substrate 2 and the cover member 6, and a liquid or paste-like insulating material constituting the insulating portion 8 is applied between a plurality of element portions 7 arranged in parallel. And may be formed by curing.
  • a thermosetting insulating adhesive such as an epoxy resin, a solder resist, or a glass paste can be used.
  • the insulating material constituting the insulating portion 8 may be applied and cured after the fuse element 5 is connected to the insulating substrate 2, or may be applied and cured before the fuse element 5 is connected to the insulating substrate 2. Also good.
  • the liquid or paste-like insulating material is filled between the plural element parts 7 arranged in parallel by capillary action, and when the element part 7 is melted by heat generation by curing, the connection between the element parts 7 arranged in parallel is prevented. can do. For this reason, it is calculated
  • the fuse element 1 is preferably provided with an insulating portion 8 between the element portions 7 of the fuse element 5.
  • the fuse element 1 sequentially melts the plurality of element parts 7 and provides an insulating part 8 between at least the element part 7 to be blown first and the element part 7 adjacent to the element part 7 to be blown first. It is preferable.
  • the fuse element 5 has a relatively high resistance by making the cross-sectional area of a part or all of one element part 7 smaller than the cross-sectional area of another element part among the plurality of element parts 7.
  • a current exceeding the rating is energized, first, a large amount of current is energized and melted from the element portion 7 having a relatively low resistance. Since the melting of the element portion 7 does not involve arc discharge due to self-heating, there is no explosive scattering of the molten metal. Thereafter, the current concentrates on the remaining high-resistance element portion 7 and finally melts with arc discharge. Thereby, the fuse element 5 can melt the element part 7 sequentially.
  • the fuse element 5 generates an arc discharge when the element portion 7 having a small cross-sectional area is melted. However, the fuse element 5 becomes a small scale according to the volume of the element portion 7 and can prevent explosive scattering of the molten metal.
  • the fuse element 1 expands due to its own heat generation by providing an insulating portion 8 between the relatively low resistance element portion 7 to be melted first and the element portion adjacent to the element portion 7. It is possible to prevent the adjacent element portions 7 from contacting and aggregating. As a result, the fuse element 1 causes the element portions 7 to be blown in a predetermined fusing order, and increases the fusing time due to the integration of the adjacent element portions 7 and a decrease in insulation due to the large scale of arc discharge. Can be prevented.
  • the cross-sectional area of the middle element portion 7B is relatively reduced and the resistance is increased.
  • a large amount of current is preferentially passed from the outer element portions 7A and 7C to cause fusing, and finally the middle element portion 7B is blown.
  • the fuse element 1 is adjacent to the element parts 7A and 7B and adjacent to the element parts 7B and 7C even when the element parts 7A and 7C are melted by self-heating. While fusing in a short time without coming into contact with the element portion 7B, the element portion 7B can be fused at the end. Further, the element portion 7B having a small cross-sectional area has no contact with the adjacent element portions 7A and 7C, and arc discharge at the time of fusing is limited to a small scale.
  • the fuse element 5 when the fuse element 5 is provided with three or more element portions, it is preferable that the outer element portion is blown first and the inner element portion is blown last.
  • the fuse element 5 is preferably provided with three element portions 7A, 7B, and 7C, and the middle element portion 7B is blown last.
  • the current concentrates on the element portion 7B provided on the inner side and melts while arc discharge occurs.
  • the fuse element 5 is the outer element portion that has melted the molten metal of the element portion 7B first, even if arc discharge occurs, by finally fusing the element portion 7B provided on the inner side. It can be captured by the insulating portion 8 provided between 7A and 7C and the element portions 7A and 7C. Therefore, scattering of the molten metal in the element portion 7B can be suppressed, and a short circuit due to the molten metal can be prevented.
  • the fuse element 5 has a cross-sectional area of a part or all of the middle element part 7B located on the inner side among the three element parts 7A to 7C, and the other element parts 7A and 7C located on the outer side.
  • the resistance may be relatively increased, and the middle element portion 7B may be blown out last.
  • the cross-sectional area is blown last by making the cross-sectional area relatively small, the arc discharge becomes small according to the volume of the element portion 7B, and the explosive scattering of the molten metal is further suppressed. be able to.
  • the fuse element 1 should just provide the insulating part 8 according to the fusing part of the element part 7.
  • FIG. 2 the fuse element 5 includes the first and second electrodes 3 by connecting each element portion 7 on the first and second electrodes 3 and 4 provided on the insulating substrate 2. , 4 are electrically connected. In each element portion 7, current is not concentrated at both ends connected to the first and second electrodes 3, 4, and current is concentrated at an intermediate portion between the first electrode 3 and the second electrode 4. It melts by generating heat at a high temperature.
  • the fuse element 1 is provided adjacent to an intermediate portion between both end portions connected to the first electrode 3 and the second electrode 4 of each element portion 7, so that the element portion 7 adjacent to the melting element is provided. Can be prevented from touching.
  • the terminal section 10 is connected to a connection terminal formed on the circuit board. As shown in FIG. 7 is formed on both sides in the longitudinal direction.
  • the terminal portion 10 is connected to a connection terminal formed on the circuit board via solder or the like by mounting the fuse element 1 face down on the circuit board.
  • the fuse element 1 is conductively connected to the circuit board via the terminal portion 10 formed in the fuse element 5, thereby reducing the resistance value of the entire element, thereby achieving downsizing and higher rating. That is, the fuse element 1 is provided with an electrode for connection to the circuit board on the back surface of the insulating substrate 2 and connected to the first and second electrodes 3 and 4 through through holes filled with conductive paste. Due to the limitation of the hole diameter and the number of holes of through holes and castellations and the limitation of the resistivity and film thickness of the conductive paste, it is difficult to realize a resistance value lower than that of the fuse element, and it is difficult to increase the rating.
  • the fuse element 1 forms the terminal portion 10 in the fuse element 5 and protrudes to the outside of the element through the cover member 6. Then, as shown in FIG. 10E, the fuse element 1 is face-down mounted on the circuit board, thereby directly connecting the terminal portion 10 to the connection terminal of the circuit board. As a result, the fuse element 1 can be prevented from being increased in resistance due to the presence of a conductive through hole, and the rating of the element is determined by the fuse element 5, so that downsizing and higher rating can be realized.
  • the fuse element 1 by forming the terminal portion 10 in the fuse element 5, it is not necessary to form a connection electrode with the circuit board on the back surface of the insulating substrate 2, and the first and second electrodes are formed only on the front surface 2a. It is sufficient to form the electrodes 3 and 4, and the number of manufacturing steps can be reduced.
  • the fuse element 5 formed with a plurality of element portions 7 can be manufactured by punching out two central portions of a plate-like material into a rectangular shape.
  • the fuse element 5 is integrally supported on both sides of the three element portions 7A to 7C arranged in parallel.
  • the fuse element 5 may be one in which one side of the three element portions 7A to 7C arranged in parallel is integrally supported.
  • the fuse element 5 provided with the terminal portion 10 can be manufactured, for example, by punching a plate-shaped material to form a plurality of element portions 7 and bending both side edges. Further, the fuse element 5 provided with the terminal portion 10 may connect a metal plate constituting the terminal portion 10 and the plurality of element portions 7. Or you may manufacture by connecting the metal plate which comprises the terminal part 10 on the 1st and 2nd electrodes 3 and 4. FIG.
  • the fuse element 1 does not have to be provided with the first and second electrodes 3 and 4 on the insulating substrate 2 when the fuse element 5 having the terminal portion 10 and the plurality of element portions 7 is used.
  • the insulating substrate 2 is used to dissipate heat from the fuse element 5, and a ceramic substrate having good thermal conductivity is preferably used.
  • the adhesive for connecting the fuse element 5 to the insulating substrate 2 may be non-conductive and preferably has excellent thermal conductivity.
  • the fuse element 1 may be manufactured by connecting a plurality of elements 11 corresponding to the element portion 7 in parallel across the first and second electrodes 3 and 4 as fuse elements. As shown in FIG. 8, for example, three elements 11A, 11B, and 11C are arranged in parallel. Each element 11A to 11C is formed in a rectangular plate shape, and a terminal portion 10 is bent at both ends.
  • the element 11 has a relatively high resistance by making the cross-sectional area of the middle element 11B provided on the inner side smaller than the cross-sectional area of the other elements 11A and 11C provided on the outer side. You may make it let.
  • the fuse element 5 may be connected to the connection terminal of the circuit board via the first and second electrodes 3 and 4 without providing the terminal portion 10.
  • the fuse element 1 has the first and second electrodes 3 and 4 connected to an external connection terminal provided on the back surface of the insulating substrate 2 through a through hole, or the first and second electrodes 3. , 4 are connected to external connection terminals made of metal posts or the like, and the external connection terminals are connected to the connection terminals of the circuit board.
  • the fuse element 1 in which the fuse element 5 is used is manufactured by the following process.
  • the insulating substrate 2 on which the fuse element 5 is mounted has first and second electrodes 3 and 4 formed on the surface 2a, and between the element portions 7 of the fuse element 5.
  • An insulating portion 8 is provided depending on the position.
  • the fuse elements 5 are connected to the first and second electrodes 3 and 4 by soldering or the like (FIG. 9B).
  • the fuse element 5 is incorporated in series on the circuit formed on the circuit board by mounting the fuse element 1 on the circuit board.
  • the insulating portion 8 of the fuse element 5 is positioned between the plurality of element portions 7 arranged in parallel.
  • the fuse element 5 is mounted between the first and second electrodes 3 and 4 via a connecting material such as solder, and is soldered when the fuse element 1 is reflow-mounted on the circuit board. Further, as shown in FIG. 9C, a flux 17 is provided on the fuse element 5. By providing the flux 17, the fuse element 5 can be prevented from being oxidized and wettability can be improved, and can be blown quickly. Moreover, by providing the flux 5, the adhesion of the molten metal to the insulating substrate 2 due to arc discharge can be suppressed, and the insulation after fusing can be improved.
  • the fuse element 1 is protected by mounting the cover member 6 that protects the surface 2a of the insulating substrate 2 and reduces the melting scattered matter of the fuse element 5 due to arc discharge.
  • the cover member 6 has a pair of side walls 6a extending in the width direction at both ends in the longitudinal direction. The side walls 6a are installed on the surface 2a, and the terminal portion 10 of the fuse element 5 is directed upward from the opened side surface. It is protruding.
  • the insulating portion 8 is formed not on the surface 2 a of the insulating substrate 2 but on the top surface 6 b of the cover member 6, the fuse element 5 can be connected in parallel by mounting the cover member 6.
  • An insulating portion 8 is positioned between the element portions 7.
  • the fuse element 1 is connected by face-down mounting with the surface 2a side on which the cover member 6 is provided facing the circuit board.
  • the fuse element 1 has overhang portions 3a and 4a projecting from a portion to which one element portion 7 of the first and second electrodes 3 and 4 is connected.
  • the distance between the electrodes formed between the projecting portions 3a and 4a may be shorter than the distance between the electrodes at the portion to which the other element portion 7 is connected.
  • the contact area between the element portion 7 and the first and second electrodes 3 and 4 and the overhang portions 3a and 4a increases. For this reason, even when the current flows and self-heats when the current flows, the element portion 7 is radiated through the first and second electrodes 3 and 4 and the overhang portions 3a and 4a. It becomes easier to cool than the other element portions 7 mounted on the portion where the 4a is not provided, and blows out later than the other element portions 7. Thereby, the fuse element 1 can melt the element part 7 of the fuse element 5 sequentially.
  • the distance between the electrodes is shorter than that of other element portions. Since the element part 7 is easily melted as the distance between the electrodes becomes longer, the element part 7 mounted on the overhanging parts 3a and 4a is less likely to be melted than the other element parts 7, and the other element parts 7 Fusing late. Also by this, the fuse element 1 can sequentially melt the element portion 7 of the fuse element 5.
  • the fuse element 1 uses a fuse element 5 provided with three or more element portions, and the overhanging portion 3a is formed at a portion of the first and second electrodes 3 and 4 where the inner element portion 7 is mounted. 4a, and the inner element portion 7 is preferably melted last.
  • a fuse element 5 having three element portions 7A, 7B, and 7C is used, and overhang portions 3a and 4a are provided at a portion where the middle element portion 7B is mounted. It is preferable that the portion 7B is melted at the end by facilitating cooling and shortening the distance between the electrodes.
  • the fuse element 5 is accompanied by arc discharge when the last element portion 7 is melted, the element portion 7B is melted by the last element portion 7B.
  • the molten metal of 7B can be captured by the outer element portions 7A and 7C that have been melted first. Therefore, scattering of the molten metal in the element portion 7B can be suppressed, and a short circuit due to the molten metal can be prevented.
  • the fuse element 5 includes the other element portions 7A and 7C located outside the partial cross-sectional area of the middle element portion 7B located inside.
  • the resistance may be relatively increased, and the middle element portion 7B may be blown out last.
  • the cross-sectional area is finally blown by making the cross-sectional area relatively small, the arc discharge can be made small according to the volume of the element portion 7B.
  • the terminal portion 10 is integrally formed with the fuse element 5, and the terminal portion 10 is fitted to the side surface of the insulating substrate 2, You may make it protrude in the back surface side of the insulated substrate 2.
  • FIG. 11B the same members as those of the above-described fuse element 1 are denoted by the same reference numerals, and the details thereof are omitted.
  • the fuse element 20 is provided with a flux 17 on the fuse element 5, and then, as shown in FIG. 11D, the cover member 6 is placed on the surface 2a of the insulating substrate 2. Manufactured by mounting. The terminal portion 10 protrudes from the open side surface of the cover member 6 to the back surface side of the insulating substrate 2.
  • the cover member 6 does not necessarily have to be mounted if the insulating portion 8 is provided on the surface 2 a of the insulating substrate 2 or provided by being applied and cured on the fuse element 5. .
  • the fuse element 20 is mounted with a connecting material such as solder with the back surface of the insulating substrate 2 facing the circuit board. Thereby, the fuse element 20 has the terminal portion 10 connected to the electrode terminal formed on the circuit board, and the fuse element 5 is connected in series with the circuit of the circuit board.
  • the fuse element 20 may be formed with a fitting recess 21 on the side surface of the insulating substrate 2 in which the terminal portion 10 of the fuse element 5 is fitted.
  • the fitting recess 21 By forming the fitting recess 21, the mounting area on the circuit board does not increase, and the fitting position of the fuse element 5 can be fixed.
  • the first and second electrodes 3 and 4 may not be formed on the surface 2 a of the insulating substrate 2. Thereby, the fuse element 20 does not need to form an electrode on the surface 2a of the insulating substrate 2, and the number of manufacturing steps can be reduced.
  • the insulating substrate 2 is used to dissipate heat from the fuse element 5, and a ceramic substrate having good thermal conductivity is preferably used.
  • the adhesive for connecting the fuse element 5 to the insulating substrate 2 may be non-conductive and preferably has excellent thermal conductivity.
  • a heat radiation electrode may be formed on the back surface of the insulating substrate 2.
  • the fuse element 20 may be manufactured by connecting a plurality of elements 11 corresponding to the element section 7 in parallel between the first and second electrodes 3 and 4.
  • an insulating portion 8 is provided between the elements 11 arranged in parallel.
  • the terminal portion 10 is bent and formed, and the terminal portion 10 is fitted to the side surface of the insulating substrate 2 and protrudes to the back surface side of the insulating substrate 2.
  • the first and second electrodes 3 and 4 provided on the surface 2a of the insulating substrate 2 may not be formed.
  • the fuse element 20 has three elements 11 arranged in parallel (11A to 11C), and the cross-sectional area of the middle element 11B provided on the inner side is larger than the cross-sectional area of the other elements 11A and 11C provided on the outer side. It is also possible to make the resistance relatively high by making it small, and finally melt it.
  • the fuse elements 1 and 20 include a plurality of first divided electrodes 3 and 4 according to the mounting positions of the plurality of element portions 7 and the plurality of elements 11 of the fuse element 5. It may be divided into three and a plurality of second divided electrodes 4.
  • the fuse element 1 includes first and second electrodes 3 and 4 and three element portions 7A to 7C of the fuse element 5 and three elements 11A to 11A. Depending on the mounting position of 11C, it may be divided into first divided electrodes 3A to 3C and second divided electrodes 4A to 4C.
  • the fuse element 1 has the element portions 7A to 7C of the fuse element 5. Alternatively, it is possible to suppress mounting displacement or inadvertent solder accumulation due to the surface tension of the solder when the elements 11A to 11C are connected to the solder.
  • the insulating portion 8 may be formed from a position adjacent to the first divided electrodes 3A to 3C to a position adjacent to the second divided electrodes 4A to 4C.
  • the fuse element 1 is mounted on the circuit board by reflow soldering or the like, whereby the fuse element 5 is incorporated in series with the circuit formed on the circuit board.
  • the solder for connection provided on the connection terminal of the circuit board is melted, passes through the terminal portion 10 of the fuse element 5, and on the first and second electrodes 3, 4 provided on the surface 2 a of the insulating substrate 2. And may aggregate in the region between the element parts 7 arranged in parallel. For this reason, in the fuse element 1, the resistance value in the element portion 7 is lowered, and there is a possibility that the interruption time is delayed.
  • the first and second electrodes 3 and 4 are divided into a plurality according to the element portion 7 or the element 11, and the insulating portion 8 having no wettability with respect to solder is adjacent to the first divided electrodes 3A to 3C.
  • the first divided electrodes 3A to 3C and the second divided electrodes are formed even if the connecting solder provided on the connection terminal of the circuit board is melted. It is possible to suppress the movement to the divided electrodes 4A to 4C, or to reduce the movement amount, and to prevent the resistance value in the element section 7 from being lowered and the interruption time from being delayed.
  • the fuse element 5 described above is a low melting point metal such as solder or Pb-free solder whose main component is Sn, or a laminated body of a low melting point metal and a high melting point metal.
  • the fuse element 5 is a laminated structure including an inner layer and an outer layer, and includes a low melting point metal layer 5a as an inner layer and a refractory metal layer 5b as an outer layer laminated on the low melting point metal layer 5a (see FIG. 4). .
  • the low melting point metal layer 5a is preferably a metal mainly composed of Sn, and is a material generally called “Pb-free solder” (for example, M705, manufactured by Senju Metal Industry).
  • the melting point of the low melting point metal layer 5a is not necessarily higher than the temperature of the reflow furnace, and may be melted at about 200 ° C.
  • the high melting point metal layer 5b is a metal layer laminated on the surface of the low melting point metal layer 5a, and is, for example, Ag or Cu, or a metal mainly composed of either of them, and the fuse element 5 is removed from the reflow furnace. Therefore, it has a high melting point that does not melt even when mounting on the insulating substrate 2.
  • the fuse element 5 5 does not lead to fusing. Therefore, the fuse element 5 can be efficiently mounted by reflow.
  • the fuse element 5 is not melted by self-heating while a predetermined rated current flows.
  • a current having a value higher than the rating flows, the current is melted by self-heating, and the current path between the first and second electrodes 3 and 4 is interrupted.
  • the fuse element 5 uses, for example, an alloy containing 40% or more of Sn as a low melting point metal, and the melted low melting point metal layer 5a erodes the high melting point metal layer 5b, whereby the high melting point metal layer 5b melts at a temperature lower than the melting temperature. Therefore, the fuse element 5 can be blown in a short time by utilizing the erosion action of the high melting point metal layer 5b by the low melting point metal layer 5a.
  • the molten metal of the fuse element 5 is divided into left and right by the physical pulling action of the first and second electrodes 3, 4, the first and second electrodes can be quickly and reliably.
  • the current path between 3 and 4 can be interrupted.
  • the fuse element 5 is configured by laminating the high melting point metal layer 5b on the low melting point metal layer 5a serving as the inner layer, the fusing temperature is greatly reduced as compared with a conventional chip fuse made of a high melting point metal. be able to. Therefore, the fuse element 5 can have a larger cross-sectional area and can greatly improve the current rating as compared with a chip fuse of the same size. In addition, it can be made smaller and thinner than conventional chip fuses having the same current rating, and is excellent in quick fusing.
  • the fuse element 5 can improve resistance to a surge (pulse resistance) in which an abnormally high voltage is instantaneously applied to the electrical system in which the fuse element 1 is incorporated. That is, the fuse element 5 must not be blown until, for example, a current of 100 A flows for several milliseconds.
  • the fuse element 5 since a large current flowing in a very short time flows in the surface layer of the conductor (skin effect), the fuse element 5 is provided with a refractory metal layer 5b such as Ag plating having a low resistance value as an outer layer. It is easy to flow the current applied by the surge, and it is possible to prevent fusing due to self-heating. Therefore, the fuse element 5 can greatly improve the resistance to a surge as compared with a fuse made of a conventional solder alloy.
  • the fuse element 5 can be manufactured by forming a high melting point metal 5b on the surface of the low melting point metal layer 5a by using a film forming technique such as an electrolytic plating method.
  • the fuse element 5 can be efficiently manufactured by performing Ag plating on the surface of the solder foil formed into a predetermined shape.
  • the fuse element 5 is formed by coating a refractory metal on a solder foil with an electrolytic plating method or the like, and then punching a predetermined portion corresponding to a region between the element portions 7 so that the refractory metal layer is formed above and below the low melting point metal layer 5a. It has a laminated structure in which the layers 5b are laminated.
  • Each of the elements 11 has a coating structure in which a low-melting-point metal layer 5a is an inner layer and a high-melting-point metal layer 5b is an outer layer by coating a solder foil with a high-melting point metal by an electrolytic plating method or the like.
  • the fuse element 5 and the element 11 are formed such that the volume of the low melting point metal layer 5a is larger than the volume of the high melting point metal layer 5b.
  • the fuse element 5 and the element 11 melt the high melting point metal by melting the low melting point metal by self-heating, and can thereby be melted and blown quickly. Accordingly, the fuse element 5 and the element 11 promote the corrosion action by forming the volume of the low melting point metal layer 5a larger than the volume of the high melting point metal layer 5b, and promptly the first and second electrodes. Between 3 and 4 can be interrupted.
  • the fuse element 5 is formed on the fuse element 5 in order to prevent oxidation of the outer high-melting-point metal layer 5b or the low-melting-point metal layer 5a, to remove oxide during melting, and to improve solder fluidity.
  • Flux 17 is applied to almost the entire surface of the outer layer. By applying the flux 17, the wettability of the low melting point metal (for example, solder) is enhanced, and the oxide while the low melting point metal is dissolved is removed, and the erosion action on the high melting point metal (for example, silver). Can be used to improve the fast fusing property.
  • the low melting point metal for example, solder
  • the anti-oxidation film 7 such as Pb-free solder containing Sn as a main component is formed on the surface of the outermost refractory metal layer 5b by applying the flux 17, the anti-oxidation film 7 is also formed.
  • the oxide can be removed, the refractory metal layer 5b can be effectively prevented from being oxidized, and the fast fusing property can be maintained and improved.

Landscapes

  • Fuses (AREA)

Abstract

Provided are a chip fuse and a fuse element, whereof the ability to blow fast and the ability to insulate after blowing are excellent even if the size of the chip fuse is to be reduced. The chip fuse comprises: an insulating substrate (2); a fuse element (5) mounted on the insulating substrate (2) and having a plurality of parallel element parts (7), which, through self-heating due to the passage of a rate-exceeding current, are blown, shutting the electrical path; and insulation parts (8), each provided in between the plurality of element parts (7), for preventing the parallel elements parts (7) from establishing connection with each other.

Description

ヒューズ素子、及びヒューズエレメントFuse element and fuse element
 本発明は、電流経路上に実装され、定格を超える電流が流れた時に自己発熱により溶断し当該電流経路を遮断するヒューズ素子及びヒューズエレメントに関し、特に速断性、溶断後の絶縁性に優れたヒューズ素子及びヒューズエレメントに関する。
 本出願は、日本国において2014年7月15日に出願された日本特許出願番号特願2014-144705を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
TECHNICAL FIELD The present invention relates to a fuse element and a fuse element that are mounted on a current path and blown by self-heating when a current exceeding a rating flows, and the current element path is cut off. The present invention relates to an element and a fuse element.
This application claims priority on the basis of Japanese Patent Application No. 2014-144705 filed on July 15, 2014 in Japan. This application is incorporated herein by reference. Incorporated.
 従来、定格を超える電流が流れた時に自己発熱により溶断し、当該電流経路を遮断するヒューズエレメントが用いられている。ヒューズエレメントとしては、例えば、ハンダをガラス管に封入したホルダー固定型ヒューズや、セラミック基板表面にAg電極を印刷したチップヒューズ、銅電極の一部を細らせてプラスチックケースに組み込んだねじ止め又は差し込み型ヒューズ等が多く用いられている。 Conventionally, a fuse element that melts by self-heating when a current exceeding the rating flows and interrupts the current path has been used. As the fuse element, for example, a holder-fixed fuse in which solder is enclosed in a glass tube, a chip fuse in which an Ag electrode is printed on the surface of a ceramic substrate, or a screw fixing in which a part of a copper electrode is thinned and incorporated in a plastic case or Plug-in fuses are often used.
特開2011-82064号公報JP 2011-82064 A
 しかし、上記既存のヒューズエレメントにおいては、リフローによる表面実装ができない、電流定格が低く、また大型化によって定格を上げると速断性に劣る、といった問題点が指摘されている。 However, it has been pointed out that the above-mentioned existing fuse elements cannot be surface-mounted by reflow, have a low current rating, and if the rating is increased by increasing the size, the quick disconnection property is inferior.
 また、リフロー実装用の速断ヒューズ素子を想定した場合、リフローの熱によって溶融しないように、一般的には、ヒューズエレメントには融点が300℃以上のPb入り高融点ハンダが溶断特性上好ましい。しかしながら、RoHS指令等においては、Pb含有ハンダの使用は、限定的に認められているに過ぎず、今後Pbフリー化の要求は、強まるものと考えられる。 In addition, when assuming a fast-acting fuse element for reflow mounting, generally, a high melting point solder containing Pb having a melting point of 300 ° C. or higher is preferable for the fuse element in terms of fusing characteristics so as not to melt by the heat of reflow. However, in the RoHS directive and the like, the use of Pb-containing solder is only limitedly recognized, and it is considered that the demand for Pb-free solder will increase in the future.
 すなわち、ヒューズエレメントとしては、リフローによる表面実装が可能でヒューズ素子への実装性に優れること、定格を上げて大電流に対応可能であること、定格を超える過電流時には速やかに電流経路を遮断する速溶断性を備えることが求められる。 In other words, the fuse element can be surface-mounted by reflow and has excellent mountability to the fuse element, it can handle a large current by raising its rating, and the current path is quickly interrupted when overcurrent exceeds the rating. It is required to have fast fusing properties.
 このような要求に応えるために、複数のエレメント部が並列されたヒューズエレメントも提案されている。このヒューズエレメント50は、図14(A)に示すように、に示すように、複数のエレメント部51A~51Cが並列されることにより、複数の通電経路を有する。複数のエレメント部51A~51Cは、それぞれ絶縁基板52の表面52aに形成された第1、第2の電極53,54間にわたって接続され、電流の通電経路となっており、定格を超える電流が通電することによって自己発熱(ジュール熱)により溶断する。ヒューズエレメント50は、すべてのエレメント部51A~51Cが溶断することにより、第1、第2の電極53,54間にわたる電流経路を遮断する。 In order to meet such requirements, a fuse element in which a plurality of element portions are arranged in parallel has also been proposed. As shown in FIG. 14A, the fuse element 50 has a plurality of energization paths by arranging a plurality of element portions 51A to 51C in parallel. The plurality of element portions 51A to 51C are connected across the first and second electrodes 53 and 54 formed on the surface 52a of the insulating substrate 52, respectively, and serve as current energization paths. By doing so, it melts by self-heating (Joule heat). The fuse element 50 cuts off the current path between the first and second electrodes 53 and 54 by melting all the element portions 51A to 51C.
 このとき、ヒューズエレメント50は、定格を超える電流が通電されると、抵抗値の低いエレメント部51に多くの電流が流れていき、自己発熱により順次溶断していき、最後に残ったエレメント部51が溶断する際にのみアーク放電が発生する。したがって、ヒューズエレメント50によれば、最後に残ったエレメント部51の溶断時にアーク放電が発生した場合にも、エレメント部51の体積に応じて小規模なものとなり、溶融金属の爆発的な飛散を防止することができ、また溶断後における絶縁性も向上させることができる。また、ヒューズエレメント50は、複数のエレメント部51A~51C毎に溶断されることから、各エレメント部51の溶断に要する熱エネルギーは少なくて済み、短時間で遮断することができる。 At this time, when a current exceeding the rating is supplied to the fuse element 50, a large amount of current flows through the element portion 51 having a low resistance value, and the fuse element 50 is melted sequentially by self-heating, and finally the remaining element portion 51. Arc discharge occurs only when the melts. Therefore, according to the fuse element 50, even when an arc discharge occurs when the last remaining element portion 51 is melted, the fuse element 50 becomes a small scale according to the volume of the element portion 51, and explosive scattering of the molten metal is caused. In addition, the insulation after fusing can be improved. Further, since the fuse element 50 is blown for each of the plurality of element portions 51A to 51C, less heat energy is required for fusing each element portion 51 and can be cut off in a short time.
 しかし、ヒューズエレメント50は、ヒューズ素子の小型化に伴い並列された各エレメント部51A~51Cの間隔も近くなると、図14(B)に示すように、エレメント部51A~51Cのうち、相対的に抵抗値の低いエレメント部51に多くの電流が流れて発熱する際に、発熱により部分溶融して隣接するエレメント部51に接触する恐れもある。隣接するエレメント部51同士が接触すると、エレメント部51が大型化し、各エレメント部51A~51Cを順次溶断させることができず、図14(C)に示すように、エレメント部51全体を溶融させることとなるため、溶断までに必要な電力も増えるため、速やかに電流経路を遮断することができなくなる。また、エレメント部51が大型化すると、溶断時に生じるアーク放電も大規模なものとなり、溶融金属の爆発的な飛散によって溶断後の絶縁性を損なうおそれもある。 However, in the fuse element 50, when the interval between the element portions 51A to 51C arranged in parallel with the miniaturization of the fuse element becomes close, as shown in FIG. When a large amount of current flows through the element portion 51 having a low resistance value to generate heat, the element portion 51 may be partially melted by heat generation and may contact the adjacent element portion 51. When adjacent element parts 51 come into contact with each other, the element part 51 becomes large, and the element parts 51A to 51C cannot be melted sequentially, and the entire element part 51 is melted as shown in FIG. Therefore, since the electric power required until fusing increases, the current path cannot be cut off quickly. In addition, when the element portion 51 is enlarged, arc discharge generated at the time of fusing becomes large-scale, and there is a possibility that the insulation after fusing may be impaired due to explosive scattering of molten metal.
 そこで、本発明は、小型化が図られたヒューズ素子においても、速溶断性及び溶断後における絶縁性に優れるヒューズ素子、及びヒューズエレメントを提供することを目的とする。 Therefore, an object of the present invention is to provide a fuse element and a fuse element that are excellent in quick fusing property and insulation after fusing, even in a fuse element that is downsized.
 上述した課題を解決するために、本発明に係るヒューズ素子は、絶縁基板と、上記絶縁基板上に搭載され、定格を超える電流が通電することによって自己発熱により溶断し通電経路を遮断する、並列した複数のエレメント部を備えるヒューズエレメント、又は並列した複数のヒューズエレメントと、上記複数のエレメント部の間、又は上記複数のヒューズエレメントの間に設けられ、並列する上記エレメント部又は上記ヒューズエレメントとの接続を防止する絶縁部とを備えるものである。 In order to solve the above-described problem, a fuse element according to the present invention is mounted on an insulating substrate and the insulating substrate, and in parallel, the current exceeding the rating is blown by self-heating to cut off the energization path. A fuse element having a plurality of element parts, or a plurality of parallel fuse elements, and a plurality of the element parts or the fuse elements provided in parallel between the plurality of element parts or the plurality of fuse elements. And an insulating part for preventing connection.
 また、本発明に係るヒューズエレメントは、並列する複数のエレメント部と、上記複数のエレメント部の間に設けられ並列する上記エレメント部同士の接続を防止する絶縁部とを有し、上記複数のエレメント部が、定格を超える電流の通電による自己発熱により溶断するものである。 The fuse element according to the present invention includes a plurality of element portions arranged in parallel and an insulating portion provided between the plurality of element portions to prevent connection between the element portions arranged in parallel. The part melts due to self-heating due to energization with a current exceeding the rating.
 本発明によれば、絶縁部を設けることにより、ヒューズエレメントは、エレメント部が順次溶断していく際に、自身の発熱により溶融、膨張して隣接するエレメント部に接触し凝集することが防止される。これにより、ヒューズエレメントは、隣接するエレメント部同士が溶融、凝集することで大型化し、溶断に必要な電力が増加することによる溶断時間の増加や、溶断時に生じるアーク放電の大規模化による溶融金属の爆発的飛散、溶断後における絶縁性の低下を防止することができる。 According to the present invention, by providing the insulating portion, the fuse element is prevented from melting and expanding due to its own heat generation and coming into contact with adjacent element portions and agglomerating when the element portions are sequentially melted. The As a result, the fuse element increases in size by melting and aggregating adjacent element parts, increasing the fusing time due to the increase in power required for fusing, and molten metal due to the large scale of arc discharge that occurs during fusing It is possible to prevent the explosive splashing and the insulation deterioration after fusing.
図1は、本発明が適用されたヒューズエレメントの一例を示す図であり、(A)はカバー部材を外した分解斜視図、(B)は外観斜視図である。1A and 1B are diagrams showing an example of a fuse element to which the present invention is applied. FIG. 1A is an exploded perspective view with a cover member removed, and FIG. 1B is an external perspective view. 図2は、ヒューズエレメントの溶断順序を示す図であり、(A)は溶断前、(B)は外側のエレメント部が溶断した状態、(C)はすべてのエレメント部が溶断した状態を示す。2A and 2B are diagrams showing the fusing order of the fuse elements, where FIG. 2A shows a state before fusing, FIG. 2B shows a state in which an outer element portion is blown, and FIG. 2C shows a state in which all element portions are blown. 図3は、一枚の板状エレメントを用いたヒューズ素子の溶断状態を示す図であり、(A)は定格を超える電流が通電され始めた状態、(B)はエレメントが溶融し凝集した状態、(C)はエレメントがアーク放電を伴って爆発的に溶断した状態を示す。FIGS. 3A and 3B are diagrams showing a fusing state of a fuse element using a single plate-like element, in which FIG. 3A shows a state in which a current exceeding the rating starts to be applied, and FIG. 3B shows a state in which the element has melted and aggregated (C) shows a state in which the element is blown out explosively with arc discharge. 図4は、絶縁基板の表面に絶縁部を設けたヒューズ素子の断面図である。FIG. 4 is a cross-sectional view of a fuse element in which an insulating portion is provided on the surface of an insulating substrate. 図5は、カバー部材の天面に絶縁部を設けたヒューズ素子の断面図である。FIG. 5 is a cross-sectional view of a fuse element in which an insulating portion is provided on the top surface of the cover member. 図6は、エレメント部の間に絶縁部を構成する材料を充填して硬化させることにより絶縁部を設けたヒューズ素子の断面図である。FIG. 6 is a cross-sectional view of a fuse element in which an insulating portion is provided by filling and hardening a material constituting the insulating portion between element portions. 図7は、ヒューズエレメントを示す平面図であり(A)はエレメント部の両側を一体に支持したもの、(B)はエレメント部の片側を一体に支持したものを示す。FIGS. 7A and 7B are plan views showing the fuse element. FIG. 7A is a view in which both sides of the element portion are integrally supported, and FIG. 7B is a view in which one side of the element portion is integrally supported. 図8は、3枚のエレメントを並列させたヒューズ素子を示す斜視図である。FIG. 8 is a perspective view showing a fuse element in which three elements are arranged in parallel. 図9は、図1に示すヒューズエレメントを用いたヒューズ素子の製造工程を示す図であり、(A)は絶縁基板の斜視図、(B)は絶縁基板にヒューズエレメントを搭載した状態、(C)はヒューズエレメント上にフラックスを設けた状態、(D)はカバー部材を搭載した状態、(E)は回路基板への実装状態を示す。9A and 9B are diagrams showing a manufacturing process of a fuse element using the fuse element shown in FIG. 1, wherein FIG. 9A is a perspective view of the insulating substrate, FIG. 9B is a state in which the fuse element is mounted on the insulating substrate, and FIG. ) Is a state in which a flux is provided on the fuse element, (D) is a state in which a cover member is mounted, and (E) is a state of mounting on a circuit board. 図10は、第1、第2の電極に張出し部を設けたヒューズ素子を示す図であり、(A)は絶縁基板の平面図、(B)は斜視図である。10A and 10B are diagrams showing a fuse element in which an overhang portion is provided on the first and second electrodes. FIG. 10A is a plan view of an insulating substrate, and FIG. 10B is a perspective view. 図11は、図1に示すヒューズエレメントを用いた他のヒューズ素子の製造工程を示す図であり、(A)は絶縁基板の斜視図、(B)は絶縁基板にヒューズエレメントを搭載した状態、(C)はヒューズエレメント上にフラックスを設けた状態、(D)はカバー部材を搭載した状態及び回路基板への実装状態を示す。FIG. 11 is a diagram showing a manufacturing process of another fuse element using the fuse element shown in FIG. 1, (A) is a perspective view of the insulating substrate, (B) is a state in which the fuse element is mounted on the insulating substrate, (C) shows a state where flux is provided on the fuse element, and (D) shows a state where a cover member is mounted and a state where the cover member is mounted on the circuit board. 図12は、他のヒューズエレメントを用いた他のヒューズ素子を示す斜視図である。FIG. 12 is a perspective view showing another fuse element using another fuse element. 図13は、第1、第2の分割電極を形成した絶縁基板を示す平面図である。FIG. 13 is a plan view showing an insulating substrate on which first and second divided electrodes are formed. 図14は、参考例に係るヒューズ素子の溶断状態を示す図であり、(A)は溶断前、(B)は外側のエレメント部が溶融し内側のエレメント部と一体化した状態、(C)はすべてのエレメント部が同時に溶断した状態を示す。14A and 14B are diagrams showing a fusing state of a fuse element according to a reference example, in which FIG. 14A is a state before fusing, FIG. 14B is a state in which an outer element portion is melted and integrated with an inner element portion, and FIG. Indicates a state in which all the element portions are fused at the same time.
 以下、本発明が適用されたヒューズ素子及びヒューズエレメントについて、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Hereinafter, a fuse element and a fuse element to which the present invention is applied will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 [第1の形態]
 本発明に係るヒューズ素子1は、図1(A)(B)に示すように、絶縁基板2と、絶縁基板2に設けられた第1及び第2の電極3,4と、第1及び第2の電極3,4間にわたって実装され、定格を超える電流が通電することによって自己発熱により溶断し、第1の電極3と第2の電極4との間の電流経路を遮断するヒューズエレメント5と、ヒューズエレメント5が設けられた絶縁基板2の表面2a上を覆うカバー部材6とを有する。
[First embodiment]
As shown in FIGS. 1A and 1B, the fuse element 1 according to the present invention includes an insulating substrate 2, first and second electrodes 3 and 4 provided on the insulating substrate 2, and first and second electrodes. A fuse element 5 that is mounted between two electrodes 3 and 4, is blown by self-heating when a current exceeding the rating is applied, and interrupts a current path between the first electrode 3 and the second electrode 4; And a cover member 6 covering the surface 2a of the insulating substrate 2 on which the fuse element 5 is provided.
 また、ヒューズエレメント5には複数のエレメント部7が並列し、複数のエレメント部7の間には、並列するエレメント部7同士の接続を防止する絶縁部8が設けられている。このヒューズ素子1は、回路基板に実装されることにより、ヒューズエレメント5が当該回路基板上に形成された回路に直列に組み込まれる。 Further, a plurality of element portions 7 are arranged in parallel with the fuse element 5, and an insulating portion 8 for preventing connection between the parallel element portions 7 is provided between the plurality of element portions 7. When the fuse element 1 is mounted on a circuit board, the fuse element 5 is incorporated in series with a circuit formed on the circuit board.
 ヒューズ素子1は、小型且つ高定格のヒューズ素子を実現するものであり、例えば、絶縁基板2の寸法として3~4mm×5~6mm程度と小型でありながら、抵抗値が0.5~1mΩ、50~60A定格と高定格化が図られている。なお、本発明は、あらゆるサイズ、抵抗値及び電流定格を備えるヒューズ素子に適用することができるのはもちろんである。 The fuse element 1 realizes a small and highly rated fuse element. For example, although the dimensions of the insulating substrate 2 are as small as 3 to 4 mm × 5 to 6 mm, the resistance value is 0.5 to 1 mΩ, 50-60A rating and higher rating are being achieved. Of course, the present invention can be applied to fuse elements having all sizes, resistance values, and current ratings.
 絶縁基板2は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって方形状に形成される。その他、絶縁基板2は、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよい。 The insulating substrate 2 is formed in a square shape by an insulating member such as alumina, glass ceramics, mullite, zirconia. In addition, the insulating substrate 2 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board.
 絶縁基板の相対向する両端部には、第1、第2の電極3,4が形成されている。第1、第2の電極3,4は、それぞれ、CuやAg配線等の導電パターンによって形成され、Cu等酸化されやすい配線材料の場合には表面に適宜、酸化防止対策としてSnメッキ等の保護層が設けられている。 First and second electrodes 3 and 4 are formed at opposite ends of the insulating substrate. The first and second electrodes 3 and 4 are each formed by a conductive pattern such as Cu or Ag wiring, and in the case of a wiring material such as Cu that is easily oxidized, the surface is appropriately protected with Sn plating or the like as an anti-oxidation measure. A layer is provided.
 [カバー部材]
 また、ヒューズ素子1は、絶縁基板2の表面2a上に、内部を保護するとともに溶融したヒューズエレメント5の飛散を防止するカバー部材6が取り付けられている。カバー部材6は、絶縁基板2の表面2a上に搭載される側壁6aと、ヒューズ素子1の上面を構成する天面6bとを有する。ヒューズ素子1は、カバー部材6の側壁6aが絶縁基板2の表面2a上に接続されると、絶縁基板2の表面2aと天面6bとの間からヒューズエレメント5の両端に設けられた端子部10を導出する間隙が設けられる。このカバー部材6は、例えば、熱可塑性プラスチック,セラミックス,ガラスエポキシ基板等の絶縁性を有する部材を用いて形成することができる。
[Cover member]
The fuse element 1 has a cover member 6 mounted on the surface 2a of the insulating substrate 2 to protect the inside and prevent the molten fuse element 5 from scattering. The cover member 6 has a side wall 6 a mounted on the surface 2 a of the insulating substrate 2 and a top surface 6 b constituting the upper surface of the fuse element 1. When the side wall 6a of the cover member 6 is connected to the surface 2a of the insulating substrate 2, the fuse element 1 has terminal portions provided at both ends of the fuse element 5 from between the surface 2a of the insulating substrate 2 and the top surface 6b. A gap leading out 10 is provided. The cover member 6 can be formed using an insulating member such as a thermoplastic plastic, a ceramic, a glass epoxy substrate, or the like.
 [ヒューズエレメント]
 第1及び第2の電極3,4間にわたって実装されているヒューズエレメント5は、定格を超える電流が通電することによって自己発熱(ジュール熱)により溶断し、第1の電極3と第2の電極4との間の電流経路を遮断するものである。ヒューズエレメント5は、ハンダ等の接続材料を介して第1及び第2の電極3,4間に搭載された後、リフローはんだ付け等により絶縁基板2上に接続される。
[Fuse element]
The fuse element 5 mounted between the first and second electrodes 3 and 4 is melted by self-heating (Joule heat) when a current exceeding the rating is applied, and the first electrode 3 and the second electrode The current path to 4 is cut off. The fuse element 5 is mounted between the first and second electrodes 3 and 4 via a connecting material such as solder and then connected to the insulating substrate 2 by reflow soldering or the like.
 ヒューズエレメント5は、絶縁基板2に形成された第1、第2の電極3,4間にわたって搭載される複数のエレメント部7と、ヒューズ素子1が実装される回路基板の接続端子に接続される端子部10とを有する。 The fuse element 5 is connected to a plurality of element portions 7 mounted between the first and second electrodes 3 and 4 formed on the insulating substrate 2 and connection terminals of a circuit board on which the fuse element 1 is mounted. Terminal portion 10.
 以下では、3つのエレメント部7A~7Cが並列されたヒューズエレメント5を用いた場合を例に説明する。図2(A)に示すように、各エレメント部7A~7Cは、絶縁基板2に形成された第1、第2の電極3,4間にわたって搭載されることにより、ヒューズエレメント5の複数の通電経路を構成する。そして、複数のエレメント部7A~7Cは、図2(B)に示すように、定格を超える電流が通電することによって自己発熱(ジュール熱)により溶断する。ヒューズエレメント5は、すべてのエレメント部7A~7Cが溶断することにより、第1、第2の電極3,4間にわたる電流経路を遮断する(図2(C))。 Hereinafter, a case where the fuse element 5 in which the three element portions 7A to 7C are arranged in parallel will be described as an example. As shown in FIG. 2A, each of the element portions 7A to 7C is mounted between the first and second electrodes 3 and 4 formed on the insulating substrate 2, so that a plurality of energizations of the fuse element 5 are performed. Configure the route. Then, as shown in FIG. 2B, the plurality of element portions 7A to 7C are fused by self-heating (Joule heat) when a current exceeding the rating is applied. The fuse element 5 cuts off the current path between the first and second electrodes 3 and 4 by melting all of the element portions 7A to 7C (FIG. 2C).
 また、ヒューズエレメント5は、定格を超える電流が通電し、溶断する際に、アーク放電が発生した場合にも、溶融したヒューズエレメントが広範囲にわたって飛散し、飛散した金属によって新たに電流経路が形成され、あるいは飛散した金属が端子や周囲の電子部品等に付着することを防止することができる。 In addition, the fuse element 5 is blown over a wide range even when arc discharge occurs when a current exceeding the rating is applied and melted, and a new current path is formed by the scattered metal. Alternatively, it is possible to prevent the scattered metal from adhering to the terminals and surrounding electronic components.
 すなわち、図3(A)に示すように、絶縁基板40上の電極端子41,42間にわたって広範囲に搭載されたヒューズエレメント43においては、定格を超えた電圧が印加され大電流が流れると、全体的に発熱する。そして、図3(B)に示すように、ヒューズエレメント43は、全体が溶融し、凝集状態となった後、図3(C)に示すように、大規模なアーク放電が発生しながら溶断する。このため、ヒューズエレメント43の溶融物が爆発的に飛散する。このため、飛散した金属によって新たに電流経路が形成され絶縁性を損ない、あるいは、絶縁基板40に形成された電極端子41,42を溶融させて共に飛散することにより、周囲の電子部品等に付着する恐れがある。さらに、ヒューズエレメント43は、全体的に凝集した後にこれを溶融、遮断させることから溶断に要する熱エネルギーも多くなり、速溶断性に劣る。 That is, as shown in FIG. 3A, in the fuse element 43 mounted over a wide range between the electrode terminals 41 and 42 on the insulating substrate 40, when a voltage exceeding the rating is applied and a large current flows, Fever. Then, as shown in FIG. 3B, the fuse element 43 is melted and aggregated, and then melted while large-scale arc discharge is generated as shown in FIG. 3C. . For this reason, the melt of the fuse element 43 explodes. For this reason, a new current path is formed by the scattered metal and the insulation is impaired, or the electrode terminals 41 and 42 formed on the insulating substrate 40 are melted and scattered together to adhere to surrounding electronic components and the like. There is a fear. Furthermore, since the fuse element 43 is melted and cut off after agglomeration as a whole, the heat energy required for fusing increases and the fast fusing property is poor.
 アーク放電を速やかに止めて回路を遮断する対策として、中空ケース内に消弧材を詰めたものや、放熱材の周りにヒューズエレメントを螺旋状に巻きつけてタイムラグを発生させる高電圧対応の電流ヒューズも提案されている。しかし、従来の高電圧対応の電流ヒューズにおいては、消弧材の封入や螺旋ヒューズの製造といった、何れも複雑な材料や加工プロセスが必要とされ、ヒューズ素子の小型化や電流の高定格化といった面で不利である。 Current countermeasures to quickly stop arc discharge and shut off the circuit include a hollow case filled with an arc extinguishing material, or a high voltage compatible current that generates a time lag by spirally wrapping a fuse element around the heat dissipation material Fuses have also been proposed. However, conventional high-voltage current fuses require complicated materials and processing processes, such as arc-quenching material encapsulation and spiral fuse manufacturing, and the fuse element is downsized and current rating is increased. It is disadvantageous in terms.
 この点、ヒューズエレメント5は、第1、第2の電極3,4間にわたって搭載される複数のエレメント部7A~7Cを並列させているため、定格を超える電流が通電されると、抵抗値の低いエレメント部7に多くの電流が流れていき、自己発熱により順次溶断していき、最後に残ったエレメント部7が溶断する際にのみアーク放電が発生する。したがって、ヒューズエレメント5によれば、最後に残ったエレメント部7の溶断時にアーク放電が発生した場合にも、エレメント部7の体積に応じて小規模なものとなり、溶融金属の爆発的な飛散を防止することができ、また溶断後における絶縁性も大幅に向上させることができる。また、ヒューズエレメント5は、複数のエレメント部7A~7C毎に溶断されることから、各エレメント部7の溶断に要する熱エネルギーは少なくて済み、短時間で遮断することができる。 In this respect, the fuse element 5 has a plurality of element portions 7A to 7C mounted between the first and second electrodes 3 and 4 in parallel. A large amount of current flows through the lower element portion 7 and is melted sequentially by self-heating, and arc discharge occurs only when the last remaining element portion 7 is melted. Therefore, according to the fuse element 5, even when an arc discharge occurs when the last remaining element portion 7 is melted, the size of the fuse element 5 becomes small according to the volume of the element portion 7, and the explosive scattering of the molten metal is prevented. In addition, the insulation after fusing can be greatly improved. Further, since the fuse element 5 is blown for each of the plurality of element portions 7A to 7C, less heat energy is required for fusing each element portion 7 and can be cut off in a short time.
 [絶縁部]
 また、図1、図4に示すように、ヒューズ素子1は、複数のエレメント部7の間に、並列するエレメント部7同士の接続を防止する絶縁部8が設けられている。絶縁部8を設けることにより、ヒューズエレメント5は、エレメント部7が順次溶断していく際に、自身の発熱により溶融、膨張して隣接するエレメント部7に接触し凝集することを防止する。これにより、ヒューズエレメント5は、隣接するエレメント部7同士が溶融、凝集することで大型化し、溶断に必要な電力が増加することによる溶断時間の増加や、溶断時に生じるアーク放電の大規模化による溶融金属の爆発的飛散、溶断後における絶縁性の低下を防止することができる。
[Insulation part]
As shown in FIGS. 1 and 4, the fuse element 1 is provided with an insulating portion 8 between the plurality of element portions 7 to prevent connection between the element portions 7 arranged in parallel. By providing the insulating portion 8, the fuse element 5 prevents the element portion 7 from melting and expanding due to its own heat generation and coming into contact with the adjacent element portion 7 and agglomerating when the element portion 7 is sequentially melted. As a result, the fuse element 5 is increased in size by melting and agglomerating adjacent element portions 7, and due to an increase in fusing time due to an increase in power required for fusing and an increase in the scale of arc discharge generated at the time of fusing. It is possible to prevent explosive scattering of molten metal and a decrease in insulation after fusing.
 絶縁部8は、例えば絶縁基板2の表面2aに、ソルダーレジストやガラス等の絶縁材料を印刷すること等により立設されている。また、絶縁部8は、絶縁性を有することから、溶融エレメントに対する濡れ性を有しないため、必ずしも隣接するエレメント部7同士を完全に隔絶する必要はない。すなわち、カバー部材6の天面6bとの間に隙間を有していても濡れ性による引き込み作用は働かず、溶融エレメントが当該隙間から並列するエレメント部側へ流入することはない。また、エレメント部7は、自身の発熱により溶融すると、第1、第2の電極3,4間の領域において断面ドーム状に膨れる。そのため、絶縁部8は、絶縁基板2の表面2aからカバー部材6の天面6bまでに至る高さの半分以上の高さがあれば、溶融エレメントが並列するエレメント部7と接触することを防止できる。もちろん、絶縁部8は、絶縁基板2の表面2aからカバー部材6の天面6bまでに至る高さで形成し、エレメント部7同士を隔絶してもよい。 The insulating portion 8 is erected by, for example, printing an insulating material such as solder resist or glass on the surface 2a of the insulating substrate 2. Further, since the insulating portion 8 has insulating properties, it does not have wettability with respect to the melting element, and therefore it is not always necessary to completely isolate the adjacent element portions 7 from each other. That is, even if there is a gap with the top surface 6b of the cover member 6, the pulling action due to wettability does not work, and the molten element does not flow from the gap to the side of the element portion arranged in parallel. Further, when the element portion 7 is melted by its own heat generation, the element portion 7 swells in a dome shape in the region between the first and second electrodes 3 and 4. Therefore, if the insulating part 8 has a height that is more than half of the height from the surface 2a of the insulating substrate 2 to the top surface 6b of the cover member 6, the molten element is prevented from coming into contact with the element parts 7 arranged in parallel. it can. Of course, the insulating portion 8 may be formed at a height from the surface 2a of the insulating substrate 2 to the top surface 6b of the cover member 6 to isolate the element portions 7 from each other.
 また、図5に示すように、絶縁部8は、カバー部材6の天面6bに形成してもよい。絶縁部8は、カバー部材6の天面6bに一体形成してもよく、又は天面6bにソルダーレジストやガラス等の絶縁材料を印刷すること等により立設してもよい。この場合も、絶縁部8は、カバー部材6の天面6bから絶縁基板2の表面2aまでに至る高さの半分以上の高さがあれば、溶融エレメントが並列するエレメント部7と接触することを防止できる。 Further, as shown in FIG. 5, the insulating portion 8 may be formed on the top surface 6 b of the cover member 6. The insulating portion 8 may be integrally formed on the top surface 6b of the cover member 6, or may be erected by printing an insulating material such as solder resist or glass on the top surface 6b. Also in this case, if the insulating portion 8 has a height that is more than half of the height from the top surface 6b of the cover member 6 to the surface 2a of the insulating substrate 2, the insulating element 8 is in contact with the element portions 7 in parallel. Can be prevented.
 また、図6に示すように、絶縁部8は、絶縁基板2やカバー部材6に設ける他、並列する複数のエレメント部7の間に絶縁部8を構成する液状あるいはペースト状の絶縁材料を塗布し、硬化させることにより形成してもよい。絶縁部8を構成する絶縁性の材料としては、エポキシ樹脂等の熱硬化性の絶縁性接着剤やソルダーレジスト、ガラスペーストを用いることができる。この場合、絶縁部8を構成する絶縁材料は、ヒューズエレメント5が絶縁基板2に接続された後に塗布、硬化させてもよく、ヒューズエレメント5を絶縁基板2に接続する前に塗布、硬化させてもよい。 In addition, as shown in FIG. 6, the insulating portion 8 is provided on the insulating substrate 2 and the cover member 6, and a liquid or paste-like insulating material constituting the insulating portion 8 is applied between a plurality of element portions 7 arranged in parallel. And may be formed by curing. As an insulating material constituting the insulating portion 8, a thermosetting insulating adhesive such as an epoxy resin, a solder resist, or a glass paste can be used. In this case, the insulating material constituting the insulating portion 8 may be applied and cured after the fuse element 5 is connected to the insulating substrate 2, or may be applied and cured before the fuse element 5 is connected to the insulating substrate 2. Also good.
 液状あるいはペースト状の絶縁材料は、並列する複数のエレメント部7の間に毛管作用によって充填され、硬化することによりエレメント部7が発熱により溶融した場合に、並列するエレメント部7同士の接続を防止することができる。このため、絶縁部8を構成する絶縁材料は、硬化することによりエレメント部7の発熱温度に対する耐熱性を備えることが求められる。 The liquid or paste-like insulating material is filled between the plural element parts 7 arranged in parallel by capillary action, and when the element part 7 is melted by heat generation by curing, the connection between the element parts 7 arranged in parallel is prevented. can do. For this reason, it is calculated | required that the insulating material which comprises the insulation part 8 is equipped with the heat resistance with respect to the heat_generation | fever temperature of the element part 7 by hardening.
 [溶断順序の制御]
 ヒューズ素子1は、ヒューズエレメント5の各エレメント部7の間に絶縁部8を設けることが好ましい。また、ヒューズ素子1は、複数のエレメント部7を順次溶断させるとともに、少なくとも最初に溶断するエレメント部7とこの最初に溶断するエレメント部7に隣接するエレメント部7との間に絶縁部8を設けることが好ましい。
[Control of fusing order]
The fuse element 1 is preferably provided with an insulating portion 8 between the element portions 7 of the fuse element 5. In addition, the fuse element 1 sequentially melts the plurality of element parts 7 and provides an insulating part 8 between at least the element part 7 to be blown first and the element part 7 adjacent to the element part 7 to be blown first. It is preferable.
 例えば、ヒューズエレメント5は、複数のエレメント部7のうち、一つのエレメント部7の一部又は全部の断面積を他のエレメント部の断面積よりも小さくすることにより、相対的に高抵抗化することにより、定格を超える電流が通電されると、先ず比較的低抵抗のエレメント部7から多くの電流が通電し溶断していく。このエレメント部7の溶断は自己発熱によるアーク放電を伴うものではないため、溶融金属の爆発的な飛散もない。その後、残った当該高抵抗化されたエレメント部7に電流が集中し、最後にアーク放電を伴って溶断する。これにより、ヒューズエレメント5は、エレメント部7を順次溶断させることができる。ヒューズエレメント5は、断面積の小さいエレメント部7の溶断時にアーク放電が発生するが、エレメント部7の体積に応じて小規模なものとなり、溶融金属の爆発的な飛散を防止することができる。 For example, the fuse element 5 has a relatively high resistance by making the cross-sectional area of a part or all of one element part 7 smaller than the cross-sectional area of another element part among the plurality of element parts 7. As a result, when a current exceeding the rating is energized, first, a large amount of current is energized and melted from the element portion 7 having a relatively low resistance. Since the melting of the element portion 7 does not involve arc discharge due to self-heating, there is no explosive scattering of the molten metal. Thereafter, the current concentrates on the remaining high-resistance element portion 7 and finally melts with arc discharge. Thereby, the fuse element 5 can melt the element part 7 sequentially. The fuse element 5 generates an arc discharge when the element portion 7 having a small cross-sectional area is melted. However, the fuse element 5 becomes a small scale according to the volume of the element portion 7 and can prevent explosive scattering of the molten metal.
 このとき、ヒューズ素子1は、最初に溶断する比較的低抵抗のエレメント部7と、このエレメント部7に隣接するエレメント部との間に絶縁部8を設けることにより、自身の発熱により膨張して隣接するエレメント部7に接触し凝集することを防止することができる。これにより、ヒューズ素子1は、エレメント部7を所定の溶断順序で溶断させるとともに、隣接するエレメント部7同士が一体化することによる溶断時間の増加やアーク放電の大規模化による絶縁性の低下を防止することができる。 At this time, the fuse element 1 expands due to its own heat generation by providing an insulating portion 8 between the relatively low resistance element portion 7 to be melted first and the element portion adjacent to the element portion 7. It is possible to prevent the adjacent element portions 7 from contacting and aggregating. As a result, the fuse element 1 causes the element portions 7 to be blown in a predetermined fusing order, and increases the fusing time due to the integration of the adjacent element portions 7 and a decrease in insulation due to the large scale of arc discharge. Can be prevented.
 具体的に、図1に示す3つのエレメント部7A、7B、7Cからなるヒューズエレメント5が搭載されたヒューズ素子1において、相対的に真ん中のエレメント部7Bの断面積を小さくし高抵抗化することにより、外側のエレメント部7A、7Cから優先的に多くの電流を流し、溶断させた後、最後に真ん中のエレメント部7Bを溶断する。このとき、ヒューズ素子1は、エレメント部7A、7Bとの間、及びエレメント部7B、7Cにそれぞれ絶縁部8を設けることにより、エレメント部7A、7Cが自己発熱により溶融した際にも、隣接するエレメント部7Bと接触することなく短時間で溶断するとともに、最後にエレメント部7Bを溶断させることができる。また、断面積の小さいエレメント部7Bは、隣接するエレメント部7A、7Cとの接触もなく、溶断時におけるアーク放電も小規模なものに止まる。 Specifically, in the fuse element 1 on which the fuse element 5 composed of the three element portions 7A, 7B, and 7C shown in FIG. 1 is mounted, the cross-sectional area of the middle element portion 7B is relatively reduced and the resistance is increased. As a result, a large amount of current is preferentially passed from the outer element portions 7A and 7C to cause fusing, and finally the middle element portion 7B is blown. At this time, the fuse element 1 is adjacent to the element parts 7A and 7B and adjacent to the element parts 7B and 7C even when the element parts 7A and 7C are melted by self-heating. While fusing in a short time without coming into contact with the element portion 7B, the element portion 7B can be fused at the end. Further, the element portion 7B having a small cross-sectional area has no contact with the adjacent element portions 7A and 7C, and arc discharge at the time of fusing is limited to a small scale.
 なお、ヒューズエレメント5は、3つ以上のエレメント部を設けた場合、外側のエレメント部を最初に溶断させ、内側のエレメント部を最後に溶断させることが好ましい。例えば、図2に示すように、ヒューズエレメント5は、3つのエレメント部7A、7B、7Cを設けるとともに、真ん中のエレメント部7Bを最後に溶断させることが好ましい。 In addition, when the fuse element 5 is provided with three or more element portions, it is preferable that the outer element portion is blown first and the inner element portion is blown last. For example, as shown in FIG. 2, the fuse element 5 is preferably provided with three element portions 7A, 7B, and 7C, and the middle element portion 7B is blown last.
 上述したように、ヒューズエレメント5に定格を超える電流が通電されると、先ず外側に設けられた2つのエレメント部7A、7Cに多くの電流が流れて自己発熱により溶断する。これらエレメント部7A、7Cの溶断は自己発熱によるアーク放電を伴うものではないため、溶融金属の爆発的な飛散もない。また、上述したように、エレメント部7A、7Cは、絶縁部8により隣接するエレメント部7Bとの接触もなく、最初に溶断される。 As described above, when a current exceeding the rating is supplied to the fuse element 5, first, a large amount of current flows through the two element portions 7A and 7C provided on the outside, and the fuse element 5 is melted by self-heating. Since the fusing of these element portions 7A and 7C is not accompanied by arc discharge due to self-heating, there is no explosive scattering of the molten metal. Further, as described above, the element portions 7A and 7C are melted first without contact with the adjacent element portion 7B by the insulating portion 8.
 次いで、内側に設けられたエレメント部7Bに電流が集中し、アーク放電を伴いながら溶断する。このとき、ヒューズエレメント5は、内側に設けられたエレメント部7Bを最後に溶断させることにより、アーク放電が発生しても、エレメント部7Bの溶融金属を、先に溶断している外側のエレメント部7A,7Cやエレメント部7A,7Cとの間に設けられた絶縁部8によって捕捉することができる。したがって、エレメント部7Bの溶融金属の飛散を抑制し、溶融金属によるショート等を防止することができる。 Next, the current concentrates on the element portion 7B provided on the inner side and melts while arc discharge occurs. At this time, the fuse element 5 is the outer element portion that has melted the molten metal of the element portion 7B first, even if arc discharge occurs, by finally fusing the element portion 7B provided on the inner side. It can be captured by the insulating portion 8 provided between 7A and 7C and the element portions 7A and 7C. Therefore, scattering of the molten metal in the element portion 7B can be suppressed, and a short circuit due to the molten metal can be prevented.
 このときも、ヒューズエレメント5は、3つのエレメント部7A~7Cのうち、内側に位置する真ん中のエレメント部7Bの一部又は全部の断面積を外側に位置する他のエレメント部7A,7Cの断面積よりも小さくすることにより、相対的に高抵抗化し、これにより真ん中のエレメント部7Bを最後に溶断させてもよい。この場合も、断面積を相対的に小さくすることにより最後に溶断させているため、アーク放電もエレメント部7Bの体積に応じて小規模なものとなり、溶融金属の爆発的な飛散をより抑制することができる。 Also at this time, the fuse element 5 has a cross-sectional area of a part or all of the middle element part 7B located on the inner side among the three element parts 7A to 7C, and the other element parts 7A and 7C located on the outer side. By making it smaller than the area, the resistance may be relatively increased, and the middle element portion 7B may be blown out last. Also in this case, since the cross-sectional area is blown last by making the cross-sectional area relatively small, the arc discharge becomes small according to the volume of the element portion 7B, and the explosive scattering of the molten metal is further suppressed. be able to.
 [絶縁部の設置位置]
 また、ヒューズ素子1は、絶縁部8をエレメント部7の溶断部位に応じて設ければよい。図2に示すように、ヒューズエレメント5は、各エレメント部7が絶縁基板2に設けられた第1、第2の電極3,4上に接続されることにより、第1、第2の電極3,4間を導通させている。各エレメント部7は、第1、第2の電極3,4に接続されている両端部では電流が集中せず、第1の電極3と第2の電極4との中間部において電流が集中し、高温に発熱することにより溶融する。
[Installation position of insulation part]
Moreover, the fuse element 1 should just provide the insulating part 8 according to the fusing part of the element part 7. FIG. As shown in FIG. 2, the fuse element 5 includes the first and second electrodes 3 by connecting each element portion 7 on the first and second electrodes 3 and 4 provided on the insulating substrate 2. , 4 are electrically connected. In each element portion 7, current is not concentrated at both ends connected to the first and second electrodes 3, 4, and current is concentrated at an intermediate portion between the first electrode 3 and the second electrode 4. It melts by generating heat at a high temperature.
 したがって、ヒューズ素子1は、各エレメント部7の第1の電極3と第2の電極4とに接続された両端部間の中間部に隣接して設けることで、溶融エレメントが隣接するエレメント部7に接触することを防止することができる。 Therefore, the fuse element 1 is provided adjacent to an intermediate portion between both end portions connected to the first electrode 3 and the second electrode 4 of each element portion 7, so that the element portion 7 adjacent to the melting element is provided. Can be prevented from touching.
 [端子部]
 端子部10は、ヒューズエレメント5が搭載されたヒューズ素子1が回路基板に実装されると、当該回路基板に形成された接続端子に接続されるものであり、図1に示すように、エレメント部7の長手方向の両側に形成されている。そして、端子部10は、ヒューズ素子1がフェースダウンで回路基板に実装されることにより、回路基板上に形成された接続端子とハンダ等を介して接続される。
[Terminal part]
When the fuse element 1 on which the fuse element 5 is mounted is mounted on a circuit board, the terminal section 10 is connected to a connection terminal formed on the circuit board. As shown in FIG. 7 is formed on both sides in the longitudinal direction. The terminal portion 10 is connected to a connection terminal formed on the circuit board via solder or the like by mounting the fuse element 1 face down on the circuit board.
 ヒューズ素子1は、ヒューズエレメント5に形成した端子部10を介して回路基板と導通接続されることにより、素子全体の抵抗値を下げて、小型化且つ高定格化を図ることができる。すなわち、ヒューズ素子1は、絶縁基板2の裏面に回路基板との接続用電極を設けるとともに、導電ペーストが充填されたスルーホール等を介して第1、第2の電極3,4と接続する場合、スルーホールやキャスタレーションの孔径や孔数の制限や、導電ペーストの抵抗率や膜厚の制限により、ヒューズエレメントの抵抗値以下の実現が難しく、高定格化が困難となる。 The fuse element 1 is conductively connected to the circuit board via the terminal portion 10 formed in the fuse element 5, thereby reducing the resistance value of the entire element, thereby achieving downsizing and higher rating. That is, the fuse element 1 is provided with an electrode for connection to the circuit board on the back surface of the insulating substrate 2 and connected to the first and second electrodes 3 and 4 through through holes filled with conductive paste. Due to the limitation of the hole diameter and the number of holes of through holes and castellations and the limitation of the resistivity and film thickness of the conductive paste, it is difficult to realize a resistance value lower than that of the fuse element, and it is difficult to increase the rating.
 そこで、ヒューズ素子1は、ヒューズエレメント5に端子部10を形成するとともに、カバー部材6を介して素子外部へ突出させる。そして、ヒューズ素子1は、図10(e)に示すように、回路基板上にフェースダウン実装することにより、端子部10を直接、回路基板の接続端子に接続する。これにより、ヒューズ素子1は、導電スルーホールを介在させることによる高抵抗化を防止でき、ヒューズエレメント5によって素子の定格が決まり、小型化を図るとともに高定格化を実現できる。 Therefore, the fuse element 1 forms the terminal portion 10 in the fuse element 5 and protrudes to the outside of the element through the cover member 6. Then, as shown in FIG. 10E, the fuse element 1 is face-down mounted on the circuit board, thereby directly connecting the terminal portion 10 to the connection terminal of the circuit board. As a result, the fuse element 1 can be prevented from being increased in resistance due to the presence of a conductive through hole, and the rating of the element is determined by the fuse element 5, so that downsizing and higher rating can be realized.
 また、ヒューズ素子1は、ヒューズエレメント5に端子部10を形成することにより、絶縁基板2の裏面に回路基板との接続用電極を形成する必要がなく、表面2aのみに第1、第2の電極3,4を形成すれば足り、製造工数の削減を図ることができる。 Further, in the fuse element 1, by forming the terminal portion 10 in the fuse element 5, it is not necessary to form a connection electrode with the circuit board on the back surface of the insulating substrate 2, and the first and second electrodes are formed only on the front surface 2a. It is sufficient to form the electrodes 3 and 4, and the number of manufacturing steps can be reduced.
 [ヒューズエレメントの製法]
 複数のエレメント部7が形成されたヒューズエレメント5は、例えば図7(A)に示すように、板状の材料の中央部2か所を矩形状に打ち抜くことにより製造することができる。ヒューズエレメント5は、並列する3つのエレメント部7A~7Cの両側が一体に支持されている。なお、図7(B)に示すように、ヒューズエレメント5は、並列する3つのエレメント部7A~7Cの片側が一体に支持されたものでもよい。
[Fuse element manufacturing method]
For example, as shown in FIG. 7A, the fuse element 5 formed with a plurality of element portions 7 can be manufactured by punching out two central portions of a plate-like material into a rectangular shape. The fuse element 5 is integrally supported on both sides of the three element portions 7A to 7C arranged in parallel. As shown in FIG. 7B, the fuse element 5 may be one in which one side of the three element portions 7A to 7C arranged in parallel is integrally supported.
 また、端子部10が設けられたヒューズエレメント5は、例えば、板状に形成された材料を打ち抜いて複数のエレメント部7を形成するとともに、両側縁部を折り曲げることにより製造することができる。また、端子部10が設けられたヒューズエレメント5は、端子部10を構成する金属板と複数のエレメント部7とを接続してもよい。あるいは、端子部10を構成する金属板を第1及び第2の電極3,4上に接続することにより製造してもよい。 The fuse element 5 provided with the terminal portion 10 can be manufactured, for example, by punching a plate-shaped material to form a plurality of element portions 7 and bending both side edges. Further, the fuse element 5 provided with the terminal portion 10 may connect a metal plate constituting the terminal portion 10 and the plurality of element portions 7. Or you may manufacture by connecting the metal plate which comprises the terminal part 10 on the 1st and 2nd electrodes 3 and 4. FIG.
 なお、ヒューズ素子1は、端子部10と複数のエレメント部7とを有するヒューズエレメント5を用いる場合には、絶縁基板2に第1、第2の電極3,4を設けなくともよい。この場合、絶縁基板2は、ヒューズエレメント5の熱を放熱するために用いられ、熱伝導性の良いセラミック基板が好適に用いられる。また、ヒューズエレメント5を絶縁基板2に接続する接着剤としては、導電性は無くともよく、熱伝導性に優れるものが好ましい。 The fuse element 1 does not have to be provided with the first and second electrodes 3 and 4 on the insulating substrate 2 when the fuse element 5 having the terminal portion 10 and the plurality of element portions 7 is used. In this case, the insulating substrate 2 is used to dissipate heat from the fuse element 5, and a ceramic substrate having good thermal conductivity is preferably used. Further, the adhesive for connecting the fuse element 5 to the insulating substrate 2 may be non-conductive and preferably has excellent thermal conductivity.
 [複数エレメント]
 また、ヒューズ素子1は、ヒューズエレメントとして、エレメント部7に相当する複数枚のエレメント11を第1及び第2の電極3,4間にわたって並列に接続することにより製造してもよい。図8に示すように、エレメント11は、例えばエレメント11A,11B,11Cの3枚が並列される。各エレメント11A~11Cは、矩形板状に形成されるとともに、両端に端子部10が折り曲げ形成されている。エレメント11は、内側に設けられている真ん中のエレメント11Bの断面積を外側に設けられている他のエレメント11A,11Cの断面積よりも小さくすることにより、相対的に高抵抗化し、最後に溶断せるようにしてもよい。
[Multiple elements]
Further, the fuse element 1 may be manufactured by connecting a plurality of elements 11 corresponding to the element portion 7 in parallel across the first and second electrodes 3 and 4 as fuse elements. As shown in FIG. 8, for example, three elements 11A, 11B, and 11C are arranged in parallel. Each element 11A to 11C is formed in a rectangular plate shape, and a terminal portion 10 is bent at both ends. The element 11 has a relatively high resistance by making the cross-sectional area of the middle element 11B provided on the inner side smaller than the cross-sectional area of the other elements 11A and 11C provided on the outer side. You may make it let.
 なお、ヒューズエレメント5は、端子部10を設けずに、第1、第2の電極3,4を介して回路基板の接続端子と接続されてもよい。この場合、ヒューズ素子1は、第1、第2の電極3,4が、スルーホールを介して絶縁基板2の裏面に設けられた外部接続端子と接続され、あるいは第1、第2の電極3,4上に金属ポスト等からなる外部接続端子が接続され、この外部接続端子と回路基板の接続端子とが接続される。 The fuse element 5 may be connected to the connection terminal of the circuit board via the first and second electrodes 3 and 4 without providing the terminal portion 10. In this case, the fuse element 1 has the first and second electrodes 3 and 4 connected to an external connection terminal provided on the back surface of the insulating substrate 2 through a through hole, or the first and second electrodes 3. , 4 are connected to external connection terminals made of metal posts or the like, and the external connection terminals are connected to the connection terminals of the circuit board.
 [ヒューズ素子の製造工程]
 ヒューズエレメント5が用いられるヒューズ素子1は、以下の工程により製造される。ヒューズエレメント5が搭載される絶縁基板2は、図9(A)に示すように、表面2aに第1、第2の電極3,4が形成されるとともに、ヒューズエレメント5のエレメント部7間の位置に応じて絶縁部8が設けられている。第1、第2の電極3,4は、ヒューズエレメント5がハンダ付け等により接続される(図9(B))。これにより、ヒューズエレメント5は、ヒューズ素子1が回路基板に実装されることにより、回路基板に形成された回路上に直列に組み込まれる。また、絶縁基板2の表面2aに絶縁部8が立設されている場合には、ヒューズエレメント5は、並列する複数のエレメント部7の間に絶縁部8が位置される。
[Fuse element manufacturing process]
The fuse element 1 in which the fuse element 5 is used is manufactured by the following process. As shown in FIG. 9A, the insulating substrate 2 on which the fuse element 5 is mounted has first and second electrodes 3 and 4 formed on the surface 2a, and between the element portions 7 of the fuse element 5. An insulating portion 8 is provided depending on the position. The fuse elements 5 are connected to the first and second electrodes 3 and 4 by soldering or the like (FIG. 9B). Thus, the fuse element 5 is incorporated in series on the circuit formed on the circuit board by mounting the fuse element 1 on the circuit board. When the insulating portion 8 is erected on the surface 2 a of the insulating substrate 2, the insulating portion 8 of the fuse element 5 is positioned between the plurality of element portions 7 arranged in parallel.
 ヒューズエレメント5は、第1、第2の電極3,4間にハンダ等の接続材料を介して搭載され、ヒューズ素子1が回路基板にリフロー実装される際にハンダ接続される。また、図9(C)に示すように、ヒューズエレメント5上にはフラックス17が設けられる。フラックス17が設けられることにより、ヒューズエレメント5の酸化防止、濡れ性の向上を図り、速やかに溶断させることができる。また、フラックス5を設けることにより、アーク放電による溶融金属の絶縁基板2への付着を抑制し、溶断後における絶縁性を向上させることができる。 The fuse element 5 is mounted between the first and second electrodes 3 and 4 via a connecting material such as solder, and is soldered when the fuse element 1 is reflow-mounted on the circuit board. Further, as shown in FIG. 9C, a flux 17 is provided on the fuse element 5. By providing the flux 17, the fuse element 5 can be prevented from being oxidized and wettability can be improved, and can be blown quickly. Moreover, by providing the flux 5, the adhesion of the molten metal to the insulating substrate 2 due to arc discharge can be suppressed, and the insulation after fusing can be improved.
 次いで、図9(D)に示すように、絶縁基板2の表面2a上を保護するとともに、アーク放電によるヒューズエレメント5の溶融飛散物を低減させるカバー部材6が搭載されることによりヒューズ素子1が完成する。カバー部材6は、長手方向の両端に幅方向に亘る一対の側壁6aが形成され、この側壁6aが表面2a上に設置されるとともに、開放された側面からヒューズエレメント5の端子部10が上方に突出されている。なお、絶縁部8が絶縁基板2の表面2aではなく、カバー部材6の天面6bに形成されている場合には、カバー部材6が搭載されることにより、ヒューズエレメント5は、並列する複数のエレメント部7の間に絶縁部8が位置される。 Next, as shown in FIG. 9 (D), the fuse element 1 is protected by mounting the cover member 6 that protects the surface 2a of the insulating substrate 2 and reduces the melting scattered matter of the fuse element 5 due to arc discharge. Complete. The cover member 6 has a pair of side walls 6a extending in the width direction at both ends in the longitudinal direction. The side walls 6a are installed on the surface 2a, and the terminal portion 10 of the fuse element 5 is directed upward from the opened side surface. It is protruding. When the insulating portion 8 is formed not on the surface 2 a of the insulating substrate 2 but on the top surface 6 b of the cover member 6, the fuse element 5 can be connected in parallel by mounting the cover member 6. An insulating portion 8 is positioned between the element portions 7.
 このヒューズ素子1は、図9(E)に示すように、カバー部材6が設けられた表面2a側を回路基板に向けるフェースダウン実装によって接続される。これにより、ヒューズ素子1は、ヒューズエレメント5の各エレメント部7がカバー部材6及び端子部10によって覆われるため、アーク放電の発生によっても溶融金属が端子部10やカバー部材6によって捕捉され、周囲への飛散を防止できる。 As shown in FIG. 9 (E), the fuse element 1 is connected by face-down mounting with the surface 2a side on which the cover member 6 is provided facing the circuit board. Thereby, since each element part 7 of the fuse element 5 is covered with the cover member 6 and the terminal part 10 in the fuse element 1, the molten metal is captured by the terminal part 10 and the cover member 6 even when arc discharge occurs, Can be prevented from scattering.
 [張出し部]
 また、ヒューズ素子1は、図10(A)(B)に示すように、第1、第2の電極3,4の1つのエレメント部7が接続される部位が張り出す張出し部3a,4aを形成し、張出し部3a,4a間における電極間距離が、他のエレメント部7が接続される部位の電極間距離よりも短くしてもよい。
[Overhang part]
Further, as shown in FIGS. 10A and 10B, the fuse element 1 has overhang portions 3a and 4a projecting from a portion to which one element portion 7 of the first and second electrodes 3 and 4 is connected. The distance between the electrodes formed between the projecting portions 3a and 4a may be shorter than the distance between the electrodes at the portion to which the other element portion 7 is connected.
 張出し部3a,4a上にもエレメント部7を搭載することにより、当該エレメント部7は、第1、第2の電極3,4及び張出し部3a,4aとの接触面積が増える。このため、当該エレメント部7は、電流が流れて自己発熱した場合にも、第1、第2の電極3,4及びその張出し部3a,4aを介して放熱されることから、張出し部3a,4aが設けられていない部位に搭載された他のエレメント部7に比して冷めやすくなり、他のエレメント部7よりも遅れて溶断する。これにより、ヒューズ素子1は、ヒューズエレメント5のエレメント部7を順次溶断させることができる。 By mounting the element portion 7 on the overhang portions 3a and 4a, the contact area between the element portion 7 and the first and second electrodes 3 and 4 and the overhang portions 3a and 4a increases. For this reason, even when the current flows and self-heats when the current flows, the element portion 7 is radiated through the first and second electrodes 3 and 4 and the overhang portions 3a and 4a. It becomes easier to cool than the other element portions 7 mounted on the portion where the 4a is not provided, and blows out later than the other element portions 7. Thereby, the fuse element 1 can melt the element part 7 of the fuse element 5 sequentially.
 また、張出し部3a,4aを設けることにより、電極間距離が他のエレメント部に比して短くなる。エレメント部7は、電極間距離が長くなるほど溶断しやすくなることから、張出し部3a,4a上に搭載されたエレメント部7は、他のエレメント部7よりも溶断されにくく、他のエレメント部7に遅れて溶断する。これによっても、ヒューズ素子1は、ヒューズエレメント5のエレメント部7を順次溶断させることができる。 Also, by providing the overhang portions 3a and 4a, the distance between the electrodes is shorter than that of other element portions. Since the element part 7 is easily melted as the distance between the electrodes becomes longer, the element part 7 mounted on the overhanging parts 3a and 4a is less likely to be melted than the other element parts 7, and the other element parts 7 Fusing late. Also by this, the fuse element 1 can sequentially melt the element portion 7 of the fuse element 5.
 また、ヒューズ素子1は、3つ以上のエレメント部が設けられたヒューズエレメント5を用い、第1、第2の電極3,4のうち、内側のエレメント部7が搭載される部位に張出し部3a,4aを設け、内側のエレメント部7を最後に溶断させることが好ましい。例えば、図10に示すように、3つのエレメント部7A、7B、7Cを設けたヒューズエレメント5を用いるとともに、真ん中のエレメント部7Bが搭載される部位に張出し部3a,4aを設け、真ん中のエレメント部7Bを冷めやすくするとともに電極間距離も短くすることにより、最後に溶断させることが好ましい。 The fuse element 1 uses a fuse element 5 provided with three or more element portions, and the overhanging portion 3a is formed at a portion of the first and second electrodes 3 and 4 where the inner element portion 7 is mounted. 4a, and the inner element portion 7 is preferably melted last. For example, as shown in FIG. 10, a fuse element 5 having three element portions 7A, 7B, and 7C is used, and overhang portions 3a and 4a are provided at a portion where the middle element portion 7B is mounted. It is preferable that the portion 7B is melted at the end by facilitating cooling and shortening the distance between the electrodes.
 上述したようにヒューズエレメント5は、最後のエレメント部7が溶断する際に、アーク放電を伴うことから、真ん中のエレメント部7Bを最後に溶断させることにより、アーク放電が発生しても、エレメント部7Bの溶融金属を、先に溶断している外側のエレメント部7A,7Cによって捕捉することができる。したがって、エレメント部7Bの溶融金属の飛散を抑制し、溶融金属によるショート等を防止することができる。 As described above, since the fuse element 5 is accompanied by arc discharge when the last element portion 7 is melted, the element portion 7B is melted by the last element portion 7B. The molten metal of 7B can be captured by the outer element portions 7A and 7C that have been melted first. Therefore, scattering of the molten metal in the element portion 7B can be suppressed, and a short circuit due to the molten metal can be prevented.
 なお、このとき、ヒューズエレメント5は、3つのエレメント部7A~7Cのうち、内側に位置する真ん中のエレメント部7Bの一部又は全部の断面積を外側に位置する他のエレメント部7A,7Cの断面積よりも小さくすることにより、相対的に高抵抗化し、これにより真ん中のエレメント部7Bを最後に溶断させてもよい。この場合も、断面積を相対的に小さくすることにより最後に溶断させているため、アーク放電もエレメント部7Bの体積に応じて小規模なものとすることができる。 At this time, among the three element portions 7A to 7C, the fuse element 5 includes the other element portions 7A and 7C located outside the partial cross-sectional area of the middle element portion 7B located inside. By making it smaller than the cross-sectional area, the resistance may be relatively increased, and the middle element portion 7B may be blown out last. Also in this case, since the cross-sectional area is finally blown by making the cross-sectional area relatively small, the arc discharge can be made small according to the volume of the element portion 7B.
 [第2の形態]
 また、本発明が適用されたヒューズ素子は、図11(B)に示すように、ヒューズエレメント5に端子部10を一体成型するとともに、この端子部10を絶縁基板2の側面に嵌合させ、絶縁基板2の裏面側に突出させてもよい。なお、以下に説明するヒューズ素子20において、上述したヒューズ素子1と同じ部材については同じ符号を付してその詳細を省略する。
[Second form]
Further, in the fuse element to which the present invention is applied, as shown in FIG. 11B, the terminal portion 10 is integrally formed with the fuse element 5, and the terminal portion 10 is fitted to the side surface of the insulating substrate 2, You may make it protrude in the back surface side of the insulated substrate 2. FIG. In the fuse element 20 described below, the same members as those of the above-described fuse element 1 are denoted by the same reference numerals, and the details thereof are omitted.
 このヒューズ素子20は、図11(C)に示すように、ヒューズエレメント5上にフラックス17を設け、次いで、図11(D)に示すように、絶縁基板2の表面2a上にカバー部材6を搭載することにより製造される。端子部10は、カバー部材6の開放された側面より絶縁基板2の裏面側へ突出される。なお、ヒューズ素子20において、絶縁部8が絶縁基板2の表面2aに立設され、あるいはヒューズエレメント5に塗布、硬化されることにより設けられていれば、カバー部材6は必ずしも搭載する必要はない。 As shown in FIG. 11C, the fuse element 20 is provided with a flux 17 on the fuse element 5, and then, as shown in FIG. 11D, the cover member 6 is placed on the surface 2a of the insulating substrate 2. Manufactured by mounting. The terminal portion 10 protrudes from the open side surface of the cover member 6 to the back surface side of the insulating substrate 2. In the fuse element 20, the cover member 6 does not necessarily have to be mounted if the insulating portion 8 is provided on the surface 2 a of the insulating substrate 2 or provided by being applied and cured on the fuse element 5. .
 そして、ヒューズ素子20は、ハンダ等の接続材料により、絶縁基板2の裏面を回路基板へ向けて実装される。これにより、ヒューズ素子20は、端子部10が回路基板に形成された電極端子と接続され、ヒューズエレメント5が回路基板の回路と直列に接続される。 The fuse element 20 is mounted with a connecting material such as solder with the back surface of the insulating substrate 2 facing the circuit board. Thereby, the fuse element 20 has the terminal portion 10 connected to the electrode terminal formed on the circuit board, and the fuse element 5 is connected in series with the circuit of the circuit board.
 このヒューズ素子20は、図11(A)に示すように、絶縁基板2の側面にヒューズエレメント5の端子部10が嵌合する嵌合凹部21を形成してもよい。嵌合凹部21を形成することにより、回路基板への実装面積が広がることもなく、また、ヒューズエレメント5の嵌合位置を固定することができる。 As shown in FIG. 11A, the fuse element 20 may be formed with a fitting recess 21 on the side surface of the insulating substrate 2 in which the terminal portion 10 of the fuse element 5 is fitted. By forming the fitting recess 21, the mounting area on the circuit board does not increase, and the fitting position of the fuse element 5 can be fixed.
 なお、図11に示すヒューズ素子20は、絶縁基板2の表面2aには、第1、第2の電極3,4を形成しなくともよい。これにより、ヒューズ素子20は、絶縁基板2の表面2aに電極を形成する必要がなく、製造工数の削減を図ることができる。 In the fuse element 20 shown in FIG. 11, the first and second electrodes 3 and 4 may not be formed on the surface 2 a of the insulating substrate 2. Thereby, the fuse element 20 does not need to form an electrode on the surface 2a of the insulating substrate 2, and the number of manufacturing steps can be reduced.
 また、ヒューズ素子20において、絶縁基板2は、ヒューズエレメント5の熱を放熱するために用いられ、熱伝導性の良いセラミック基板が好適に用いられる。また、ヒューズエレメント5を絶縁基板2に接続する接着剤としては、導電性は無くともよく、熱伝導性に優れるものが好ましい。さらに、このヒューズ素子20は、絶縁基板2の裏面に、放熱用の電極を形成してもよい。 In the fuse element 20, the insulating substrate 2 is used to dissipate heat from the fuse element 5, and a ceramic substrate having good thermal conductivity is preferably used. Further, the adhesive for connecting the fuse element 5 to the insulating substrate 2 may be non-conductive and preferably has excellent thermal conductivity. Further, in the fuse element 20, a heat radiation electrode may be formed on the back surface of the insulating substrate 2.
 また、ヒューズ素子20は、図12に示すように、エレメント部7に相当する複数枚のエレメント11を第1及び第2の電極3,4間にわたって並列に接続することにより製造してもよい。ヒューズ素子20は、並列するエレメント11間に絶縁部8が設けられている。各エレメント22は、端子部10が折り曲げ形成されるとともに、これら端子部10を絶縁基板2の側面に嵌合させ、絶縁基板2の裏面側に突出させている。 Further, as shown in FIG. 12, the fuse element 20 may be manufactured by connecting a plurality of elements 11 corresponding to the element section 7 in parallel between the first and second electrodes 3 and 4. In the fuse element 20, an insulating portion 8 is provided between the elements 11 arranged in parallel. In each element 22, the terminal portion 10 is bent and formed, and the terminal portion 10 is fitted to the side surface of the insulating substrate 2 and protrudes to the back surface side of the insulating substrate 2.
 この場合も、絶縁基板2の表面2aに設けられた第1、第2の電極3,4は形成しなくともよい。また、ヒューズ素子20は、エレメント11を3枚並列させ(11A~11C)、内側に設けられている真ん中のエレメント11Bの断面積を外側に設けられている他のエレメント11A,11Cの断面積よりも小さくすることにより、相対的に高抵抗化し、最後に溶断せるようにしてもよい。 Also in this case, the first and second electrodes 3 and 4 provided on the surface 2a of the insulating substrate 2 may not be formed. The fuse element 20 has three elements 11 arranged in parallel (11A to 11C), and the cross-sectional area of the middle element 11B provided on the inner side is larger than the cross-sectional area of the other elements 11A and 11C provided on the outer side. It is also possible to make the resistance relatively high by making it small, and finally melt it.
 [第1、第2の電極の分割]
 また、ヒューズ素子1,20は、第1、第2の電極3,4を、ヒューズエレメント5の複数のエレメント部7や複数枚のエレメント11の搭載位置に応じて、複数の第1の分割電極3及び複数の第2の分割電極4に分割してもよい。例えば、図13(A)(B)に示すように、ヒューズ素子1は、第1、第2の電極3,4を、ヒューズエレメント5の3つのエレメント部7A~7Cや3枚のエレメント11A~11Cの搭載位置に応じて、第1の分割電極3A~3C及び第2の分割電極4A~4Cに分割してもよい。
[Division of the first and second electrodes]
In addition, the fuse elements 1 and 20 include a plurality of first divided electrodes 3 and 4 according to the mounting positions of the plurality of element portions 7 and the plurality of elements 11 of the fuse element 5. It may be divided into three and a plurality of second divided electrodes 4. For example, as shown in FIGS. 13A and 13B, the fuse element 1 includes first and second electrodes 3 and 4 and three element portions 7A to 7C of the fuse element 5 and three elements 11A to 11A. Depending on the mounting position of 11C, it may be divided into first divided electrodes 3A to 3C and second divided electrodes 4A to 4C.
 第1の電極3を第1の分割電極3A~3Cに、第2の電極4を第2の分割電極4A~4Cに分割する事により、ヒューズ素子1は、ヒューズエレメント5のエレメント部7A~7C又はエレメント11A~11Cのハンダ接続時のハンダの表面張力による実装ズレや不用意なハンダ溜まりを抑制することができる。 By dividing the first electrode 3 into the first divided electrodes 3A to 3C and the second electrode 4 into the second divided electrodes 4A to 4C, the fuse element 1 has the element portions 7A to 7C of the fuse element 5. Alternatively, it is possible to suppress mounting displacement or inadvertent solder accumulation due to the surface tension of the solder when the elements 11A to 11C are connected to the solder.
 また、ヒューズ素子1は、絶縁部8を第1の分割電極3A~3Cに隣接する位置から各第2の分割電極4A~4Cに隣接する位置にわたって形成してもよい。上述したように、ヒューズ素子1は、リフローはんだ付け等により回路基板に実装され、これにより、ヒューズエレメント5が当該回路基板上に形成された回路に直列に組み込まれる。このとき、回路基板の接続端子に設けられた接続用ハンダが溶融し、ヒューズエレメント5の端子部10を伝って絶縁基板2の表面2aに設けられた第1、第2の電極3,4上まで移動して、並列するエレメント部7間の領域に凝集することがある。このため、ヒューズ素子1は、エレメント部7における抵抗値が低下し、また、遮断時間の遅延を招く恐れがある。 In the fuse element 1, the insulating portion 8 may be formed from a position adjacent to the first divided electrodes 3A to 3C to a position adjacent to the second divided electrodes 4A to 4C. As described above, the fuse element 1 is mounted on the circuit board by reflow soldering or the like, whereby the fuse element 5 is incorporated in series with the circuit formed on the circuit board. At this time, the solder for connection provided on the connection terminal of the circuit board is melted, passes through the terminal portion 10 of the fuse element 5, and on the first and second electrodes 3, 4 provided on the surface 2 a of the insulating substrate 2. And may aggregate in the region between the element parts 7 arranged in parallel. For this reason, in the fuse element 1, the resistance value in the element portion 7 is lowered, and there is a possibility that the interruption time is delayed.
 そこで、第1、第2の電極3,4をエレメント部7又はエレメント11に応じて複数に分割するとともに、ハンダに対する濡れ性を有しない絶縁部8を第1の分割電極3A~3Cに隣接する位置から各第2の分割電極4A~4Cに隣接する位置にわたって形成することにより、回路基板の接続端子に設けられた接続用ハンダが溶融しても、第1の分割電極3A~3C及び第2の分割電極4A~4Cまで移動することを抑制し、又は移動量を減少することができ、エレメント部7における抵抗値の低下や、遮断時間の遅延を防止することができる。 Therefore, the first and second electrodes 3 and 4 are divided into a plurality according to the element portion 7 or the element 11, and the insulating portion 8 having no wettability with respect to solder is adjacent to the first divided electrodes 3A to 3C. By forming from the position to the position adjacent to each of the second divided electrodes 4A to 4C, the first divided electrodes 3A to 3C and the second divided electrodes are formed even if the connecting solder provided on the connection terminal of the circuit board is melted. It is possible to suppress the movement to the divided electrodes 4A to 4C, or to reduce the movement amount, and to prevent the resistance value in the element section 7 from being lowered and the interruption time from being delayed.
 [ヒューズエレメントの層構造]
 次いで、ヒューズエレメント5の構成ついて説明する。なお、以下に説明するヒューズエレメント5の構成は、エレメント11にも適用することができる。上述したヒューズエレメント5は、ハンダ又はSnを主成分とするPbフリーハンダ等の低融点金属、若しくは低融点金属と高融点金属の積層体である。例えば、ヒューズエレメント5は、内層と外層とからなる積層構造体であり、内層として低融点金属層5a、低融点金属層5aに積層された外層として高融点金属層5bを有する(図4参照)。
[Fuse element layer structure]
Next, the configuration of the fuse element 5 will be described. Note that the configuration of the fuse element 5 described below can also be applied to the element 11. The fuse element 5 described above is a low melting point metal such as solder or Pb-free solder whose main component is Sn, or a laminated body of a low melting point metal and a high melting point metal. For example, the fuse element 5 is a laminated structure including an inner layer and an outer layer, and includes a low melting point metal layer 5a as an inner layer and a refractory metal layer 5b as an outer layer laminated on the low melting point metal layer 5a (see FIG. 4). .
 低融点金属層5aは、好ましくは、Snを主成分とする金属であり、「Pbフリーハンダ」と一般的に呼ばれる材料である(たとえば千住金属工業製、M705等)。低融点金属層5aの融点は、必ずしもリフロー炉の温度よりも高い必要はなく、200℃程度で溶融してもよい。高融点金属層5bは、低融点金属層5aの表面に積層された金属層であり、例えば、Ag若しくはCu又はこれらのうちのいずれかを主成分とする金属であり、ヒューズエレメント5をリフロー炉によって絶縁基板2上に実装を行う場合においても溶融しない高い融点を有する。 The low melting point metal layer 5a is preferably a metal mainly composed of Sn, and is a material generally called “Pb-free solder” (for example, M705, manufactured by Senju Metal Industry). The melting point of the low melting point metal layer 5a is not necessarily higher than the temperature of the reflow furnace, and may be melted at about 200 ° C. The high melting point metal layer 5b is a metal layer laminated on the surface of the low melting point metal layer 5a, and is, for example, Ag or Cu, or a metal mainly composed of either of them, and the fuse element 5 is removed from the reflow furnace. Therefore, it has a high melting point that does not melt even when mounting on the insulating substrate 2.
 ヒューズエレメント5は、内層となる低融点金属層5aに、外層として高融点金属層5bを積層することによって、リフロー温度が低融点金属層5aの溶融温度を超えた場合であっても、ヒューズエレメント5として溶断するに至らない。したがって、ヒューズエレメント5は、リフローによって効率よく実装することができる。 Even if the reflow temperature exceeds the melting temperature of the low melting point metal layer 5a by laminating the high melting point metal layer 5b as the outer layer on the low melting point metal layer 5a as the inner layer, the fuse element 5 5 does not lead to fusing. Therefore, the fuse element 5 can be efficiently mounted by reflow.
 また、ヒューズエレメント5は、所定の定格電流が流れている間は、自己発熱によっても溶断することがない。そして、定格よりも高い値の電流が流れると、自己発熱によって溶融し、第1及び第2の電極3,4間の電流経路を遮断する。このとき、ヒューズエレメント5は、例えば低融点金属としてSnを40%以上含ませる合金を用いることで、溶融した低融点金属層5aが高融点金属層5bを溶食することにより、高融点金属層5bが溶融温度よりも低い温度で溶融する。したがって、ヒューズエレメント5は、低融点金属層5aによる高融点金属層5bの溶食作用を利用して短時間で溶断することができる。加えて、ヒューズエレメント5の溶融金属は、第1及び第2の電極3,4の物理的な引き込み作用により左右に分断されることから、速やかに、かつ確実に、第1及び第2の電極3,4間の電流経路を遮断することができる。 Also, the fuse element 5 is not melted by self-heating while a predetermined rated current flows. When a current having a value higher than the rating flows, the current is melted by self-heating, and the current path between the first and second electrodes 3 and 4 is interrupted. At this time, the fuse element 5 uses, for example, an alloy containing 40% or more of Sn as a low melting point metal, and the melted low melting point metal layer 5a erodes the high melting point metal layer 5b, whereby the high melting point metal layer 5b melts at a temperature lower than the melting temperature. Therefore, the fuse element 5 can be blown in a short time by utilizing the erosion action of the high melting point metal layer 5b by the low melting point metal layer 5a. In addition, since the molten metal of the fuse element 5 is divided into left and right by the physical pulling action of the first and second electrodes 3, 4, the first and second electrodes can be quickly and reliably. The current path between 3 and 4 can be interrupted.
 また、ヒューズエレメント5は、内層となる低融点金属層5aに高融点金属層5bが積層されて構成されているため、溶断温度を従来の高融点金属からなるチップヒューズ等よりも大幅に低減することができる。したがって、ヒューズエレメント5は、同一サイズのチップヒューズ等に比して、断面積を大きくでき電流定格を大幅に向上させることができる。また、同じ電流定格をもつ従来のチップヒューズよりも小型化、薄型化を図ることができ、速溶断性に優れる。 Further, since the fuse element 5 is configured by laminating the high melting point metal layer 5b on the low melting point metal layer 5a serving as the inner layer, the fusing temperature is greatly reduced as compared with a conventional chip fuse made of a high melting point metal. be able to. Therefore, the fuse element 5 can have a larger cross-sectional area and can greatly improve the current rating as compared with a chip fuse of the same size. In addition, it can be made smaller and thinner than conventional chip fuses having the same current rating, and is excellent in quick fusing.
 また、ヒューズエレメント5は、ヒューズ素子1が組み込まれた電気系統に異常に高い電圧が瞬間的に印加されるサージへの耐性(耐パルス性)を向上することができる。すなわち、ヒューズエレメント5は、例えば100Aの電流が数msec流れたような場合にまで溶断してはならない。この点、極短時間に流れる大電流は導体の表層を流れることから(表皮効果)、ヒューズエレメント5は、外層として抵抗値の低いAgメッキ等の高融点金属層5bが設けられているため、サージによって印加された電流を流しやすく、自己発熱による溶断を防止することができる。したがって、ヒューズエレメント5は、従来のハンダ合金からなるヒューズに比して、大幅にサージに対する耐性を向上させることができる。 Also, the fuse element 5 can improve resistance to a surge (pulse resistance) in which an abnormally high voltage is instantaneously applied to the electrical system in which the fuse element 1 is incorporated. That is, the fuse element 5 must not be blown until, for example, a current of 100 A flows for several milliseconds. In this respect, since a large current flowing in a very short time flows in the surface layer of the conductor (skin effect), the fuse element 5 is provided with a refractory metal layer 5b such as Ag plating having a low resistance value as an outer layer. It is easy to flow the current applied by the surge, and it is possible to prevent fusing due to self-heating. Therefore, the fuse element 5 can greatly improve the resistance to a surge as compared with a fuse made of a conventional solder alloy.
 ヒューズエレメント5は、低融点金属層5aの表面に高融点金属5bを電解メッキ法等の成膜技術を用いることにより製造できる。例えば、ヒューズエレメント5は、所定の形状に成形されたハンダ箔の表面にAgメッキを施すことにより効率よく製造できる。また、ヒューズエレメント5は、ハンダ箔を電解メッキ法等により高融点金属被覆した後、エレメント部7の間の領域に応じた所定箇所を打ち抜くことで、低融点金属層5aの上下に高融点金属層5bが積層された積層構造を備える。なお、エレメント11は、それぞれ、ハンダ箔を電解メッキ法等により高融点金属被覆することにより、低融点金属層5aを内層とし、高融点金属層5bを外層とした被覆構造を備える。 The fuse element 5 can be manufactured by forming a high melting point metal 5b on the surface of the low melting point metal layer 5a by using a film forming technique such as an electrolytic plating method. For example, the fuse element 5 can be efficiently manufactured by performing Ag plating on the surface of the solder foil formed into a predetermined shape. In addition, the fuse element 5 is formed by coating a refractory metal on a solder foil with an electrolytic plating method or the like, and then punching a predetermined portion corresponding to a region between the element portions 7 so that the refractory metal layer is formed above and below the low melting point metal layer 5a. It has a laminated structure in which the layers 5b are laminated. Each of the elements 11 has a coating structure in which a low-melting-point metal layer 5a is an inner layer and a high-melting-point metal layer 5b is an outer layer by coating a solder foil with a high-melting point metal by an electrolytic plating method or the like.
 また、ヒューズエレメント5及びエレメント11は、低融点金属層5aの体積を、高融点金属層5bの体積よりも多く形成することが好ましい。ヒューズエレメント5及びエレメント11は、自己発熱によって低融点金属が溶融することにより高融点金属を溶食し、これにより速やかに溶融、溶断することができる。したがって、ヒューズエレメント5及びエレメント11は、低融点金属層5aの体積を高融点金属層5bの体積よりも多く形成することにより、この溶食作用を促進し、速やかに第1、第2の電極3,4間を遮断することができる。 Moreover, it is preferable that the fuse element 5 and the element 11 are formed such that the volume of the low melting point metal layer 5a is larger than the volume of the high melting point metal layer 5b. The fuse element 5 and the element 11 melt the high melting point metal by melting the low melting point metal by self-heating, and can thereby be melted and blown quickly. Accordingly, the fuse element 5 and the element 11 promote the corrosion action by forming the volume of the low melting point metal layer 5a larger than the volume of the high melting point metal layer 5b, and promptly the first and second electrodes. Between 3 and 4 can be interrupted.
 また、上述したように、ヒューズエレメント5は、外層の高融点金属層5b又は低融点金属層5aの酸化防止と、溶断時の酸化物除去及びハンダの流動性向上のために、ヒューズエレメント5上の外層のほぼ全面にフラックス17が塗布されている。フラックス17を塗布することにより、低融点金属(例えばハンダ)の濡れ性を高めるとともに、低融点金属が溶解している間の酸化物を除去し、高融点金属(例えば銀)への溶食作用を用いて速溶断性を向上させることができる。 Further, as described above, the fuse element 5 is formed on the fuse element 5 in order to prevent oxidation of the outer high-melting-point metal layer 5b or the low-melting-point metal layer 5a, to remove oxide during melting, and to improve solder fluidity. Flux 17 is applied to almost the entire surface of the outer layer. By applying the flux 17, the wettability of the low melting point metal (for example, solder) is enhanced, and the oxide while the low melting point metal is dissolved is removed, and the erosion action on the high melting point metal (for example, silver). Can be used to improve the fast fusing property.
 また、フラックス17を塗布することにより、最外層の高融点金属層5bの表面に、Snを主成分とするPbフリーハンダ等の酸化防止膜7を形成した場合にも、当該酸化防止膜7の酸化物を除去することができ、高融点金属層5bの酸化を効果的に防止し、速溶断性を維持、向上することができる。 Further, when the anti-oxidation film 7 such as Pb-free solder containing Sn as a main component is formed on the surface of the outermost refractory metal layer 5b by applying the flux 17, the anti-oxidation film 7 is also formed. The oxide can be removed, the refractory metal layer 5b can be effectively prevented from being oxidized, and the fast fusing property can be maintained and improved.
1 ヒューズ素子、2 絶縁基板、2a 表面、3 第1の電極、4 第2の電極、5 ヒューズエレメント、6 カバー部材、6a 側壁、6b 天面、7 エレメント部、8 絶縁部、10 端子部、11 エレメント、17 フラックス、20 ヒューズ素子、21 嵌合凹部 1 fuse element, 2 insulating substrate, 2a surface, 3rd electrode, 4nd electrode, 5 fuse element, 6 cover member, 6a side wall, 6b top surface, 7 element part, 8 insulation part, 10 terminal part, 11 elements, 17 fluxes, 20 fuse elements, 21 mating recesses

Claims (14)

  1.  絶縁基板と、
     上記絶縁基板上に搭載され、定格を超える電流が通電することによって自己発熱により溶断し通電経路を遮断する、並列した複数のエレメント部を備えるヒューズエレメント、又は並列した複数のヒューズエレメントと、
     上記複数のエレメント部の間、又は上記複数のヒューズエレメントの間に設けられ、並列する上記エレメント部又は上記ヒューズエレメントとの接続を防止する絶縁部とを備えるヒューズ素子。
    An insulating substrate;
    A fuse element equipped with a plurality of parallel element parts, or a plurality of parallel fuse elements, which is mounted on the insulating substrate and melts by self-heating when current exceeding the rating is energized to cut off the energization path,
    A fuse element comprising an insulating portion provided between the plurality of element portions or between the plurality of fuse elements and preventing connection between the element portions or the fuse elements arranged in parallel.
  2.  複数の上記ヒューズエレメント又は複数の上記エレメント部が順次溶断し、
     上記絶縁部は、最初に溶断する上記エレメント部と該最初に溶断する上記エレメント部に並列する上記エレメント部との間、又は最初に溶断する上記ヒューズエレメントと該最初に溶断する上記ヒューズエレメントに並列する上記ヒューズエレメントとの間に設けられている請求項1記載のヒューズ素子。
    The plurality of fuse elements or the plurality of element portions are sequentially melted,
    The insulating part is in parallel between the element part that blows first and the element part that is parallel to the element part that blows first, or in parallel to the fuse element that blows first and the fuse element that blows first The fuse element according to claim 1, wherein the fuse element is provided between the fuse element and the fuse element.
  3.  上記絶縁基板に設けられた第1及び第2の電極を有し、
     上記エレメント部又は上記ヒューズエレメントは、上記第1及び第2の電極間にわたって実装されている請求項1又は2に記載のヒューズ素子。
    Having first and second electrodes provided on the insulating substrate;
    The fuse element according to claim 1, wherein the element portion or the fuse element is mounted across the first and second electrodes.
  4.  上記絶縁部は、上記第1の電極と上記第2の電極との間の領域に設けられている請求項3記載のヒューズ素子。 4. The fuse element according to claim 3, wherein the insulating portion is provided in a region between the first electrode and the second electrode.
  5.  上記ヒューズエレメントは、上記第1及び第2の電極と、ハンダ接続されている請求項3記載のヒューズ素子。 4. The fuse element according to claim 3, wherein the fuse element is solder-connected to the first and second electrodes.
  6.  上記ヒューズエレメントは、
     低融点金属層と、
     上記低融点金属層に積層された高融点金属層とを有し、
     上記低融点金属層が、上記通電時に上記高融点金属層を溶食し溶断する作用を用いた請求項1又は2に記載のヒューズ素子。
    The fuse element is
    A low melting point metal layer;
    A high melting point metal layer laminated on the low melting point metal layer,
    3. The fuse element according to claim 1, wherein the low melting point metal layer uses an action of eroding and cutting the high melting point metal layer during the energization.
  7.  上記ヒューズエレメントは、上記低融点金属の上下に上記高融点金属層が積層されている請求項6記載のヒューズ素子。 The fuse element according to claim 6, wherein the refractory metal layer is laminated above and below the low melting point metal.
  8.  上記ヒューズエレメントは、上記低融点金属を内層とし、上記高融点金属層を外層とした被覆構造である請求項6記載のヒューズ素子。 The fuse element according to claim 6, wherein the fuse element has a covering structure in which the low melting point metal is an inner layer and the high melting point metal layer is an outer layer.
  9.  上記ヒューズエレメントは、上記高融点金属層の体積よりも上記低融点金属層の体積の方が多い請求項6記載のヒューズ素子。 The fuse element according to claim 6, wherein the fuse element has a volume of the low melting point metal layer larger than a volume of the high melting point metal layer.
  10.  カバー部材によって上記絶縁基板上の上記ヒューズエレメントの遮断部位が覆われている請求項1又は2に記載のヒューズ素子。 The fuse element according to claim 1 or 2, wherein a blocking part of the fuse element on the insulating substrate is covered by a cover member.
  11.  上記カバー部材に上記絶縁部が設けられている請求項10記載のヒューズ素子。 The fuse element according to claim 10, wherein the insulating member is provided on the cover member.
  12.  上記絶縁基板の表面に上記絶縁部が設けられている請求項1又は2に記載のヒューズ素子。 The fuse element according to claim 1 or 2, wherein the insulating portion is provided on a surface of the insulating substrate.
  13.  上記絶縁部は、上記複数のエレメント部の間、又は上記複数のヒューズエレメントの間に塗布された絶縁性の材料が硬化することにより形成される請求項1又は2に記載のヒューズ素子。 3. The fuse element according to claim 1, wherein the insulating part is formed by curing an insulating material applied between the plurality of element parts or between the plurality of fuse elements.
  14.  並列する複数のエレメント部と、
    上記複数のエレメント部の間に設けられ並列する上記エレメント部同士の接続を防止する絶縁部とを有し、
     上記複数のエレメント部が、定格を超える電流の通電による自己発熱により溶断するヒューズエレメント。
    A plurality of element parts arranged in parallel;
    An insulating portion that is provided between the plurality of element portions and prevents connection between the element portions arranged in parallel;
    A fuse element in which the above-mentioned plurality of element parts are fused by self-heating due to energization of a current exceeding the rating.
PCT/JP2015/070032 2014-07-15 2015-07-13 Chip fuse and fuse element WO2016009988A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167033589A KR102368741B1 (en) 2014-07-15 2015-07-13 Chip fuse and fuse element
CN201580036045.7A CN106663574B (en) 2014-07-15 2015-07-13 Fuse device and fuse element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-144705 2014-07-15
JP2014144705A JP6491431B2 (en) 2014-07-15 2014-07-15 Fuse element and fuse element

Publications (1)

Publication Number Publication Date
WO2016009988A1 true WO2016009988A1 (en) 2016-01-21

Family

ID=55078481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070032 WO2016009988A1 (en) 2014-07-15 2015-07-13 Chip fuse and fuse element

Country Status (5)

Country Link
JP (1) JP6491431B2 (en)
KR (1) KR102368741B1 (en)
CN (1) CN106663574B (en)
TW (1) TWI685872B (en)
WO (1) WO2016009988A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443399A (en) * 2016-09-08 2017-02-22 上海华岭集成电路技术股份有限公司 Method for preventing mis-fusing of chip fuse
CN112531298A (en) * 2020-12-02 2021-03-19 湖北平安电工股份有限公司 Protection plate core, battery pack protection plate using same and vehicle battery protection system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6707428B2 (en) * 2016-09-16 2020-06-10 デクセリアルズ株式会社 Fuse element, fuse element, protection element
DE102018122069B4 (en) * 2017-09-11 2024-02-08 Littelfuse, Inc. Fuse, comprising a hollow body with a trench
KR102510697B1 (en) * 2021-02-15 2023-03-17 (주) 알엔투테크놀로지 Ceramic protect device having electrode integrated fuse member and secondary battery charging apparatus having the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245048A (en) * 1994-03-03 1995-09-19 Matsuo Handa Kk Leadless chip type thermal fuse
JP2004171923A (en) * 2002-11-20 2004-06-17 Koa Corp Current fuse and its manufacturing method
JP2011175957A (en) * 2010-01-28 2011-09-08 Kyocera Corp Fuse device
JP2013229293A (en) * 2012-03-29 2013-11-07 Dexerials Corp Protective element

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290699A (en) * 1993-03-31 1994-10-18 Yazaki Corp Fuse
JP2004185960A (en) * 2002-12-03 2004-07-02 Kamaya Denki Kk Circuit protection element and its manufacturing method
EP1611653B1 (en) * 2003-04-04 2008-06-25 Yazaki Corporation Fuse cavity structure and electric connection box
US7477130B2 (en) * 2005-01-28 2009-01-13 Littelfuse, Inc. Dual fuse link thin film fuse
TWI323906B (en) * 2007-02-14 2010-04-21 Besdon Technology Corp Chip-type fuse and method of manufacturing the same
CN101447370B (en) * 2008-11-25 2010-08-25 南京萨特科技发展有限公司 Method for producing high-reliable blade fuse
JP5306139B2 (en) 2009-10-08 2013-10-02 北陸電気工業株式会社 Chip fuse
DE112011104910B4 (en) * 2011-02-18 2017-03-23 Yazaki Corporation Fuse and fuse attachment structure
CN202094064U (en) * 2011-06-22 2011-12-28 苏州市南光电器有限公司 Big-current low-voltage fuse
CN102522277B (en) * 2011-12-10 2014-03-19 中国科学院电工研究所 High-temperature superconductor fuse
JP2013232620A (en) * 2012-01-27 2013-11-14 Rohm Co Ltd Chip component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245048A (en) * 1994-03-03 1995-09-19 Matsuo Handa Kk Leadless chip type thermal fuse
JP2004171923A (en) * 2002-11-20 2004-06-17 Koa Corp Current fuse and its manufacturing method
JP2011175957A (en) * 2010-01-28 2011-09-08 Kyocera Corp Fuse device
JP2013229293A (en) * 2012-03-29 2013-11-07 Dexerials Corp Protective element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443399A (en) * 2016-09-08 2017-02-22 上海华岭集成电路技术股份有限公司 Method for preventing mis-fusing of chip fuse
CN106443399B (en) * 2016-09-08 2020-11-13 上海华岭集成电路技术股份有限公司 Method for preventing chip fuse from being mistakenly fused
CN112531298A (en) * 2020-12-02 2021-03-19 湖北平安电工股份有限公司 Protection plate core, battery pack protection plate using same and vehicle battery protection system
CN112531298B (en) * 2020-12-02 2022-03-29 湖北平安电工科技股份公司 Protection plate core, battery pack protection plate using same and vehicle battery protection system

Also Published As

Publication number Publication date
CN106663574B (en) 2018-11-09
JP2016021329A (en) 2016-02-04
KR102368741B1 (en) 2022-02-28
TWI685872B (en) 2020-02-21
TW201611071A (en) 2016-03-16
CN106663574A (en) 2017-05-10
JP6491431B2 (en) 2019-03-27
KR20170032225A (en) 2017-03-22

Similar Documents

Publication Publication Date Title
US20200176210A1 (en) Fuse element and fuse device
JP6214318B2 (en) Current fuse
KR102049712B1 (en) Fuse element, fuse component, and fuse component with built-in heating element
TWI631590B (en) Fuse unit, fuse element
KR102232981B1 (en) Production method for mounting body, mounting method for temperature fuse elements, and temperature fuse element
JP6437253B2 (en) Protective element and mounting body
WO2016009988A1 (en) Chip fuse and fuse element
CN109074988B (en) Protective element
WO2019138752A1 (en) Fuse element
JP6621255B2 (en) Protection element, fuse element
CN108701566B (en) Protective element
TW201535450A (en) Cutoff element and cutoff element circuit
JP2018018835A (en) Protection element and fuse element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821398

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20167033589

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821398

Country of ref document: EP

Kind code of ref document: A1