JPH06293588A - Production of semiconductor single crystal - Google Patents

Production of semiconductor single crystal

Info

Publication number
JPH06293588A
JPH06293588A JP10517593A JP10517593A JPH06293588A JP H06293588 A JPH06293588 A JP H06293588A JP 10517593 A JP10517593 A JP 10517593A JP 10517593 A JP10517593 A JP 10517593A JP H06293588 A JPH06293588 A JP H06293588A
Authority
JP
Japan
Prior art keywords
graphite crucible
crucible
single crystal
resistant sheet
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10517593A
Other languages
Japanese (ja)
Inventor
Tatsuhiro Fujiyama
辰浩 藤山
Koji Sonoda
浩二 園田
Tsunenari Tomonaga
恒成 朝長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Sumco Techxiv Corp
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Techxiv Corp, Komatsu Electronic Metals Co Ltd filed Critical Sumco Techxiv Corp
Priority to JP10517593A priority Critical patent/JPH06293588A/en
Publication of JPH06293588A publication Critical patent/JPH06293588A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a process for production capable of improving a single crystallization rate, decreasing the generation rate of oxygen induced lamination defects and increasing the number of service times of a graphite crucible in the production of the semiconductor single crystal by a pulling up method. CONSTITUTION:A heat resistant sheet 3 consisting of carbon fibers is held into the spacing between the graphite crucible 1 and a quartz crucible 2 and the single crystal is pulled up. This heat resistant sheet 3 is composed of a base sheet 3a and a side sheet 3b and is used to cover the inside surface of the graphite crucible 1. As a result, the reaction of the parting surface and inside surface of the graphite crucible 1 to SiC and the consequent deformation of the crucible are suppressed. In addition, the impurities which are heretofore accumulated on the inside surface of the graphite crucible 1 are accumulated on the heat resistant sheet 3. Then, the thickness decrease on the inside surface of the graphite crucible 1 is suppressed by exchanging the heat resistant sheet 3 at the every time of putting up the single crystalline by one to several times and the amt. of the impurities accumulated on the inside surface is greatly decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体単結晶の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor single crystal.

【0002】[0002]

【従来の技術】半導体集積回路の基本材料であるシリコ
ン単結晶の製造方法の一つとして、るつぼ内の原料融液
から円柱状の単結晶を引き上げる引き上げ法が用いられ
ている。引き上げ法においては、黒鉛るつぼ内に収容し
た石英るつぼに高純度の多結晶シリコンを充填し、この
多結晶シリコンを前記黒鉛るつぼの外周を取り巻くよう
に設けた黒鉛ヒータによって加熱溶融した上、シードチ
ャックに取り付けた種子結晶を前記融液に浸漬し、シー
ドチャックと黒鉛るつぼとを同方向または逆方向に回転
しつつシードチャックを引き上げて、シリコン単結晶を
成長させる。
2. Description of the Related Art As one of the methods for producing a silicon single crystal which is a basic material of a semiconductor integrated circuit, a pulling method for pulling a cylindrical single crystal from a raw material melt in a crucible is used. In the pulling method, a quartz crucible housed in a graphite crucible is filled with high-purity polycrystalline silicon, and the polycrystalline silicon is heated and melted by a graphite heater provided so as to surround the outer periphery of the graphite crucible, and then a seed chuck. The seed crystal attached to the above is immersed in the melt, and the seed chuck is pulled up while rotating the seed chuck and the graphite crucible in the same direction or opposite directions to grow a silicon single crystal.

【0003】[0003]

【発明が解決しようとする課題】引き上げ法によりシリ
コン単結晶の成長を行う場合、黒鉛るつぼと石英るつぼ
とが下記の式に示すような化学反応を起こし、黒鉛るつ
ぼがSiC化する。 C+SiO2 →SiO+CO 2C+SiO→SiC+CO 一般に黒鉛るつぼは2分割ないし3分割されているが、
分割面がSiC化すると合わせ面の隙間が次第に大きく
なり、黒鉛るつぼの変形が起こる。これに伴って前記黒
鉛るつぼ内に収容された石英るつぼも変形して融液面位
置が変化するとともに、前記黒鉛るつぼの分割面近傍の
温度が低下するため、融液の温度分布が変化して引き上
げ中の単結晶の成長が阻害される。また、単結晶の熱履
歴も変化する。このような不具合の発生を未然に防止す
るため、単結晶の引き上げ完了のつど黒鉛るつぼの変形
量を測定し、合わせ面の開き量が所定の値を超える場合
は黒鉛るつぼを新品と交換している。黒鉛るつぼの変形
量が所定値を超えない段階であっても、黒鉛るつぼの内
面に蓄積される不純物たとえばカルシウム、ナトリウム
等の量は使用回数を重ねるごとに増加し、単結晶中の酸
素誘起積層欠陥(OSFともいう)発生頻度の増大を招
く。
When a silicon single crystal is grown by the pulling method, the graphite crucible and the quartz crucible cause a chemical reaction as shown by the following formula, and the graphite crucible becomes SiC. C + SiO 2 → SiO + CO 2C + SiO → SiC + CO Generally, the graphite crucible is divided into 2 or 3 parts.
When the dividing surface is made of SiC, the gap between the mating surfaces gradually increases, and the graphite crucible deforms. Along with this, the quartz crucible accommodated in the graphite crucible is also deformed and the melt surface position is changed, and the temperature in the vicinity of the division surface of the graphite crucible is lowered, so that the temperature distribution of the melt is changed. The growth of the single crystal during pulling is hindered. Also, the thermal history of the single crystal changes. In order to prevent such problems from occurring, measure the amount of deformation of the graphite crucible each time the pulling of the single crystal is completed, and if the opening amount of the mating surfaces exceeds the specified value, replace the graphite crucible with a new one. There is. Even when the deformation amount of the graphite crucible does not exceed the predetermined value, the amount of impurities such as calcium and sodium accumulated on the inner surface of the graphite crucible increases with each use, and oxygen-induced stacking in the single crystal occurs. This increases the frequency of occurrence of defects (also referred to as OSF).

【0004】このように、黒鉛るつぼの使用回数の増加
に伴って単結晶化が阻害されたり、単結晶中の酸素誘起
積層欠陥が発生しやすくなるため、結果として黒鉛るつ
ぼの使用回数が制限され、コスト高を招く。本発明は上
記従来の問題点に着目してなされたもので、単結晶化率
を向上させ、単結晶中の酸素誘起積層欠陥の発生率を低
減するとともに、黒鉛るつぼの耐用回数を延長させるこ
とができるような半導体単結晶の製造方法を提供するこ
とを目的としている。
As described above, as the number of times the graphite crucible is used increases, single crystallization is hindered, and oxygen-induced stacking faults in the single crystal are more likely to occur. As a result, the number of times the graphite crucible is used is limited. Incurs high costs. The present invention has been made by focusing on the above-mentioned conventional problems. It is intended to improve the single crystallization rate, reduce the occurrence rate of oxygen-induced stacking faults in the single crystal, and extend the service life of the graphite crucible. It is an object of the present invention to provide a method for producing a semiconductor single crystal capable of performing the above.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る半導体単結晶の製造方法は、引き上げ
法による半導体単結晶の製造において、原料融液を貯留
するるつぼとこのるつぼを収容する支持体との隙間に、
前記支持体の内面を被覆する耐熱性シートを挟持させる
構成とし、このような構成において、耐熱性シートが炭
素繊維からなるものであることを特徴としている。
In order to achieve the above object, a method for producing a semiconductor single crystal according to the present invention includes a crucible for storing a raw material melt and a crucible for accommodating the crucible in the production of the semiconductor single crystal by a pulling method. In the gap with the support to
A heat-resistant sheet that covers the inner surface of the support is sandwiched, and in such a configuration, the heat-resistant sheet is made of carbon fiber.

【0006】[0006]

【作用】上記構成によれば、原料融液を貯留するるつぼ
すなわち石英るつぼと、この石英るつぼを収容する支持
体すなわち黒鉛るつぼとの隙間に炭素繊維からなる耐熱
性シートを挟持させて単結晶の引き上げを行うことにし
たので、前記耐熱性シートの介在により黒鉛るつぼが直
接石英るつぼに接触せず、黒鉛るつぼの分割面および内
面のSiC化が抑止される。また、従来は黒鉛るつぼの
内面に蓄積した不純物が、本発明の適用により前記耐熱
性シートに蓄積されることになるので、1回ないし数回
の単結晶引き上げのつど耐熱性シートを交換することに
より、黒鉛るつぼに蓄積する不純物の量を大幅に減らす
ことができる。
According to the above construction, a heat-resistant sheet of carbon fiber is sandwiched between the crucible for storing the raw material melt, that is, the quartz crucible and the support for accommodating the quartz crucible, that is, the graphite crucible. Since the pulling-up is performed, the graphite crucible does not directly contact the quartz crucible due to the interposition of the heat-resistant sheet, so that the dividing surface and the inner surface of the graphite crucible are prevented from becoming SiC. Further, conventionally, impurities accumulated on the inner surface of the graphite crucible are accumulated on the heat-resistant sheet by applying the present invention. Therefore, the heat-resistant sheet should be replaced every time the single crystal is pulled once or several times. Thus, the amount of impurities accumulated in the graphite crucible can be significantly reduced.

【0007】[0007]

【実施例】以下に本発明に係る半導体単結晶の製造方法
の実施例について、図面を参照して説明する。図1は、
第1実施例に基づく黒鉛るつぼおよびこの黒鉛るつぼ内
に収容した石英るつぼの概略断面図である。黒鉛るつぼ
1と石英るつぼ2との隙間には、全面にわたって耐熱性
シート3が挟持されている。前記耐熱性シート3は炭素
繊維からなる布状のもので、シートの厚さは3mm以下
であることが望ましい。本実施例では厚さ0.4mmの
シートを用いた。前記耐熱性シート3は、黒鉛るつぼ1
の内面底部を被覆する底面シート3aと、黒鉛るつぼ1
の底部以外の内周面を被覆する側面シート3bとからな
っている。底面シート3aは図2に示すように耐熱性シ
ートを円形に裁断した上、黒鉛るつぼ1の内面底部を隙
間なく、またシートの重なり合う部分が生じないよう
に、放射状の切れ目を入れたものである。側面シート3
bは図3に示すように耐熱性シートを長方形に裁断した
もので、黒鉛るつぼ1の底部を除く内周面を覆うもので
ある。これらのシート3a,3bにより黒鉛るつぼ1の
内面が隙間なく被覆される。底面シート3aと側面シー
ト3bとを一体に裁断してもよい。
EXAMPLES Examples of the method for producing a semiconductor single crystal according to the present invention will be described below with reference to the drawings. Figure 1
1 is a schematic cross-sectional view of a graphite crucible according to a first embodiment and a quartz crucible housed in the graphite crucible. A heat resistant sheet 3 is sandwiched between the graphite crucible 1 and the quartz crucible 2 over the entire surface. The heat resistant sheet 3 is made of carbon fiber and has a thickness of 3 mm or less. In this example, a sheet having a thickness of 0.4 mm was used. The heat resistant sheet 3 is a graphite crucible 1.
Bottom sheet 3a for covering the bottom of the inner surface of the graphite crucible 1
And a side surface sheet 3b that covers the inner peripheral surface other than the bottom portion. The bottom sheet 3a is obtained by cutting a heat-resistant sheet into a circular shape as shown in FIG. 2 and making radial cuts so that the bottom portion of the inner surface of the graphite crucible 1 does not have a gap and the overlapping portions of the sheets do not occur. . Side sheet 3
As shown in FIG. 3, b is a heat-resistant sheet cut into a rectangle, and covers the inner peripheral surface of the graphite crucible 1 excluding the bottom. The inner surface of the graphite crucible 1 is covered with these sheets 3a and 3b without any gap. The bottom sheet 3a and the side sheet 3b may be integrally cut.

【0008】上記耐熱性シート3を黒鉛るつぼ1と石英
るつぼ2とで挟持した上、石英るつぼ2内に原料のシリ
コン多結晶を充填し、これを加熱、溶融してシリコン単
結晶を引き上げる。耐熱性シート3は石英るつぼ2に接
触しているため、黒鉛るつぼ1に代わって耐熱性シート
3のSiC化および不純物の蓄積が起こる。従って、引
き上げ作業を1回ないし数回行った後、耐熱性シート3
を新品に交換しなければならない。耐熱性シート3の使
用により、黒鉛るつぼ1の分割面や内面のSiC化や減
肉、汚染が抑止され、黒鉛るつぼの耐用回数を従来の2
倍以上とすることができた。
The heat-resistant sheet 3 is sandwiched between a graphite crucible 1 and a quartz crucible 2, and a silicon polycrystal as a raw material is filled in the quartz crucible 2 and heated and melted to pull up a silicon single crystal. Since the heat-resistant sheet 3 is in contact with the quartz crucible 2, the heat-resistant sheet 3 becomes SiC and impurities are accumulated in place of the graphite crucible 1. Therefore, after performing the pulling operation once or several times, the heat resistant sheet 3
Must be replaced with a new one. By using the heat-resistant sheet 3, it is possible to prevent the dividing surface and the inner surface of the graphite crucible 1 from being made of SiC, thinning, and contamination, and the life of the graphite crucible can be reduced to 2 times that of the conventional one.
Could be more than doubled.

【0009】図4〜図6は、本実施例において黒鉛るつ
ぼの内外面に蓄積される不純物の量的変化の一例を示す
もので、これと対比するため従来の単結晶製造方法にお
ける黒鉛るつぼの不純物蓄積状況の一例を図9〜図11
に示す。これらの図において、実線で記載したものは黒
鉛るつぼの内面に蓄積した不純物量の変化を示し、点線
で記載したものは黒鉛るつぼの外面に蓄積した不純物量
の変化を示す。また、図4および図9はカリウム、図5
および図10はカルシウム、図6および図11はナトリ
ウムの蓄積量である。従来の単結晶製造方法において
は、黒鉛るつぼの使用回数に比例してその内面の蓄積量
が増加している。しかし本実施例の場合は各元素ともほ
とんど増加せず、耐熱性シートの使用による効果が現れ
ている。
FIGS. 4 to 6 show an example of a quantitative change of impurities accumulated on the inner and outer surfaces of the graphite crucible in the present embodiment. To compare with this, the graphite crucible of the conventional single crystal manufacturing method is compared. An example of the impurity accumulation state is shown in FIGS.
Shown in. In these figures, the solid line indicates changes in the amount of impurities accumulated on the inner surface of the graphite crucible, and the dotted line indicates changes in the amount of impurities accumulated on the outer surface of the graphite crucible. 4 and 9 are potassium and FIG.
And FIG. 10 shows the accumulated amount of calcium, and FIGS. 6 and 11 show the accumulated amount of sodium. In the conventional method for producing a single crystal, the accumulated amount on the inner surface of the graphite crucible increases in proportion to the number of times the graphite crucible is used. However, in the case of this example, each element hardly increased, and the effect of using the heat-resistant sheet was exhibited.

【0010】図7は、黒鉛るつぼの使用回数と単結晶中
の酸素誘起積層欠陥発生率との関係を示す図で、本実施
例に基づくデータを実線で記載し、従来の単結晶製造方
法によるデータを点線で記載した。この図で分かるよう
に、黒鉛るつぼの内面を耐熱性シートで被覆して黒鉛る
つぼの内面に蓄積する不純物量を減らすことにより、単
結晶中の酸素誘起積層欠陥発生を半減させることができ
た。
FIG. 7 is a diagram showing the relationship between the number of times the graphite crucible is used and the oxygen-induced stacking fault occurrence rate in a single crystal. Data based on this example is shown by a solid line, and a conventional single crystal manufacturing method is used. The data are indicated by dotted lines. As can be seen from this figure, by covering the inner surface of the graphite crucible with a heat-resistant sheet to reduce the amount of impurities accumulated on the inner surface of the graphite crucible, the generation of oxygen-induced stacking faults in the single crystal could be halved.

【0011】第2実施例は、黒鉛るつぼの内面形状に適
合するように成形した耐熱性シートを用意し、これを黒
鉛るつぼと石英るつぼとの隙間に挟持させるもので、前
記シートの装着を極めて容易に行うことができる。また
図8は、第3実施例として黒鉛るつぼ1の底面のみを耐
熱性シートで被覆した場合の概略断面図である。この場
合、図2に示した底面シート3aを用いて黒鉛るつぼ1
の底面を被覆すればよい。これらの他に、黒鉛るつぼの
内面形状に適合するように適当な大きさに裁断した耐熱
性スペーサを、黒鉛るつぼの内面に隙間なく、かつ重な
り合う部分がないように敷き詰めてもよい。
In the second embodiment, a heat-resistant sheet molded to fit the inner shape of the graphite crucible is prepared and sandwiched in the gap between the graphite crucible and the quartz crucible. It can be done easily. Further, FIG. 8 is a schematic cross-sectional view in the case where only the bottom surface of the graphite crucible 1 is covered with a heat resistant sheet as a third embodiment. In this case, the graphite crucible 1 using the bottom sheet 3a shown in FIG.
It is sufficient to cover the bottom surface of the. In addition to these, heat-resistant spacers cut into an appropriate size to fit the shape of the inner surface of the graphite crucible may be spread on the inner surface of the graphite crucible so that there are no gaps and no overlapping portions.

【0012】[0012]

【発明の効果】以上説明したように本発明によれば、黒
鉛るつぼの内面や分割面のSiC化あるいは不純物の蓄
積を抑止する手段として、黒鉛るつぼと石英るつぼとの
隙間に炭素繊維からなるシートを介在させて単結晶の引
き上げを行うことにしたので、従来、石英るつぼとの接
触によって発生していた黒鉛るつぼの変形や不純物の蓄
積が著しく低減し、これに伴って単結晶化率の向上およ
び酸素誘起積層欠陥発生率の半減が可能となる。また、
黒鉛るつぼの汚染、劣化が抑止されることにより、黒鉛
るつぼの耐用回数を従来の2倍以上に伸ばすことがで
き、これらを総合して単結晶製造コストの低減に寄与す
ることができる。
As described above, according to the present invention, a sheet made of carbon fiber is provided in the gap between the graphite crucible and the quartz crucible as a means for suppressing the formation of SiC on the inner surface or divided surface of the graphite crucible or the accumulation of impurities. Since it was decided to pull up the single crystal with the interposition of, the deformation of the graphite crucible and the accumulation of impurities, which were conventionally caused by the contact with the quartz crucible, were significantly reduced, and the single crystallization rate was improved accordingly. Also, the oxygen-induced stacking fault occurrence rate can be halved. Also,
By suppressing the contamination and deterioration of the graphite crucible, it is possible to extend the service life of the graphite crucible more than twice as long as the conventional one, and it is possible to contribute to the reduction of the single crystal production cost by combining these.

【図面の簡単な説明】[Brief description of drawings]

【図1】耐熱性シートを挟持した黒鉛るつぼと石英るつ
ぼの概略断面図である。
FIG. 1 is a schematic sectional view of a graphite crucible and a quartz crucible sandwiching a heat resistant sheet.

【図2】底面シートの平面図である。FIG. 2 is a plan view of a bottom sheet.

【図3】側面シートの平面図である。FIG. 3 is a plan view of a side sheet.

【図4】耐熱性シートを用いたとき、黒鉛るつぼの内外
面に蓄積されるカリウムの量的変化を示す図である。
FIG. 4 is a diagram showing a quantitative change of potassium accumulated on the inner and outer surfaces of a graphite crucible when a heat resistant sheet is used.

【図5】耐熱性シートを用いたとき、黒鉛るつぼの内外
面に蓄積されるカルシウムの量的変化を示す図である。
FIG. 5 is a diagram showing a quantitative change of calcium accumulated on the inner and outer surfaces of a graphite crucible when a heat resistant sheet is used.

【図6】耐熱性シートを用いたとき、黒鉛るつぼの内外
面に蓄積されるナトリウムの量的変化を示す図である。
FIG. 6 is a diagram showing a quantitative change of sodium accumulated on the inner and outer surfaces of a graphite crucible when a heat resistant sheet is used.

【図7】黒鉛るつぼの使用回数と単結晶中の酸素誘起積
層欠陥発生率との関係を示す図である。
FIG. 7 is a diagram showing the relationship between the number of times a graphite crucible is used and the oxygen-induced stacking fault occurrence rate in a single crystal.

【図8】耐熱性シートを底面のみに挟持した黒鉛るつぼ
と石英るつぼの概略断面図である。
FIG. 8 is a schematic cross-sectional view of a graphite crucible and a quartz crucible in which a heat resistant sheet is sandwiched only on the bottom surface.

【図9】従来の単結晶製造方法において、黒鉛るつぼの
内外面に蓄積されるカリウムの量的変化を示す図であ
る。
FIG. 9 is a diagram showing a quantitative change of potassium accumulated on the inner and outer surfaces of a graphite crucible in a conventional method for producing a single crystal.

【図10】従来の単結晶製造方法において、黒鉛るつぼ
の内外面に蓄積されるカルシウムの量的変化を示す図で
ある。
FIG. 10 is a diagram showing a quantitative change of calcium accumulated on the inner and outer surfaces of a graphite crucible in a conventional method for producing a single crystal.

【図11】従来の単結晶製造方法において、黒鉛るつぼ
の内外面に蓄積されるナトリウムの量的変化を示す図で
ある。
FIG. 11 is a diagram showing a quantitative change of sodium accumulated on the inner and outer surfaces of a graphite crucible in a conventional method for producing a single crystal.

【符号の説明】[Explanation of symbols]

1 黒鉛るつぼ 2 石英るつぼ 3 耐熱性シート 3a 底面シート 3b 側面シート 1 Graphite crucible 2 Quartz crucible 3 Heat resistant sheet 3a Bottom sheet 3b Side sheet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 引き上げ法による半導体単結晶の製造に
おいて、原料融液を貯留するるつぼとこのるつぼを収容
する支持体との隙間に、前記支持体の内面を被覆する耐
熱性シートを挟持させることを特徴とする半導体単結晶
の製造方法。
1. In the production of a semiconductor single crystal by the pulling method, a heat-resistant sheet for covering the inner surface of the support is sandwiched in a gap between a crucible for storing a raw material melt and a support for accommodating the crucible. A method for manufacturing a semiconductor single crystal, comprising:
【請求項2】 耐熱性シートが炭素繊維からなるもので
あることを特徴とする請求項1の半導体単結晶の製造方
法。
2. The method for producing a semiconductor single crystal according to claim 1, wherein the heat resistant sheet is made of carbon fiber.
JP10517593A 1993-04-07 1993-04-07 Production of semiconductor single crystal Pending JPH06293588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10517593A JPH06293588A (en) 1993-04-07 1993-04-07 Production of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10517593A JPH06293588A (en) 1993-04-07 1993-04-07 Production of semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH06293588A true JPH06293588A (en) 1994-10-21

Family

ID=14400347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10517593A Pending JPH06293588A (en) 1993-04-07 1993-04-07 Production of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH06293588A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055765A2 (en) * 2001-01-09 2002-07-18 Memc Electronic Materials, Inc. Crystal puller and method for growing single crystal semiconductor material
JP2008222547A (en) * 2008-05-07 2008-09-25 Toyo Tanso Kk High-temperature member for single crystal pulling apparatus, single crystal pulling apparatus equipped with high-temperature member, and method for producing high-temperature member
WO2008129960A1 (en) * 2007-04-18 2008-10-30 Toyo Tanso Co., Ltd. Expandable graphite sheet, method for protecting carbonaceous crucible using the expandable graphite sheet, and single crystal pulling apparatus
JP2009133612A (en) * 2002-06-18 2009-06-18 Toyo Tanso Kk Carbon crucible lining using flexible, high purity expanded graphite sheet
WO2013151116A1 (en) * 2012-04-04 2013-10-10 東洋炭素株式会社 Crucible-protective sheet and method for protecting carbonaceous crucible using said crucible-protective sheet
WO2016010039A1 (en) * 2014-07-14 2016-01-21 株式会社福田結晶技術研究所 METHOD AND APPARATUS FOR GROWING Fe-Ga-BASED ALLOY SINGLE CRYSTAL
CN113774484A (en) * 2021-09-13 2021-12-10 浙江大学杭州国际科创中心 Gallium oxide crystal growth method and combined crucible for growing gallium oxide crystal

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055765A2 (en) * 2001-01-09 2002-07-18 Memc Electronic Materials, Inc. Crystal puller and method for growing single crystal semiconductor material
WO2002055765A3 (en) * 2001-01-09 2003-01-30 Memc Electronic Materials Crystal puller and method for growing single crystal semiconductor material
JP2009133612A (en) * 2002-06-18 2009-06-18 Toyo Tanso Kk Carbon crucible lining using flexible, high purity expanded graphite sheet
WO2008129960A1 (en) * 2007-04-18 2008-10-30 Toyo Tanso Co., Ltd. Expandable graphite sheet, method for protecting carbonaceous crucible using the expandable graphite sheet, and single crystal pulling apparatus
JP2008266061A (en) * 2007-04-18 2008-11-06 Toyo Tanso Kk Expansible graphite sheet, protection method for carbonaceous crucible using the same, and single crystal pulling system
JP2008222547A (en) * 2008-05-07 2008-09-25 Toyo Tanso Kk High-temperature member for single crystal pulling apparatus, single crystal pulling apparatus equipped with high-temperature member, and method for producing high-temperature member
WO2013151116A1 (en) * 2012-04-04 2013-10-10 東洋炭素株式会社 Crucible-protective sheet and method for protecting carbonaceous crucible using said crucible-protective sheet
JP2013212966A (en) * 2012-04-04 2013-10-17 Toyo Tanso Kk Crucible-protective sheet and method for protecting carbonaceous crucible using the crucible-protective sheet
WO2016010039A1 (en) * 2014-07-14 2016-01-21 株式会社福田結晶技術研究所 METHOD AND APPARATUS FOR GROWING Fe-Ga-BASED ALLOY SINGLE CRYSTAL
JP2016028831A (en) * 2014-07-14 2016-03-03 株式会社福田結晶技術研究所 METHOD AND APPARATUS FOR GROWING Fe-Ga-BASED ALLOY SINGLE CRYSTAL
CN113774484A (en) * 2021-09-13 2021-12-10 浙江大学杭州国际科创中心 Gallium oxide crystal growth method and combined crucible for growing gallium oxide crystal

Similar Documents

Publication Publication Date Title
JPH06293588A (en) Production of semiconductor single crystal
JP2007182373A (en) Method for producing high quality silicon single crystal and silicon single crystal wafer made by using the same
JP2001106594A (en) Method for producing epitaxial wafer
KR20070072346A (en) Producing method of high quality silicon single crystal ingot and silicon wafer made thereby
CN114318500A (en) Crystal pulling furnace and method for pulling single crystal silicon rod and single crystal silicon rod
JP2007070131A (en) Method of manufacturing epitaxial wafer, and epitaxial wafer
JP4151474B2 (en) Method for producing single crystal and single crystal
JP4844127B2 (en) Single crystal manufacturing apparatus and manufacturing method
TW575696B (en) Methods for producing epitaxial wafer and silicon wafer and epitaxial wafer
JPH06227891A (en) Crucible for pulling silicon single crystal
US7491270B2 (en) Heat shield member and single crystal pulling device
JPH11130592A (en) Production of silicon single crystal
JP4166316B2 (en) Single crystal manufacturing equipment
JP2002198375A (en) Method of heat treatment of semiconductor wafer and semiconducor wafer fabricated therby
KR100841996B1 (en) Apparatus of manufacturing silicon single crystal ingot
JP3551736B2 (en) Carbon susceptor for single crystal pulling device
JP2002201091A (en) Method of manufacturing epitaxial wafer having no epitaxial defect using nitrogen and carbon added substrate
JP2000109391A (en) Quartz crucible
JPH0543382A (en) Production of silicon single crystal
JP2734820B2 (en) Method for manufacturing compound semiconductor single crystal
CN113122913B (en) Seed crystal laying method, monocrystalline silicon ingot casting method and monocrystalline silicon wafer
JP3181443B2 (en) Graphite crucible for semiconductor single crystal growing equipment
JPH11116390A (en) Furnace for pulling silicon single crystal by cz method, and heater therefor
JP2002293691A (en) Method of manufacturing silicon single crystal and silicon single crystal as well as silicon wafer
WO2022123957A1 (en) Monocrystal-manufacturing device