JPH0629737Y2 - Oxygen sensor element - Google Patents

Oxygen sensor element

Info

Publication number
JPH0629737Y2
JPH0629737Y2 JP1986047488U JP4748886U JPH0629737Y2 JP H0629737 Y2 JPH0629737 Y2 JP H0629737Y2 JP 1986047488 U JP1986047488 U JP 1986047488U JP 4748886 U JP4748886 U JP 4748886U JP H0629737 Y2 JPH0629737 Y2 JP H0629737Y2
Authority
JP
Japan
Prior art keywords
oxygen sensor
sensor element
void
solid electrolyte
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986047488U
Other languages
Japanese (ja)
Other versions
JPS62158357U (en
Inventor
不二男 石黒
寛 倉知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1986047488U priority Critical patent/JPH0629737Y2/en
Publication of JPS62158357U publication Critical patent/JPS62158357U/ja
Application granted granted Critical
Publication of JPH0629737Y2 publication Critical patent/JPH0629737Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) この考案は、長尺平板状に形成された酸素センサ素子の
内部空隙の内面形状の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to improvement of the inner surface shape of an internal void of an oxygen sensor element formed in a long flat plate shape.

(従来の技術) 近年、製造の容易性やコンパクト化の容易性等の観点か
ら、以前から在る有低円筒状の酸素センサに代わり、長
尺平板状に形成した酸素センサ素子を用いた酸素センサ
が提案されている。
(Prior Art) In recent years, from the viewpoint of ease of manufacturing, compactness, etc., oxygen using an oxygen sensor element formed in a long flat plate shape has been used instead of the existing low and low cylindrical oxygen sensor. Sensors have been proposed.

このような長尺平板状の酸素センサ素子の従来構造例を
第5図に分解図で示す。
FIG. 5 is an exploded view of an example of a conventional structure of such a long flat plate-shaped oxygen sensor element.

この酸素センサ素子10は、ヒーター付の酸素センサ素子
であり、センサ部20とヒータ部30とから概略構成されて
いる。
The oxygen sensor element 10 is an oxygen sensor element with a heater, and is roughly composed of a sensor section 20 and a heater section 30.

センサ部20は、ジルコニアを主成分とする酸素イオン伝
導性固体電解質からなる長尺平板状の固体電解質板21
と、これと同一材質からなり、一端から他端近傍まで空
隙27を有する固体電解質板26とを重ね合わせて外殻が形
成されている。
The sensor unit 20 is a long flat solid electrolyte plate 21 made of an oxygen ion conductive solid electrolyte containing zirconia as a main component.
And a solid electrolyte plate 26 made of the same material as this and having a void 27 from one end to the vicinity of the other end are stacked to form an outer shell.

そして、上記平板状の固体電解質板21の表面一端には、
白金等からなる多孔質の測定電極22が印刷により塗着さ
れており、裏面には、固体電解質板21を挟んで測定電極
22と対向するように同材質の基準電極25が塗着されてい
る。
Then, at one end of the surface of the flat solid electrolyte plate 21,
A porous measuring electrode 22 made of platinum or the like is applied by printing, and the measuring electrode is sandwiched by the solid electrolyte plate 21 on the back surface.
A reference electrode 25 made of the same material is applied so as to face 22.

また、固体電解質板21の両面には、上記各電極22,25と
同材質からなるリード28,29が両電極22,25から固体電解
質21の他端へ至るまで帯状に塗着されており、その端部
は、基準電極端子23および測定電極端子24となってい
る。
Further, on both surfaces of the solid electrolyte plate 21, leads 28, 29 made of the same material as the electrodes 22, 25 are coated in a strip shape from both electrodes 22, 25 to the other end of the solid electrolyte 21, The ends are the reference electrode terminal 23 and the measurement electrode terminal 24.

上記基準電極25は、空隙27内に前面が露呈しており、空
隙27の開口端から流入する外気に晒されるようになって
いる。
The reference electrode 25 has a front surface exposed in the void 27 and is exposed to the outside air flowing from the open end of the void 27.

ヒータ部30は、長尺平板状の2枚の絶縁セラミックス層
31,32が重ね合わされ、この一端部に抵抗発熱体35が挾
み込まれ、この抵抗発熱体35の両極から絶縁セラミック
ス層31,32の他端へ至るまで2本の帯状に走る導電性の
リード36,37が同様にして絶縁セラミックス層31,32の間
に挾み込まれている。
The heater portion 30 is composed of two long flat plate-shaped insulating ceramic layers.
31 and 32 are overlapped, and the resistance heating element 35 is sandwiched between the one ends of the resistance heating element 35. Two conductive strips running from both poles of the resistance heating element 35 to the other ends of the insulating ceramic layers 31 and 32 are formed in a strip shape. Leads 36 and 37 are similarly sandwiched between the insulating ceramic layers 31 and 32.

(考案が解決しようとする問題点) しかしながら、上記従来の酸素センサ素子10は、基準ガ
スを導入するための空隙27の形状が直方体形状であった
ため、次のような不都合が生じることが在る。
(Problems to be Solved by the Invention) However, in the above-described conventional oxygen sensor element 10, since the shape of the void 27 for introducing the reference gas is a rectangular parallelepiped shape, the following inconvenience may occur. .

すなわち、第5図で展開して示した各部材を組立てた場
合、酸素センサ素子10の先端部は第6図に示すような構
造になる。
That is, when the members developed and shown in FIG. 5 are assembled, the tip of the oxygen sensor element 10 has a structure as shown in FIG.

同図から判るように、空隙27の閉塞端は、両電極22,25
の面に対して垂直な辺27a,27bを有しており、これらの
辺27a,27bを挾む面は直角に交る。
As can be seen from the figure, the closed end of the void 27 is
Has sides 27a and 27b that are perpendicular to the plane of the plane, and the planes that sandwich these sides 27a and 27b intersect at a right angle.

そして、この酸素センサ素子10の先端部は、炉内や自動
車の排気管内等の高温雰囲気中に置かれるため、酸素セ
ンサ素子10に熱応力が加わる。
Since the tip of the oxygen sensor element 10 is placed in a high temperature atmosphere such as in a furnace or an exhaust pipe of an automobile, thermal stress is applied to the oxygen sensor element 10.

この熱応力は、酸素センサ素子10の幅方向(第6図中の
矢印Wで示す)に大きく働く。その理由は、酸素センサ
素子10の厚さ方向(第6図中の矢印Dで示す)に生じる
熱応力は、酸素センサ素子10の厚さが極く薄いため、素
子内の温度分布差が少なく、従って熱膨張差も少ないの
で、比較的小さい。これに対し、酸素センサ素子10の幅
方向には、温度分布の差が生じて、熱応力が大きくな
る。
This thermal stress acts largely in the width direction of the oxygen sensor element 10 (indicated by the arrow W in FIG. 6). The reason is that the thermal stress generated in the thickness direction of the oxygen sensor element 10 (indicated by the arrow D in FIG. 6) is small because the oxygen sensor element 10 is extremely thin and the temperature distribution difference in the element is small. Therefore, since the difference in thermal expansion is also small, it is relatively small. On the other hand, a difference in temperature distribution occurs in the width direction of the oxygen sensor element 10, and thermal stress increases.

そして、発生した熱応力は、上記空隙27の先端部の両辺
27a,27bに集中し、これらの位置でクラックを生じる虞
れがある。
The generated thermal stress is generated on both sides of the tip of the void 27.
There is a risk of concentrating on 27a and 27b and causing cracks at these positions.

また、ヒータ部30を有する酸素センサ素子10の場合に
は、ヒータの通電直後には、温度分布の差が大きくなり
易く、上述のようなクラックの発生率を高める要因にな
っている。
Further, in the case of the oxygen sensor element 10 having the heater portion 30, the difference in the temperature distribution is likely to be large immediately after the heater is energized, which is a factor for increasing the crack occurrence rate as described above.

(問題点を解決するための手段) 上記問題点を解決するために、本考案は、酸素イオン伝
導性固体電解質を主体として長尺平板状に形成され、そ
の長手方向の内部に管状の空隙を有する酸素センサ素子
において、前記管状の空隙の閉塞端部内面の少なくとも
一部を、曲率半径50μm以上の曲面としたことを特徴
とするものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention is formed in a long flat plate shape mainly with an oxygen ion conductive solid electrolyte and has a tubular void inside the longitudinal direction. The oxygen sensor element has a feature that at least a part of the inner surface of the closed end of the tubular void is a curved surface having a curvature radius of 50 μm or more.

(作用) 本考案は、上述のように、空隙内面の少なくとも一部を
曲面としたことにより、前述した熱応力が集中する部位
を削減あるいは排除し、クラックの発生を防止すること
ができる。
(Operation) As described above, according to the present invention, by forming at least a part of the inner surface of the void into a curved surface, it is possible to reduce or eliminate the above-mentioned portion where the thermal stress is concentrated and prevent the occurrence of cracks.

(実施例) 本考案の一実施例について説明する。(Example) An example of the present invention will be described.

第1図は、本実施例の酸素センサ素子40の先端部分の構
造を示す図であり、空隙27の形状以外は、前記第5図お
よび第6図に示した従来例と同一構成である。従って、
同一構成部分には同一符号を付して、説明は省略する。
FIG. 1 is a diagram showing the structure of the tip portion of the oxygen sensor element 40 of the present embodiment, which has the same configuration as the conventional example shown in FIGS. 5 and 6 except for the shape of the void 27. Therefore,
The same components are designated by the same reference numerals and the description thereof will be omitted.

第1図に示すように、本実施例における空隙27の閉塞端
部の前記従来例における辺27a,27bに相当する部位27
a′,27b′は曲面になっている。
As shown in FIG. 1, a portion 27 corresponding to the sides 27a and 27b in the conventional example of the closed end of the void 27 in this example.
a ′ and 27b ′ are curved surfaces.

この構造は、第5図中に示される固体電解質板26の形状
を第2図に示すような形状にすることにより得られる。
すなわち、固体電解質板26に形成する空隙27の先端部の
両脇27a′,27b′を予め曲面にしておき、他の部材を積
層して焼成すれば、第1図のような構造が得られる。上
記曲面27a′,27b′は、固体電解質板26の形成時に、金
型による打ち抜きにより形成してもよい。
This structure is obtained by changing the shape of the solid electrolyte plate 26 shown in FIG. 5 to the shape shown in FIG.
That is, if both sides 27a 'and 27b' of the tip of the void 27 formed in the solid electrolyte plate 26 are curved in advance and other members are laminated and fired, the structure shown in FIG. 1 is obtained. . The curved surfaces 27a 'and 27b' may be formed by punching with a mold when forming the solid electrolyte plate 26.

以上の構成により、本実施例の酸素センサ素子40は、素
子の幅方向に生じる熱応力が、上記空隙27の先端部両隅
に加わっても、これらの部位が曲面形状となっているた
め、熱応力に対する耐性を有し、クラックを生じること
を防止できる。
With the above configuration, the oxygen sensor element 40 of the present embodiment, thermal stress generated in the width direction of the element, even if applied to both corners of the tip portion of the void 27, because these portions have a curved shape, It has resistance to thermal stress and can prevent cracks from occurring.

この効果をより具体的に示すため、実験結果を示す。こ
の実験には、8%Yを添加したZrO粉末に有
機樹脂バインダー、可塑剤、および溶剤を加えて上記固
体電解質板21,26の生素地のシートを成形して、ヒータ
部30を積層した後、焼成したものを用いている。
Experimental results are shown to more specifically show this effect. In this experiment, an organic resin binder, a plasticizer, and a solvent were added to ZrO 2 powder to which 8% Y 2 O 3 was added to form a green body sheet of the solid electrolyte plates 21 and 26, and a heater part 30 was used. Is used after being laminated and fired.

そして、空隙27の厚さと幅、および上記両隅部27a′,2
7b′の曲率半径を少しずつ変えたものを、5個づつ作成
して、これらについて、抵抗発熱体35に14Vの電圧を印
加して発熱させた場合(ヒータ通電時)と、300℃と、8
00℃の雰囲気に交互に5分間ずつ曝す熱サイクル試験を
行った場合について、それぞれ、5個中何個にクラック
が生じたかを調べた。この結果を表1に示す。
Then, the thickness and width of the void 27, and the above-mentioned both corners 27a ′, 2
Five pieces of which the radius of curvature of 7b 'was changed little by little were created, and when a voltage of 14 V was applied to the resistance heating element 35 to generate heat (when the heater was energized), 300 ° C, 8
In a case where a thermal cycle test was performed in which the substrate was alternately exposed to an atmosphere of 00 ° C. for 5 minutes each, it was examined how many of the 5 cracks were generated. The results are shown in Table 1.

表1から判るように、空隙27の寸法には、余り関係はな
く、両隅部27a′と27b′の曲率半径の大きさについてク
ラックの発生率が関係している。
As can be seen from Table 1, the size of the void 27 has little relation, and the crack generation rate is related to the size of the radius of curvature of both corners 27a 'and 27b'.

そして、曲率半径が50μmよりも小さい場合(これは、
曲面と言い難く、第5図に示した辺27a,27bに近い)に
は、クラックの発生は完全には防止できないが、曲率半
径を50μm以上にすれば、クラックの発生を略完全に防
止できる。
And if the radius of curvature is less than 50 μm (this is
It is hard to say that it is a curved surface, and cracks cannot be completely prevented on the sides 27a, 27b shown in FIG. 5), but if the radius of curvature is 50 μm or more, cracks can be almost completely prevented. .

なお、本考案は、空隙27内のクラックの発生可能性の有
る部位を曲面とすることを特徴としており、上記実施例
に限定されることはない。
The present invention is characterized in that the portion in the void 27 where cracks may occur is a curved surface, and is not limited to the above embodiment.

但し、熱変化の大きい素子先端部は、クラックの発生率
が高いため、上記実施例のように、空隙27の閉塞端部分
に曲面を形成することが望ましい。この場合、上記実施
例の形状に限定されることはなく、例えば、第3図のよ
うに、空隙27の閉塞端部27cを半円形にしたり、第4図
のように円形にすることも効果的である。
However, since the cracking rate is high at the tip of the element where the thermal change is large, it is desirable to form a curved surface at the closed end of the void 27 as in the above embodiment. In this case, the shape is not limited to that of the above-described embodiment, and for example, as shown in FIG. 3, the closed end portion 27c of the void 27 may be formed into a semicircular shape, or may be formed into a circular shape as shown in FIG. Target.

また、曲面の曲率半径は、前述のように50μm以上が好
ましい。
The radius of curvature of the curved surface is preferably 50 μm or more as described above.

さらに、本考案は、上記実施例のようなヒータ付の酸素
センサ素子40に限らず、空隙27を有する構造の長尺平板
状の酸素センサ素子であれば、適用可能である。
Furthermore, the present invention is not limited to the oxygen sensor element 40 with a heater as in the above embodiment, but can be applied to any oxygen sensor element in the form of a long flat plate having a structure having a void 27.

(考案の効果) 本考案は、長尺平板状に形成され、その長手方向の内部
に管状の空隙を有する酸素センサにおいて、前記管状の
空隙の内面の少なくとも一部を曲面としたことにより、
熱応力が集中する部位を削減あるいは排除し、熱応力に
よるクラックの発生を防止できる。これにより、熱衝撃
に強い酸素センサ素子を提供することが可能になる。
(Advantages of the Invention) The present invention is an oxygen sensor which is formed in the shape of a long flat plate and has a tubular void inside the longitudinal direction thereof. By forming at least a part of the inner surface of the tubular void into a curved surface,
It is possible to reduce or eliminate the portion where the thermal stress is concentrated, and prevent the occurrence of cracks due to the thermal stress. This makes it possible to provide an oxygen sensor element that is resistant to thermal shock.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例の酸素センサ素子の先端部の
構造を示す図、 第2図は同実施例の構成部材の1つである固体電解質板
の形状を示す斜視図、 第3図及び第4図は空隙27の先端部の他の形状を示す固
体電解質板26の平面図、 第5図は従来の酸素センサ素子の構成を示す分解斜視
図、 第6図は従来の酸素センサ素子の先端部の構造を示す斜
視図である。 21,26……固体電解質板 22……測定電極、25……基準電極 27……空隙、30……ヒータ部 27a′,27b′,27c……曲面とした部位
FIG. 1 is a diagram showing a structure of a tip portion of an oxygen sensor element according to an embodiment of the present invention, FIG. 2 is a perspective view showing a shape of a solid electrolyte plate which is one of the constituent members of the embodiment, and FIG. 4 and 5 are plan views of the solid electrolyte plate 26 showing another shape of the tip of the void 27, FIG. 5 is an exploded perspective view showing the structure of a conventional oxygen sensor element, and FIG. 6 is a conventional oxygen sensor. It is a perspective view which shows the structure of the front-end | tip part of an element. 21,26 …… Solid electrolyte plate 22 …… Measurement electrode, 25 …… Reference electrode 27 …… Void, 30 …… Heater part 27a ′, 27b ′, 27c… Curved part

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】酸素イオン伝導性固体電解質を主体として
長尺平板状に形成され、その長手方向の内部に管状の空
隙を有する酸素センサ素子において、前記管状の空隙の
閉塞端部内面の少なくとも一部を、曲率半径50μm以
上の曲面としたことを特徴とする酸素センサ素子。
1. An oxygen sensor element having a long flat plate shape mainly composed of an oxygen ion conductive solid electrolyte and having a tubular void inside the longitudinal direction thereof, wherein at least one inner surface of a closed end of the tubular void is formed. An oxygen sensor element, wherein the part is a curved surface having a radius of curvature of 50 μm or more.
JP1986047488U 1986-03-31 1986-03-31 Oxygen sensor element Expired - Lifetime JPH0629737Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986047488U JPH0629737Y2 (en) 1986-03-31 1986-03-31 Oxygen sensor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986047488U JPH0629737Y2 (en) 1986-03-31 1986-03-31 Oxygen sensor element

Publications (2)

Publication Number Publication Date
JPS62158357U JPS62158357U (en) 1987-10-07
JPH0629737Y2 true JPH0629737Y2 (en) 1994-08-10

Family

ID=30868140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986047488U Expired - Lifetime JPH0629737Y2 (en) 1986-03-31 1986-03-31 Oxygen sensor element

Country Status (1)

Country Link
JP (1) JPH0629737Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572486B2 (en) * 2001-05-17 2010-11-04 株式会社デンソー Gas sensor element and manufacturing method thereof
JP6059110B2 (en) * 2013-08-09 2017-01-11 日本特殊陶業株式会社 Sensor element and sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015659U (en) * 1983-07-08 1985-02-02 トヨタ自動車株式会社 Oxygen concentration detection element
JPS6036949A (en) * 1983-08-09 1985-02-26 Ngk Insulators Ltd Oxygen sensor element

Also Published As

Publication number Publication date
JPS62158357U (en) 1987-10-07

Similar Documents

Publication Publication Date Title
EP0144185B1 (en) Electrochemical device
JPH0221545B2 (en)
JPS61109289A (en) Ceramic heater and manufacture thereof
JPH0646189B2 (en) Oxygen concentration sensor
JP4034900B2 (en) Oxygen sensor with heater and method for manufacturing the same
EP1211506A2 (en) Nonfragile and quickly activatable structure of gas sensor element
JPH0161176B2 (en)
JP2004003963A (en) Gas sensor
JP3683348B2 (en) Manufacturing method of ceramic structure
JPH0629737Y2 (en) Oxygen sensor element
JPS6151557A (en) Reinforced solid electrolyte function element
JPH0222692Y2 (en)
JP2003279528A (en) Oxygen sensor electrode
JPH11194111A (en) Flat sensor element
JP3860768B2 (en) Oxygen sensor element
JP4061125B2 (en) Method for manufacturing oxygen sensor element
JPH0618292Y2 (en) Oxygen sensor with heater
JP2917633B2 (en) Oxygen concentration sensor
JP2003315303A (en) Oxygen sensor element
JPS5827051A (en) Manufacture of oxygen gas concentration cell
JP2002340845A (en) Gas sensor element and manufacturing method thereof
JPH0634683Y2 (en) Oxygen sensor for internal combustion engine
JP3783375B2 (en) Air-fuel ratio sensor element
JP2003279529A (en) Oxygen sensor element
JP2607909B2 (en) Oxygen sensor