JPH06295808A - Sintered rare earth magnet - Google Patents

Sintered rare earth magnet

Info

Publication number
JPH06295808A
JPH06295808A JP5081780A JP8178093A JPH06295808A JP H06295808 A JPH06295808 A JP H06295808A JP 5081780 A JP5081780 A JP 5081780A JP 8178093 A JP8178093 A JP 8178093A JP H06295808 A JPH06295808 A JP H06295808A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
amount
sintered
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5081780A
Other languages
Japanese (ja)
Inventor
Takeshi Ohashi
大橋健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP5081780A priority Critical patent/JPH06295808A/en
Publication of JPH06295808A publication Critical patent/JPH06295808A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a sintered rare earth magnet principally applicable to the motor of an automobile in which the quantity of Fe can be increased by substituting Pr or Nd for a CeCo based magnet alloy having high corrosion resistance, good magnetic characteristics can be achieved without causing significant drop of coercive force, and the material cost is reduced by decreasing the quantity of Co. CONSTITUTION:The sintered rare earth magnet is represented by a formula Ce1-aRa (Co1-x-y-CFexCuyMC)z (where, R represents one or two kinds of Nd, Pr, M represents at least one kind of Zr, Ti, 0.05<=a<=0.50, 20<=x<=0.35, 0.10<=y<=0.20, 0.005<=c<=0.03, 5.5<=z<=6.5 represent atomic ratios). The ratio of Co in the mixture of Co, Fe, Cu and M is set at 60 atomic % or less. Main phase of the sintered magnet has a CaCu5 structure and the maximum energy product thereof is 15MGOe or above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気特性に優れ耐食性
の良好なCe を主要構成元素の1つとする特に鉄比率の
高い希土類焼結磁石であり、主として自動車用の電装モ
ーターに適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a rare earth sintered magnet having a particularly high iron ratio, which has Ce as one of the main constituent elements and has excellent magnetic properties and good corrosion resistance, and is mainly applied to electric motors for automobiles. .

【0002】[0002]

【従来の技術】自動車電装用モータにはモータ効率の上
から15〜20MGOe前後の磁気特性を持つ永久磁石が望まし
いとされている。この要求を満たす材質として、温度安
定性と耐食性に優れ、安価なCe を主成分とするCe-C
o 系磁石が最適なものの一つである。しかし、問題点は
Co 比率が高いため値段がNd-Fe-B系永久磁石と比較
して高く、磁気特性が少し不足していることである。こ
の点が改良されるならばCe-Co 系磁石は電装用モータ
に最適な材料となる。従来、Ce(Co-Fe-Cu)z 系磁石
の組成は、希土類元素と遷移金属元素の比率(Z値)が
5程度で低く、鉄量も高々遷移金属の10%(原子百分
比)程度であった。焼結磁石として得られる磁気特性
は、せいぜい10〜14MGOe程度であった。希土類焼結磁石
としては磁気特性が低く、Co 量の比率が高い。等方性
Nd-Fe-B系急冷薄帯ボンド磁石と比較して磁気特性で
は勝っているが、価格的には高いため、実用面での使用
例は限定されていた。
2. Description of the Related Art Permanent magnets having a magnetic characteristic of about 15 to 20 MGOe are considered to be desirable for motors for automobile electrical equipment in terms of motor efficiency. As a material that meets these requirements, Ce-C, which is mainly composed of Ce, is inexpensive and has excellent temperature stability and corrosion resistance.
o A magnet is one of the most suitable. However, the problem is that the price is higher than that of the Nd-Fe-B system permanent magnet due to the high Co ratio, and the magnetic properties are slightly insufficient. If this point is improved, Ce-Co type magnets will be the optimum material for electric motors. Conventionally, the composition of Ce (Co-Fe-Cu) z based magnets has a low ratio of rare earth elements to transition metal elements (Z value) of about 5 and iron content is at most about 10% (atomic percentage ratio) of transition metals. there were. The magnetic properties obtained as a sintered magnet were at most about 10 to 14 MGOe. As a rare earth sintered magnet, the magnetic properties are low and the Co content is high. Although it is superior in magnetic characteristics to the isotropic Nd-Fe-B system quenched ribbon bonded magnet, its price is high, so that practical use examples are limited.

【0003】Ce 系磁石の磁気特性を向上させるための
試みは幾つかなされており、添加物(M:Zr、Ti、Mn、
Zn 等)を加えたり、Ce をSm で置換することが報告
されている。通常、添加物MはFe 量を増やしZ値を高
くできるので、磁気特性の向上に有効である。Sm(Co-
Fe-Cu-M)z系(z≧7)の場合には、このような添加
物が非常に有効であった。しかし、Ce 系では種々の元
素の添加が試行されたにも関わらず、十分な保磁力が確
保できないため、従来組成に比較し大幅な特性向上は実
現されていない。
Several attempts have been made to improve the magnetic properties of Ce type magnets, and additives (M: Zr, Ti, Mn,
Zn, etc.) and the replacement of Ce with Sm have been reported. Usually, the additive M can increase the Fe content and increase the Z value, and is therefore effective in improving the magnetic properties. Sm (Co-
In the case of the Fe-Cu-M) z system (z ≧ 7), such additives were very effective. However, in the Ce-based alloy, although various elements have been tried to be added, a sufficient coercive force cannot be ensured, so that a significant improvement in characteristics as compared with the conventional composition has not been realized.

【0004】この原因は次の点にあると考えられる。即
ち添加物を用いた組成ではz値を高め、Ce2Co17 組成
に近づける必要がある。Sm2Co17 化合物の結晶磁気異
方性は正で、しかもその値は 107erg/ccオーダーの高い
値を有している。しかし、Ce2Co17 化合物の結晶磁気
異方性が負であるため、添加物を用い、z値を高くして
も、十分な保磁力が得られないと考えられる。一方、C
e をSm で置換することは、Sm2Co17 の結晶磁気異方
性を利用できるため、磁気特性、特には保磁力の向上に
大変効果的である。しかし、Sm を使用することにより
原料コストが上がるため、コスト単位当たりの磁気特性
を等方性Nd-Fe-B系急冷薄帯ボンド磁石と比較した時
実用価値は低下する。原料コストの増加を伴わずに磁気
特性を向上させるには、Co のFe による置換量を増や
すことが有効である。
The cause is considered to be as follows. That is, in the composition using the additive, it is necessary to raise the z value to approach the Ce 2 Co 17 composition. The crystal magnetic anisotropy of the Sm 2 Co 17 compound is positive, and its value is as high as 10 7 erg / cc order. However, since the crystal magnetic anisotropy of the Ce 2 Co 17 compound is negative, it is considered that sufficient coercive force cannot be obtained even if an additive is used and the z value is increased. On the other hand, C
Substituting e for Sm is very effective for improving the magnetic properties, especially the coercive force, because the crystal magnetic anisotropy of Sm 2 Co 17 can be utilized. However, since the raw material cost is increased by using Sm, the practical value is lowered when the magnetic property per cost unit is compared with that of the isotropic Nd-Fe-B system quenched ribbon bonded magnet. In order to improve the magnetic properties without increasing the raw material cost, it is effective to increase the amount of replacement of Co with Fe.

【0005】本発明者等は、先にCe 系磁石において、
Fe 量の大幅な増大の可能な組成と製造方法(特開平 0
1-225101号参照)を提案した。しかし、その発明におい
てはFe 量を増やすと同時にCu 量も増やさなければな
らなかった。何故なら、Fe量のみの増加では1−5相
が安定に存在し得なくなるためである。したがって、F
e 量増加による飽和磁化の増加と、Cu 量増加による飽
和磁化の減少が相殺されてしまい、磁気特性の向上即ち
飽和磁化の増加は実現されなかった。
The present inventors have previously proposed that in the Ce-based magnet,
Composition and manufacturing method capable of significantly increasing Fe amount (Patent Document 0
1-225101)) was proposed. However, in that invention, it was necessary to increase the amount of Cu as well as the amount of Fe. This is because the 1-5 phase cannot exist stably only by increasing the Fe amount. Therefore, F
The increase in the saturation magnetization due to the increase in the amount of e and the decrease in the saturation magnetization due to the increase in the amount of Cu were offset, and the improvement of the magnetic characteristics, that is, the increase of the saturation magnetization was not realized.

【0006】[0006]

【発明が解決しようとする課題】本発明は、Ce 系磁石
のCo 量を低減し、Sm を使用することなくFe 量を増
やして十分な保磁力を確保し、コストの低減と磁気特性
の向上とを両立させることを目的とするものである。
SUMMARY OF THE INVENTION The present invention reduces the amount of Co in a Ce-based magnet and increases the amount of Fe without using Sm to secure a sufficient coercive force, thereby reducing the cost and improving the magnetic characteristics. The purpose is to achieve both.

【0007】[0007]

【課題を解決するための手段】本発明者は、かかる課題
を解決するために、Ce(Co Fe Cu)5 系磁石組成を徹
底的に見直し、構成元素比率を見極めて本発明を完成し
たものでその要旨は、Ce1-aa(Co1-x-y-CFexCuy
C)z (但し、RはNd 、Pr の1種または2種。MはZ
r、Ti の少なくとも1種以上。0.05≦a≦0.50、0.20≦
x≦0.35、0.10≦у≦0.20、 0.005≦c≦0.03、 5.5≦
z≦ 6.5は原子比を表す)で表される希土類焼結磁石で
あって、Co、Fe、Cu、M中のCo の比率が60原子%以下
で、焼結磁石の主相が六方晶Ca Cu5構造を有し、15MG
Oe以上の最大エネルギー積を有することを特徴とする希
土類焼結磁石、および前記組成合金粉末を粉末焼結法に
より焼結して焼結体とした後、該焼結体を900 〜1,000
℃の温度で溶体化熱処理することを特徴とする希土類焼
結磁石の製造方法にある。
In order to solve such a problem, the present inventor has thoroughly reviewed the composition of Ce (Co Fe Cu) 5 system magnets, found the constituent element ratios, and completed the present invention. And the summary is Ce 1-a Ra (Co 1-xyC Fe x Cu y M
C ) z (where R is one or two of Nd and Pr. M is Z
At least one of r and Ti. 0.05 ≦ a ≦ 0.50, 0.20 ≦
x ≦ 0.35, 0.10 ≦ у ≦ 0.20, 0.005 ≦ c ≦ 0.03, 5.5 ≦
z ≦ 6.5 represents an atomic ratio), the ratio of Co in Co, Fe, Cu and M is 60 atomic% or less, and the main phase of the sintered magnet is hexagonal Ca. With a Cu 5 structure, 15MG
A rare earth sintered magnet having a maximum energy product of Oe or more, and a sintered body obtained by sintering the composition alloy powder by a powder sintering method.
A method for producing a rare earth sintered magnet is characterized by performing solution heat treatment at a temperature of ° C.

【0008】以下、本発明を詳細に説明する。Ce(Co
Fe Cu)5 系磁石で典型的な組成は次の(1)式で表さ
れる。 Ce(Co0.76 Fe0.12 Cu0.12)5 ・・・・・(1) (1)式のような組成で単純にFe 量を増やすと、Cu
リッチな1−5相とFe 相が析出して2相状態となり、
良好な磁気特性は得られない。Fe の固溶量を増やす1
つの方法はCu 量を同時に増やすことで、Ce(Co0.60
Fe0.20 Cu0.20)5 が典型的な組成であり、本発明者等
が開発し特許出願(特開平 01-225101号参照)したこと
は前述したが、この組成ではCu 量が増えたため、固液
共存相が低温側に移動しているので、焼結温度より 100
℃以上低温で溶体化処理をしてインゴットを均質化する
必要がある。しかし、この組成ではFe 量とCu 量の増
大による効果が相殺されて、磁気特性の向上は望めな
い。
The present invention will be described in detail below. Ce (Co
A typical composition of the Fe Cu) 5 magnet is represented by the following formula (1). Ce (Co 0.76 Fe 0.12 Cu 0.12 ) 5 (1) If the amount of Fe is simply increased with the composition as shown in formula (1),
Rich 1-5 phase and Fe phase are precipitated and become two phase state,
Good magnetic properties cannot be obtained. Increase the solid solution amount of Fe 1
One method is to increase the amount of Cu at the same time, so that Ce (Co 0.60
Fe 0.20 Cu 0.20 ) 5 is a typical composition, and it has been described above that the present inventors developed and applied for a patent (see Japanese Patent Application Laid-Open No. 01-225101). Since the coexisting phase has moved to the low temperature side, 100% above the sintering temperature.
It is necessary to homogenize the ingot by performing solution treatment at a low temperature of ℃ or more. However, in this composition, the effect due to the increase of the Fe content and Cu content is offset, and the improvement of the magnetic characteristics cannot be expected.

【0009】Ce の一部をSm で置換することにより磁
気特性の向上が図れることは既に述べた。しかし、Sm
を使用することにより原料コストが上昇してしまうこと
が問題であった。一方、Sm 以外の希土類元素でCe を
置換することは難しいと考えられていた。何故なら、R
Co5化合物で一番結晶磁気異方性が大きいのはR=Sm
であり、R2 Co17 化合物でもR=Sm のみが大きな正
の結晶磁気異方性の値を示すためである。したがって、
Sm 以外の希土類元素で置換すると保磁力が下がること
が予測されるため、(1)式のような組成のCe をSm
以外の元素で置換することは試行されていなかった。
It has already been described that the magnetic characteristics can be improved by substituting a part of Ce with Sm. However, Sm
There was a problem in that the raw material cost was increased by using. On the other hand, it has been considered difficult to replace Ce with a rare earth element other than Sm. Because R
R = Sm has the largest magnetocrystalline anisotropy among Co 5 compounds
This is because even in the R 2 Co 17 compound, only R = Sm exhibits a large positive magnetocrystalline anisotropy value. Therefore,
Substitution with a rare earth element other than Sm is expected to lower the coercive force. Therefore, Ce having the composition shown in formula (1) should be replaced by Sm.
Substitution with elements other than was not attempted.

【0010】本発明者等は、上記(1)式のような組成
でCe をNd またはPr で一部置換した(2)式の組成
により(以下置換系と呼ぶ)、大きな保磁力の低下を伴
わずに飽和磁化を向上させ得ることを見出した。 Ce1-aa(Co1-x-y-CFexCuyC)z ・・・・・(2) RCo5化合物とR2 Co17 化合物においてR=Nd 、P
r の時の飽和磁化は、R=Ce の化合物のそれよりかな
り高い。Ce 元素では4f電子が殻外に出てしまうた
め、4f=0個であるのに対し、Pr とNd 元素では4
f電子が2個と3個である。4f電子は化合物の飽和磁
化に寄与するため、Ce 系よりPr やNd系の飽和磁化
の方が高くなる。したがって、Pr やNd の置換量に比
例して飽和磁化は増加する。
The inventors of the present invention significantly reduced the coercive force by using the composition of the formula (2) in which Ce is partially replaced by Nd or Pr in the composition of the above formula (1) (hereinafter referred to as a substitution system). It was found that the saturation magnetization can be improved without it. Ce 1-a Ra (Co 1-xyC Fe x Cu y M C ) z (2) In the RCo 5 compound and the R 2 Co 17 compound, R = Nd, P
The saturation magnetization at r is much higher than that of compounds with R = Ce. In the Ce element, 4f electrons go out of the shell, so 4f = 0, whereas in the Pr and Nd elements, 4f.
There are two and three f electrons. Since the 4f electron contributes to the saturation magnetization of the compound, the saturation magnetization of Pr or Nd system is higher than that of Ce system. Therefore, the saturation magnetization increases in proportion to the substitution amount of Pr and Nd.

【0011】一方、結晶磁気異方性については、Nd や
Pr の置換比率に比例して低下すると考えられていた。
しかし、種々の検討を行った結果、結晶磁気異方性の低
下は置換量に対して比例ではなく、Ce の半分までの置
換に対して低下の割合は小さいことが判かった。それ以
上の置換に対しては、値は急激に低下する。Ce をPr
またはNd 置換した系の保磁力は、定性的には結晶磁気
異方性の変化と同じ傾向を示すため、Ce を半分まで置
換することが可能である。R=Pr 、Nd 、Sm 以外の
希土類元素の置換では、保磁力や飽和磁化の低下が大き
いため、置換は好ましくない。
On the other hand, the magnetocrystalline anisotropy was considered to decrease in proportion to the substitution ratio of Nd and Pr.
However, as a result of various studies, it was found that the reduction of the magnetocrystalline anisotropy was not proportional to the substitution amount, and the reduction rate was small with respect to the substitution up to half of Ce. For more substitutions the value drops sharply. Ce to Pr
Alternatively, since the coercive force of the system in which Nd is substituted qualitatively shows the same tendency as the change in magnetocrystalline anisotropy, it is possible to substitute Ce in half. Substitution of a rare earth element other than R = Pr, Nd, and Sm is not preferable because the coercive force and the saturation magnetization are greatly reduced.

【0012】置換系のもう1つの利点は、Pr やNd の
置換によりFe 量やZ値を高くできることである。添加
物Mを加えることによりFe 量やZ値は更に高くでき
る。M元素としては、Mn、V、 Nb、Hf、Ta 等も効果が
あるが、Zr とTi の効果が特に高い。Pr やNd 置換
による飽和磁化の増加に加えて、遷移金属の比率を高く
できるため、さらに高い飽和磁化が得られる。各々の元
素はその範囲を越えると飽和磁化や保磁力が大幅に低下
するため、この範囲内でなければならない。本発明の組
成に微量のB元素を添加することも、Fe 量を増やす上
で効果があるが、最大置換可能なFe 量は変わらない。
Another advantage of the substitution system is that the Fe amount and Z value can be increased by substituting Pr and Nd. The Fe amount and Z value can be further increased by adding the additive M. As the M element, Mn, V, Nb, Hf, Ta and the like are also effective, but the effects of Zr and Ti are particularly high. In addition to the increase in saturation magnetization due to the substitution of Pr or Nd, the ratio of transition metal can be increased, so that higher saturation magnetization can be obtained. If the content of each element exceeds the range, the saturation magnetization and coercive force will be significantly reduced, so the content must be within this range. Although adding a trace amount of B element to the composition of the present invention is also effective in increasing the Fe amount, the maximum substitutable Fe amount does not change.

【0013】以下(2)式を基に組成範囲について述べ
る。R(Nd、Pr の1種または2種)量が、0.05未満で
は飽和磁化の増大効果は小さく、0.50を越えると保磁力
の低下が大きくなるのでR量は 0.05 以上0.50以下が良
い。Fe 量の増大効果は、M元素 (Zr、Ti の少なくと
も1種以上 )を複合して用いる時にその効果は大きい。
M元素としては、Mn、V、 Nb、Hf、Ta 等も効果がある
が、Zr とTi が特に良好であった。M元素の添加量は
0.005未満ではFe 量の増大効果が小さく飽和磁化の増
加が少ないが、0.03を越えると飽和磁化の減少が大きく
なるのでこの範囲内であることが好ましい。
The composition range will be described below based on the equation (2). When the amount of R (one or two types of Nd and Pr) is less than 0.05, the effect of increasing the saturation magnetization is small, and when it exceeds 0.50, the coercive force is greatly decreased, so the amount of R is preferably 0.05 or more and 0.50 or less. The effect of increasing the Fe amount is great when M elements (at least one of Zr and Ti) are used in combination.
As the M element, Mn, V, Nb, Hf, Ta and the like are also effective, but Zr and Ti are particularly good. The amount of M element added is
If it is less than 0.005, the effect of increasing the Fe amount is small and the increase of the saturation magnetization is small, but if it exceeds 0.03, the decrease of the saturation magnetization is large, so that it is preferably within this range.

【0014】Fe(0.20≦x≦0.35) とCu (0.10 ≦у≦
0.20) の量はこの範囲を越えると磁気特性の低下が著し
く2相状態となり、十分な磁気特性が得られなくなるの
で、この範囲内であることが好ましい。Fe 量の増加に
伴いz値も5以上の値を取ることが可能である。しか
し、Sm 系のように7以上の値は不可能で、高々6まで
である。6以上では合金の熱処理を行っても均質になら
ず、良好な磁気特性が得られない。
Fe (0.20≤x≤0.35) and Cu (0.10≤у≤)
If the amount of (0.20) exceeds this range, the magnetic properties are significantly deteriorated and a two-phase state is formed, and sufficient magnetic properties cannot be obtained, so it is preferable to be in this range. It is possible for the z value to take a value of 5 or more as the Fe amount increases. However, it is impossible to have a value of 7 or more as in the Sm system, and it is up to 6. If it is 6 or more, even if the alloy is heat-treated, it is not homogeneous, and good magnetic properties cannot be obtained.

【0015】Fe リッチなCe 系焼結磁石の製造方法
は、希土類磁石で一般的に用いられている粉末焼結法で
良い。しかし、Fe 量が増加するのに伴い固液共存の領
域が低温側に移動するため(Cu 量を増やした時と同じ
現象)、溶解による溶湯をチル鋳造したのみでは均質な
合金インゴットを得ることができない。したがって、鋳
造インゴットをそのまま粉砕したのでは良好な磁気特性
が得られないため、インゴットを溶体化熱処理すること
により均質化する必要があり、凡そ 900℃〜 1,000℃で
5時間以上熱処すれば良い。焼結は 1,000℃〜 1,100
℃で真空もしくは不活性ガス中(例えば、Ar ガス)で
行うので、焼結に引き続き合金の溶体化熱処理と同じ温
度域で、焼結体に溶体化熱処理を施す必要がある。この
ようにCeをR(Nd、Pr )元素で置換することにより
Cu 量の増加なしにFe 量を増やすことが可能となり、
Ce 系磁石の磁気特性の向上が可能となった。
The Fe-rich Ce-based sintered magnet can be manufactured by the powder sintering method which is generally used for rare earth magnets. However, as the Fe content increases, the solid-liquid coexistence region moves to the lower temperature side (the same phenomenon as when the Cu content increases), so a chill-casting of the molten metal by melting can produce a homogeneous alloy ingot. I can't. Therefore, than the cast ingot was directly crushed without good magnetic characteristics are obtained, it is necessary to homogenize by solution heat treating the ingot, if Netsusho sense 5 hours or more at approximately 900 ° C. ~ 1,000 ° C. good. Sintering 1,000 ℃ ~ 1,100
Since it is performed in a vacuum or in an inert gas (for example, Ar gas) at 0 ° C., it is necessary to perform the solution heat treatment on the sintered body in the same temperature range as the solution heat treatment of the alloy after the sintering. By substituting Ce with the R (Nd, Pr) element in this way, it becomes possible to increase the Fe content without increasing the Cu content.
It has become possible to improve the magnetic characteristics of Ce-based magnets.

【0016】[0016]

【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1)組成式Ce1-aNda( CoresFexCuyZrc)z
に従って純度99%のCe 、Nd メタル、純度99.9%のC
o、Fe、Cu、Zr メタルを所定比率になるように秤量し、
高周波真空溶解炉にて真空もしくは不活性ガス中で溶解
し、銅鋳型に傾鋳して4種類の合金を作製した。該合金
をArガス雰囲気中で 950℃で8時間の溶体化熱処理を行
った。該合金を分析したところ組成は表1のようであっ
た。 該合金をジョークラッシャーとブラウンミルで20
メッシュ以下の粗粉とした後、高圧窒素ガス気流を使用
したジェットミルで平均粒径4μmに微粉砕した。該微
粉を 15kOeの静磁場中で磁場方向に配向させたまま、1.
5Ton/cm2の圧力でプレス成形を行って成形体を作製し
た。該成形体を 250TorrのAr ガス中で1050℃〜1100℃
の温度で1時間焼結を行った後、引き続き 970℃〜1000
℃の温度で2時間溶体化熱処理を行った。該焼結体を 5
00℃〜 600℃の温度で3時間保持した後、 200℃以下ま
で連続的に冷却して焼結磁石とした。該焼結磁石の磁気
特性をBHトレーサーで測定した結果を表1に併記し
た。Nd 元素の置換により高いFe 量組成でも良好な磁
気特性の得られることが判る。
EXAMPLES The embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. Example 1 Compositional formula Ce 1-a Nd a (Co res Fe x Cu y Zr c ) z
In accordance with 99% purity Ce, Nd metal, 99.9% purity C
Weigh o, Fe, Cu, Zr metal to a specified ratio,
Four types of alloys were produced by melting in a high-frequency vacuum melting furnace in a vacuum or in an inert gas and tilt casting in a copper mold. The alloy was subjected to solution heat treatment at 950 ° C. for 8 hours in an Ar gas atmosphere. When the alloy was analyzed, the composition was as shown in Table 1. 20 the alloy with a jaw crusher and a brown mill
After forming coarse powder of mesh or less, it was finely pulverized by a jet mill using a high-pressure nitrogen gas stream to an average particle size of 4 μm. While keeping the fine powder oriented in the magnetic field direction in a static magnetic field of 15 kOe, 1.
Press molding was performed at a pressure of 5 Ton / cm 2 to prepare a molded body. 1050 ℃ ~ 1100 ℃ in 250 Torr Ar gas
After sintering for 1 hour at the temperature of 970 ℃ ~ 1000
Solution heat treatment was performed for 2 hours at a temperature of ° C. 5 of the sintered body
After holding at a temperature of 00 ° C to 600 ° C for 3 hours, the sintered magnet was continuously cooled to 200 ° C or lower. The results of measuring the magnetic characteristics of the sintered magnet with a BH tracer are also shown in Table 1. It can be seen that by replacing the Nd element, good magnetic characteristics can be obtained even with a high Fe content composition.

【0017】(比較例1)Nd を無添加とした以外は実
施例1と同様に処理して磁石合金とし、磁気特性を測定
して表1に併記した。
(Comparative Example 1) A magnetic alloy was prepared by treating in the same manner as in Example 1 except that Nd was not added, and the magnetic characteristics were measured and are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】(実施例2)組成式Ce1-a-bNdaPrb (C
o1-x-y-cFexCuyTic)zに従って、純度99%のCe 、N
d とPr メタル、純度99.9%のCo、Fe、Cu、Ti メタル
を所定比率に従って秤量し、実施例1と同じように溶
解、溶体化処理を行って合金を作製した。該合金を分析
したところ、組成は表2のようであった。該合金を実施
例1と同じように粉砕、磁場中配向、焼結、熱処理を行
い、焼結体を作製した。該焼結体の磁気特性を測定した
ところ、表2のような結果が得られた。添加物や希土類
元素の組み合わせが異なっても高Fe 領域で良好な磁気
特性の得られることが判る。
Example 2 Compositional formula Ce 1-ab Nd a Pr b (C
o 1-xyc Fe x Cu y Ti c ) z according to
d and Pr metal, and Co, Fe, Cu, and Ti metal having a purity of 99.9% were weighed according to a predetermined ratio, and melted and solution-treated in the same manner as in Example 1 to prepare an alloy. When the alloy was analyzed, the composition was as shown in Table 2. The alloy was crushed, oriented in a magnetic field, sintered and heat-treated in the same manner as in Example 1 to prepare a sintered body. When the magnetic properties of the sintered body were measured, the results shown in Table 2 were obtained. It can be seen that good magnetic properties can be obtained in the high Fe region even if the combination of additives and rare earth elements is different.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】Ce Co 系のCe をPr やNd で置換す
ることによりFe 量などを高くすることが可能となり、
大きな保磁力の低下を招くことなく良好な磁気特性を得
ることが可能となった。また、Co 量を低減できるので
原料コストの低下を同時に実現することができ、産業上
その利用価値は極めて高い。
By replacing Ce in the Ce Co system with Pr or Nd, it becomes possible to increase the Fe content and the like.
It became possible to obtain good magnetic properties without causing a large decrease in coercive force. Moreover, since the amount of Co can be reduced, the cost of raw materials can be reduced at the same time, and its utility value is extremely high in industry.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // H01F 7/02 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // H01F 7/02 Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Ce1-aa(Co1-x-y-CFexCuyC)z (但
し、RはNd 、Pr の1種または2種。MはZr、Ti の
少なくとも1種以上。0.05≦a≦0.50、0.20≦x≦0.3
5、0.10≦у≦0.20、 0.005≦c≦0.03、 5.5≦z≦ 6.
5は原子比を表す)で表される希土類焼結磁石。
1. Ce 1-a Ra (Co 1-xyC Fe x Cu y M C ) z (wherein R is one or two of Nd and Pr. M is at least one of Zr and Ti). 0.05 ≦ a ≦ 0.50, 0.20 ≦ x ≦ 0.3
5, 0.10 ≤ у ≤ 0.20, 0.005 ≤ c ≤ 0.03, 5.5 ≤ z ≤ 6.
5 is a rare earth sintered magnet represented by the atomic ratio).
【請求項2】請求項1において、Co、Fe、Cu、M中のC
o の比率が60原子%以下で、焼結磁石の主相が六方晶C
a Cu5構造を有し、15MGOe以上の最大エネルギー積を有
することを特徴とする希土類焼結磁石。
2. The C in Co, Fe, Cu and M according to claim 1.
The ratio of o is 60 atomic% or less, and the main phase of the sintered magnet is hexagonal C
a rare earth sintered magnet having a Cu 5 structure and having a maximum energy product of 15 MGOe or more.
【請求項3】請求項1または2に記載の組成合金粉末を
粉末焼結法により焼結して焼結体とした後、該焼結体を
900 〜1,000 ℃の温度で溶体化熱処理することを特徴と
する希土類焼結磁石の製造方法。
3. The composition alloy powder according to claim 1 or 2 is sintered by a powder sintering method to obtain a sintered body, and then the sintered body is obtained.
A method for producing a rare earth sintered magnet, characterized by performing a solution heat treatment at a temperature of 900 to 1,000 ℃.
JP5081780A 1993-04-08 1993-04-08 Sintered rare earth magnet Pending JPH06295808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5081780A JPH06295808A (en) 1993-04-08 1993-04-08 Sintered rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5081780A JPH06295808A (en) 1993-04-08 1993-04-08 Sintered rare earth magnet

Publications (1)

Publication Number Publication Date
JPH06295808A true JPH06295808A (en) 1994-10-21

Family

ID=13756000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5081780A Pending JPH06295808A (en) 1993-04-08 1993-04-08 Sintered rare earth magnet

Country Status (1)

Country Link
JP (1) JPH06295808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159981A (en) * 2003-02-06 2011-08-18 Magnequench Inc HIGHLY QUENCHABLE Fe-BASED RARE EARTH MATERIAL FOR FERRITE REPLACEMENT
CN102436888A (en) * 2011-12-21 2012-05-02 钢铁研究总院 Cerium-based 1:5 permanent magnet material and preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159981A (en) * 2003-02-06 2011-08-18 Magnequench Inc HIGHLY QUENCHABLE Fe-BASED RARE EARTH MATERIAL FOR FERRITE REPLACEMENT
CN102436888A (en) * 2011-12-21 2012-05-02 钢铁研究总院 Cerium-based 1:5 permanent magnet material and preparation method

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
JPWO2002103719A1 (en) Rare earth permanent magnet material
JP3254229B2 (en) Manufacturing method of rare earth permanent magnet
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP3121824B2 (en) Sintered permanent magnet
JP2741508B2 (en) Magnetic anisotropic sintered magnet and method of manufacturing the same
JPH0316761B2 (en)
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JP2787580B2 (en) Nd-Fe-B based sintered magnet with excellent heat treatment
EP0386286B1 (en) Rare earth iron-based permanent magnet
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JPH061726B2 (en) Method of manufacturing permanent magnet material
JP2610798B2 (en) Permanent magnet material
JPH0146575B2 (en)
JPH06295808A (en) Sintered rare earth magnet
JP3151265B2 (en) Manufacturing method of rare earth permanent magnet
JPH0461042B2 (en)
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JP3202830B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0146574B2 (en)
JPS6077959A (en) Permanent magnet material and its manufacture