JPH06293580A - Refractory having basic resistance - Google Patents

Refractory having basic resistance

Info

Publication number
JPH06293580A
JPH06293580A JP5237437A JP23743793A JPH06293580A JP H06293580 A JPH06293580 A JP H06293580A JP 5237437 A JP5237437 A JP 5237437A JP 23743793 A JP23743793 A JP 23743793A JP H06293580 A JPH06293580 A JP H06293580A
Authority
JP
Japan
Prior art keywords
oxide
refractory
refractory material
mgo
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5237437A
Other languages
Japanese (ja)
Inventor
Kenichi Yamaguchi
健一 山口
Fumihiko Ogino
文彦 荻野
Etsuji Kimura
悦治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP5237437A priority Critical patent/JPH06293580A/en
Priority to CA002113396A priority patent/CA2113396A1/en
Priority to DE19944402667 priority patent/DE4402667A1/en
Publication of JPH06293580A publication Critical patent/JPH06293580A/en
Priority to US08/631,959 priority patent/US5840380A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5029Magnesia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glanulating (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE:To improve basic resistance, thermal conductivity and thermal shock resistance by forming a multiple oxide layer comprising essentially MgO on the surface of a base body. CONSTITUTION:MgO, Fe2O and at least one metal oxide selected from TiO2, Nb2O5, Nd2O3, La2O3, NiO, and CoO, and if necessary, 1-20wt.% Al2O3 are mixed. The obtd. mixture is applied onto the surface of a base body and fired at >=1300 deg.C to form a multiple oxide layer having 0.01-10mm thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐塩基性に優れた耐火
材に関する。本発明の耐火材は、塩基性融体や焼成物と
接触する製錬炉やキルンの耐火煉瓦あるいは炉芯管等の
材料として特に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory material having excellent basic resistance. INDUSTRIAL APPLICABILITY The refractory material of the present invention is particularly useful as a material for refractory bricks or furnace core tubes of smelting furnaces and kilns that come into contact with a basic melt or a fired product.

【0002】[0002]

【従来技術とその問題点】金属製錬において使用される
各種の炉やセメント製造等に使用される各種キルンに
は、高温から炉材を保護するため炉壁に耐火材が内張り
されている。また、ルツボ、炉芯管あるいはマッフルの
ように内容物を高温で溶解するのに用いられる器具にも
耐火材が使用される。これらの耐火材は使用環境に応じ
て、SiO2あるいはZrO2 を主成分とする酸性耐火
材、Cr2 3 あるいはAl2 3 を主成分とする中性
耐火材、MgOあるいはCaOを主成分とする塩基性耐
火材が用いられており、例えば、塩基性の融体、焼成物
あるいはガス等に曝される環境では塩基性耐火材が用い
られる。
2. Description of the Related Art Various furnaces used in metal smelting and various kilns used for cement production have refractory materials lining the furnace walls to protect the furnace materials from high temperatures. Refractory materials are also used in crucibles, furnace tubes, or muffles, which are used to melt contents at high temperatures. These refractory materials are acidic refractory materials containing SiO 2 or ZrO 2 as a main component, neutral refractory materials containing Cr 2 O 3 or Al 2 O 3 as a main component, and MgO or CaO as a main component, depending on the use environment. The basic refractory material is used. For example, the basic refractory material is used in an environment where it is exposed to a basic melt, a fired product, a gas, or the like.

【0003】代表的な耐火材である耐火煉瓦のうち塩基
性耐火煉瓦についてみると、従来の塩基性耐火煉瓦は、
酸化Mg単味の他に、耐食性を高めるために、酸化Cr
を含有させた酸化Mg−酸化Cr系煉瓦が多く用いられ
ている。この酸化Mg−酸化Cr系煉瓦は、耐火性及び
荷重軟化点が高い利点を有するものの、成分中のクロム
およびその酸化物が公害の原因となる問題があり、その
代替品が求められている。また該酸化Mg−酸化Cr系
煉瓦は、通常の塩基性融体に対しては良好な耐食性を示
すが、酸化Feに富む塩基性高温融体に対しては耐食性
に限界がある。これは、上記耐火材に酸化鉄に富む塩基
性高温融体が接触すると、耐火材の成分である酸化Mg
及び酸化Crと融体中の酸化Feが反応してそれぞれM
gFe24 およびFeCr2 4 で表わされるスピネ
ルを形成することによるためであると思われる。
Among basic refractory bricks, which are typical refractory materials, regarding basic refractory bricks, conventional basic refractory bricks are
In addition to Mg oxide alone, Cr oxide is added to improve corrosion resistance.
An oxide-Mg-Cr oxide-based brick containing a lot of is used. Although this Mg oxide-Cr oxide brick has the advantages of high fire resistance and softening point under load, there is a problem that chromium and its oxides in the components cause pollution, and a substitute for it is required. Further, the Mg oxide-Cr oxide brick shows good corrosion resistance to a normal basic melt, but has a limit to corrosion resistance to a basic high temperature melt rich in Fe oxide. This is because when the basic high-temperature melt rich in iron oxide comes into contact with the refractory material, Mg oxide, which is a component of the refractory material,
And Cr oxide reacts with Fe oxide in the melt to form M
This is probably due to the formation of spinels represented by gFe 2 O 4 and FeCr 2 O 4 .

【0004】これを模式的に図3に示すと、酸化Mg−
酸化Cr系耐火煉瓦50は酸化Mg粒子51と酸化Cr
粒子52が相互に一体に焼結した構造を有している。こ
れが酸化Feに富む高温の融体54に接触すると、粒子
間の空隙を通じて煉瓦50の表面層に融体54が浸入
し、融体中の酸化Feと酸化Mgおよび酸化Crがそれ
ぞれ反応して、表面層の粒界にMgFe2 4 およびF
eCr2 4 で表される鉄分の多いスピネル相53を形
成する。このスピネル相の形成に際して上記粒子の結晶
粒が膨化し、これと一体に焼結していた非スピネル相の
酸化Mg粒子51および酸化Cr粒子52との結合が破
壊される。またスピネル成分のMgFe24 は融点が1
900℃と高いものの融体中のアルカリ成分によって浸食
され易い。これらの原因で耐火煉瓦50の表面層が溶損
すると考えられる。
This is shown schematically in FIG.
The Cr oxide refractory brick 50 includes Mg oxide particles 51 and Cr oxide.
The particles 52 have a structure in which they are integrally sintered with each other. When this comes into contact with the high-temperature melt 54 rich in Fe oxide, the melt 54 penetrates into the surface layer of the brick 50 through the voids between the particles, and Fe oxide in the melt reacts with Mg oxide and Cr oxide, respectively, At the grain boundary of the surface layer, MgFe 2 O 4 and F
An iron-rich spinel phase 53 represented by eCr 2 O 4 is formed. During the formation of this spinel phase, the crystal grains of the above particles swell, and the bonds with the non-spinel phase Mg oxide particles 51 and Cr oxide particles 52, which have been sintered together, are broken. In addition, the spinel component MgFe 2 O 4 has a melting point of 1
Although it is as high as 900 ℃, it is easily eroded by the alkali component in the melt. It is considered that the surface layer of the refractory brick 50 is melted and damaged due to these causes.

【0005】[0005]

【発明の解決課題】以上のように、酸化Mg−酸化Cr
系耐火煉瓦は、酸化鉄に富む塩基性高温融体等に対して
は耐食性に限界があるため、このような融体や焼成物が
生じる製錬炉やキルンでは、耐火煉瓦の溶損が著しい箇
所に電鋳煉瓦を使用する等の対策を余儀なくされており
経済的でない。このため、酸化Mg−酸化Cr耐火煉瓦
に代わる耐食性に優れた塩基性耐火煉瓦が求められてい
る。また、セメントキルンでは上記酸化Mg−酸化Cr
系耐火煉瓦に代えて、酸化Mg−酸化Al系耐火煉瓦が
試みられているが、この煉瓦も酸化Feに富む塩基性焼
成物に対してはやはり耐食性に乏しい。本発明は、従来
の酸化Mg−酸化Cr系耐火煉瓦等における上記問題点
を解決した耐塩基性耐火材を提供することを目的とす
る。
As described above, Mg oxide-Cr oxide
Since refractory bricks have a limited corrosion resistance to basic high-temperature melts rich in iron oxide, etc., smelting furnaces and kilns in which such melts and fired products are produced show significant melting loss of refractory bricks. It is uneconomical to take measures such as using electroformed bricks in some places. Therefore, there is a demand for a basic refractory brick having excellent corrosion resistance, which replaces the Mg oxide-Cr oxide refractory brick. In the cement kiln, the above-mentioned Mg oxide-Cr oxide is used.
Although MgO-Al oxide refractory bricks have been tried in place of the refractory bricks, these bricks also have poor corrosion resistance to basic burned materials rich in Fe oxide. An object of the present invention is to provide a base-resistant refractory material that solves the above-mentioned problems in the conventional Mg-Cr oxide refractory bricks and the like.

【0006】[0006]

【課題の解決手段】本発明者等は上記問題を解決する手
段について種々検討し、その結果、耐火材の表面を耐塩
基性に優れた複合酸化物によって覆い、耐火材内部への
融体の浸入を阻止することにより、塩基性融体に対して
優れた耐食性が得られ、耐塩基性耐火煉瓦として最適で
あることを見出した。この複合酸化物は、酸化Mgを主
成分とし、酸化鉄と共に高融点の複合酸化物相を形成す
る酸化物によって形成される。具体的には、従来、耐火
材の成分としては使用されていない酸化Ti、酸化N
b、酸化Nd、酸化La、酸化Mn、酸化Niおよび酸
化Coが適当であり、これを1種または2種以上添加す
ることにより所望の耐火材を得られる知見を得た。煉瓦
などのように比較的焼結密度が低い耐火材基体に上記複
合酸化物層を設けたものは耐塩基性耐火煉瓦として好適
であり、また該複合酸化物は伝熱性および耐熱衝撃性が
良いので上記複合酸化物層を有する耐火材は炉芯管や熱
電対の保護管の材料に適することも確認された。
Means for Solving the Problems The inventors of the present invention have conducted various studies on means for solving the above problems, and as a result, covered the surface of the refractory material with a complex oxide having excellent basic resistance, thereby forming a melt inside the refractory material. It has been found that by blocking the infiltration, excellent corrosion resistance can be obtained with respect to the basic melt, and it is optimal as a basic refractory brick. This composite oxide is formed by an oxide containing Mg oxide as a main component and forming a high melting point composite oxide phase together with iron oxide. Specifically, Ti oxide and N oxide, which have not been conventionally used as components of refractory materials, are used.
b, Nd oxide, La oxide, Mn oxide, Ni oxide, and Co oxide are suitable, and it has been found that a desired refractory material can be obtained by adding one or more of them. A refractory material having a relatively low sintered density, such as a brick, provided with the above composite oxide layer is suitable as a basic refractory brick, and the composite oxide has good heat transfer and thermal shock resistance. Therefore, it was also confirmed that the refractory material having the above-mentioned composite oxide layer is suitable as a material for the furnace core tube and the thermocouple protection tube.

【0007】[0007]

【発明の構成】本発明によれば以下の耐塩基性耐火材が
提供される。 (1)酸化Mgを主成分とし、酸化鉄と共に、酸化T
i、酸化Nb、酸化Nd、酸化La、酸化Mn、酸化N
iおよび酸化Coのうち1種または2種以上を含む複合
酸化物層を基体表面に有することを特徴とする耐塩基性
耐火材。 (2)酸化Mgを主成分とする基体の表面に上記複合酸
化物層を有する上記(1)の耐塩基性耐火材。 (3)酸化Mgを主成分とする基体が酸化Alを1〜2
0wt%含む上記(1) の耐火材。
According to the present invention, the following basic resistant refractory material is provided. (1) Mg oxide as a main component, iron oxide and T oxide
i, Nb oxide, Nd oxide, La oxide, Mn oxide, N oxide
A basic refractory material having a complex oxide layer containing one or more of i and Co oxide on the surface of the substrate. (2) The base-resistant refractory material according to (1) above, which has the complex oxide layer on the surface of a substrate containing Mg oxide as a main component. (3) The substrate containing Mg oxide as a main component contains Al oxide in an amount of 1 to 2
Refractory material of (1) above containing 0 wt%.

【0008】[0008]

【発明の具体的な説明】本発明の耐火材は基体表面に高
融点の複合酸化物層を有するものであり、該複合酸化物
は、酸化Mgを主成分とし、酸化鉄と共に、酸化Ti、
酸化Nb、酸化Nd、酸化La、酸化Mn、酸化Niお
よび酸化Coのうち1種または2種以上からなる主に3
成分系の酸化物である。以下、便宜上、酸化Ti、酸化
Nb、酸化Nd、酸化La、酸化Mn、酸化Niおよび
酸化Coのうち1種又は2種以上の酸化物を第2成分と
云う。
DETAILED DESCRIPTION OF THE INVENTION The refractory material of the present invention has a high melting point composite oxide layer on the surface of a substrate. The composite oxide contains Mg oxide as a main component and, together with iron oxide, Ti oxide,
Mainly 3 or more of one or more of Nb oxide, Nd oxide, La oxide, Mn oxide, Ni oxide and Co oxide.
It is a component-based oxide. Hereinafter, for convenience, one or more oxides of Ti oxide, Nb oxide, Nd oxide, La oxide, Mn oxide, Ni oxide, and Co oxide are referred to as a second component.

【0009】上記複合酸化物は、例えば、MgO−Ti
2 −Fe2 3 の3成分系酸化物は、MgO含有量が
約40wt%以上の範囲で固溶体相の高融点複合酸化物を
形成し、これは塩基性融体や塩基性焼成物中のアルカリ
成分に侵され難い。従って、該複合酸化物層によって耐
火材表面を覆うことにより、塩基性融体等による耐火材
内部への浸入が阻止され、耐火材の浸食が防止される。
The above-mentioned composite oxide is, for example, MgO-Ti.
The ternary oxide of O 2 —Fe 2 O 3 forms a high melting point composite oxide in the solid solution phase when the MgO content is in the range of about 40 wt% or more. Hard to be attacked by the alkaline component of. Therefore, by covering the surface of the refractory material with the complex oxide layer, the penetration of the basic melt or the like into the refractory material is prevented, and the corrosion of the refractory material is prevented.

【0010】上記複合酸化物におけるMgO、Fe2
3 および第2成分の量比は第2成分の種類によって異な
るが、第2成分として酸化Tiを有するMgO−TiO
2 −Fe2 3 の系は、この3元状態図において、Ti
2 に対するMgOの量が42wt%、Fe2 3 に対す
るMgOの量が8wt%の2点を結ぶMgO側の範囲で約
1750℃以上の融点を有する固溶体相の高融点複合酸化物
(Magnesiowustite )が形成される。TiO2 およびF
2 3 の含有量がこの範囲を上回ると融点が低い酸化
鉄の多いスピネル相となるので好ましくない。
MgO and Fe 2 O in the above composite oxide
The amount ratio of 3 and the second component differs depending on the kind of the second component, but MgO-TiO containing Ti oxide as the second component.
In the ternary phase diagram, the 2- Fe 2 O 3 system is
The amount of MgO with respect to O 2 is 42 wt%, and the amount of MgO with respect to Fe 2 O 3 is 8 wt%.
A solid solution phase high melting point composite oxide (Magnesiowustite) having a melting point of 1750 ° C. or higher is formed. TiO 2 and F
If the content of e 2 O 3 exceeds this range, a spinel phase having a low melting point and rich in iron oxide is formed, which is not preferable.

【0011】上記複合酸化物の層厚は基体の耐火材の種
類に応じて異なる。一例として、酸化Mgを主体とする
耐塩基性耐火煉瓦においては、0.01〜10mm程度が
適当である。複合酸化物層がこれより薄いと十分な耐食
性を発揮できず、また上記範囲より厚過ぎると構造物と
しての耐火材の強度が低下する。耐火材の密度が高い材
料、例えば、高温融体に挿入される熱電対の保護管など
においては、上記複合酸化物層の厚さは0.1〜1mmが
適当である。
The layer thickness of the above composite oxide differs depending on the type of refractory material of the substrate. As an example, about 0.01 to 10 mm is suitable for a base-resistant refractory brick mainly composed of Mg oxide. If the complex oxide layer is thinner than this, sufficient corrosion resistance cannot be exhibited, and if it is thicker than the above range, the strength of the refractory material as a structure decreases. For a material having a high density of refractory material, for example, a thermocouple protection tube inserted in a high temperature melt, a thickness of the composite oxide layer of 0.1 to 1 mm is suitable.

【0012】上記複合酸化物の表面層が設けられる耐火
材の基体は、耐塩基性耐火材として一般的な酸化Mgを
主体とする耐火煉瓦を用いることができる。この酸化M
g系耐火煉瓦は通常用いられる範囲の副成分を含むもの
であっても良い。また、この酸化Mg系耐火煉瓦はAl
2 3 を1〜20wt%、好ましくは5〜10wt%含有し
てもよい。Al2 3 を添加することにより、緻密性が
増し、耐食性が向上する。
As the base material of the refractory material on which the surface layer of the above-mentioned composite oxide is provided, a refractory brick mainly containing Mg oxide, which is general as a basic refractory material, can be used. This oxidation M
The g-based refractory brick may contain subcomponents in the range usually used. Further, this Mg oxide refractory brick is made of Al
2 O 3 may be contained in an amount of 1 to 20 wt%, preferably 5 to 10 wt%. By adding Al 2 O 3 , the denseness is increased and the corrosion resistance is improved.

【0013】上記複合酸化物層は、酸化Mgを主成分と
する基体の表面を上記第2成分及びFe2 3 の混合物
で被覆して加熱するか、酸化Mgを主成分とし上記第2
成分を含む基体の表面をFe2 3 の混合物で被覆して
加熱することにより形成できる。具体的には、(i) 成型
後未焼成の基体表面をFe2 3 を含む粉体で被覆して
1300℃以上で焼成する、あるいは(ii)焼成した基体
をFe2 3 を含む融体に浸漬する。(ii)の場合、必要
であれば浸漬後、さらに焼成を行ない複合酸化物層を基
体上に定着させる。
The complex oxide layer is formed by coating the surface of a substrate containing Mg oxide as a main component with a mixture of the second component and Fe 2 O 3 and then heating or by using the second layer containing Mg oxide as a main component.
It can be formed by coating the surface of the substrate containing the components with a mixture of Fe 2 O 3 and heating. Specifically, (i) the surface of the unbaked substrate after molding is coated with powder containing Fe 2 O 3 and baked at 1300 ° C. or higher, or (ii) the baked substrate is melted containing Fe 2 O 3. Immerse in the body. In the case of (ii), if necessary, after immersing, further baking is performed to fix the composite oxide layer on the substrate.

【0014】耐火材基体の表面を酸化Mgおよび酸化T
iを含む混合物で覆い、これを酸化Feに富む融体に浸
漬して表面に上記複合酸化物層を形成した例を模式的に
図1に示す。図示するように、MgO−TiO2 の表面
層30が、酸化Feに富む高温の融体31に接触した場
合、酸化Mg粒子32および酸化Ti粒子33の間隙を
通じて融体31が表面層に浸入して粒子間の空隙を充填
し、主成分の酸化Mgと共に第2成分の酸化Tiが融体
中の酸化Feと反応してMgO−TiO2 −Fe2 3
からなる3成分系の複合酸化物35が形成される。この
複合酸化物35は固溶体状態の高融点酸化物であり、こ
れが表面層に充填して耐火材の表面を覆い、耐火材の内
部に融体が浸入するのを阻止する。しかも、この複合酸
化物は上記スピネル相と異なり耐火材を構成する焼結粒
子の膨化を生じないので耐火材の強度劣化を招かず、ま
た融体中のアルカリ成分によって浸食され難いので優れ
た耐食性を発揮する。
The surface of the refractory substrate is coated with Mg oxide and T oxide.
An example of covering with a mixture containing i and immersing this in a melt rich in Fe oxide to form the complex oxide layer on the surface is schematically shown in FIG. As shown in the figure, when the surface layer 30 of MgO—TiO 2 comes into contact with the high-temperature melt 31 rich in Fe oxide, the melt 31 penetrates into the surface layer through the gap between the Mg oxide particles 32 and the Ti oxide particles 33. To fill the voids between the particles, and the main component Mg oxide and the second component Ti oxide react with the Fe oxide in the melt to form MgO—TiO 2 —Fe 2 O 3
A three-component composite oxide 35 is formed. The complex oxide 35 is a solid-solution high-melting-point oxide that fills the surface layer to cover the surface of the refractory material and prevents the melt from entering the refractory material. Moreover, unlike the above spinel phase, this composite oxide does not cause expansion of the sintered particles that constitute the refractory material, so does not cause strength deterioration of the refractory material, and is also resistant to corrosion by the alkaline component in the melt, so it has excellent corrosion resistance. Exert.

【0015】基体の焼結密度の異なる種々の耐火材に上
記表面層を設けることにより幅広い用途に適する耐塩基
性耐火材を得ることができる。例えば、焼結密度が比較
的低い煉瓦は、内部空隙による断熱効果が高いので炉の
内張材として用いられるが、酸化Mgを主成分とする耐
火煉瓦の表面に上記複合酸化物からなる表面層を設けた
ものは塩基性融体等に対する耐食性に優れるので、塩基
性の融体や焼成物を扱う各種の炉の内張材に適してい
る。一方、焼結密度の高い耐火材では、耐火材の内部粒
子が緻密に焼結しているので熱伝導性が良く、従って、
このような耐火材を基体とし、その表面に上記複合酸化
物層を設けたものは、ルツボや炉芯管などの材料に適す
る。また上記複合酸化物は耐熱衝撃性にも優れているた
め、高密度耐火材の表面に上記表面層を形成したもの
は、従来、アルミナ管等が使用されてきた高温融体用の
センサー、例えば熱電対などの各種測定端末の保護管に
も適する。
By providing the above-mentioned surface layer on various refractory materials having different sintered densities of the substrate, a base refractory material suitable for a wide range of applications can be obtained. For example, a brick having a relatively low sintering density is used as a lining material for a furnace because it has a high heat insulating effect due to internal voids. Since the one provided with is excellent in corrosion resistance against a basic melt or the like, it is suitable as a lining material for various furnaces handling a basic melt or a fired product. On the other hand, in a refractory material having a high sintering density, the internal particles of the refractory material are densely sintered, so that the thermal conductivity is good, and therefore,
Such a refractory material as a base material, on the surface of which the above complex oxide layer is provided, is suitable for a material such as a crucible or a furnace core tube. Further, since the composite oxide is also excellent in thermal shock resistance, a high-density refractory material having the surface layer formed on the surface thereof is a sensor for a high-temperature melt in which an alumina tube or the like has been conventionally used, for example, It is also suitable as a protective tube for various measuring terminals such as thermocouples.

【0016】[0016]

【実施例および比較例】以下に本発明の実施例を比較例
と共に示す。なお本実施例は例示であり本発明の範囲を
限定するものではない。
EXAMPLES AND COMPARATIVE EXAMPLES Examples of the present invention are shown below together with comparative examples. It should be noted that the present embodiment is an example and does not limit the scope of the present invention.

【0017】実施例1 粒度40μm 〜200 μm のMgO粉末80wt%と粒度40μm
〜200 μm のTiO2粉末20wt%とを混合し、1500kg/c
m2 の圧力で円筒状に成形し、大気中1500℃で48時間か
けて焼成し、1片あたり約7gの試料ペレットを製造し
た。該試料ペレットの見掛け比重、真比重、見掛け気孔
率はおのおの3.07g/cm3 、3.63g/cm3 、15.43 %であ
る。この試料ペレットを、温度1300℃のカルシウムフェ
ライトスラグ(成分wt% Fe2 O3 :70, CaO:15, Cu2
O:15 銅製錬におけるスラグの一種に相当)中に48時間
浸漬し、試料ペレット表面に酸化物層を形成した。この
酸化物層をEPMAにより調べたところ、図2に示すよ
うに、耐火材Cの表面層にはMgO-TiO 2 -Fe2 O3 (Mg
O:39.27 wt%、TiO 2 :35.40wt%、Fe2 O3 :18.68wt
%)からなる複合酸化物層Aが形成されており、この表
面層Aによって耐火材内部Eが覆われていることが確認
された。なお図中、Dはスラグであり、その耐火材表面
層Aに接する部分にはスピネル相Bが形成されている。
この試料ペレットについて、200gのスラグに浸漬中、一
定時間毎にスラグを鋼鉄製ロッドで採取し、スラグ中に
溶出したTiO2 、MgOの量を測定したところ、各々
0.1 wt%以下、1.0wt %以下と極めて低水準であり、時
間の経過によっても大きな変化がなく、優れた耐食性を
有することが確認された。
Example 1 80 wt% MgO powder having a particle size of 40 μm to 200 μm and a particle size of 40 μm
To 200 DEG [mu] m were mixed with TiO 2 powder 20 wt% of, 1500 kg / c
It was molded into a cylindrical shape at a pressure of m 2 and fired in the air at 1500 ° C. for 48 hours to produce a sample pellet of about 7 g per piece. The apparent specific gravity, true specific gravity and apparent porosity of the sample pellets are 3.07 g / cm 3 , 3.63 g / cm 3 and 15.43%, respectively. These sample pellets were mixed with calcium ferrite slag (component wt% Fe 2 O 3 : 70, CaO: 15, Cu 2) at a temperature of 1300 ℃.
O: 15) (corresponding to a kind of slag in copper smelting) for 48 hours to form an oxide layer on the surface of the sample pellet. When this oxide layer was examined by EPMA, it was found that MgO-TiO 2 -Fe 2 O 3 (Mg
O: 39.27 wt%, TiO 2 : 35.40 wt%, Fe 2 O 3 : 18.68 wt
%) Was formed, and it was confirmed that the refractory material inside E was covered with this surface layer A. In the figure, D is a slag, and a spinel phase B is formed in the portion in contact with the refractory material surface layer A.
About this sample pellet, while being immersed in 200 g of slag, the slag was sampled with a steel rod at regular intervals and the amounts of TiO 2 and MgO eluted in the slag were measured.
It was confirmed to have excellent corrosion resistance, with extremely low levels of 0.1 wt% or less and 1.0 wt% or less, with no significant change over time.

【0018】実施例2 酸化Tiに代えて酸化Nb、酸化Nd、酸化La、酸化
Mn、酸化Niおよび酸化Coを用いた他は実施例1と
同様にして試料ペレットを製造し、同一のスラグに浸漬
してペレット表面に酸化物層を形成した。これらの酸化
物層をEPMAにより調べたところ、これらは何れもMg
O-Fe2 O3 および上記第2成分の酸化物からなる3元系
複合酸化物であることが確認された。この試料ペレット
について、スラグ浸漬中、一定時間毎にスラグを鋼鉄製
ロッドで採取し、スラグ中に溶出した上記第2成分の酸
化物とMgOの量を測定したところ、各々0.3 〜0.05wt
%、2.0 wt%以下と極めて低水準であり、時間の経過に
よっても大きな変化がなく、優れた耐食性を有すること
が確認された。
Example 2 A sample pellet was produced in the same manner as in Example 1 except that Nb oxide, Nd oxide, La oxide, Mn oxide, Ni oxide and Co were used instead of Ti oxide, and the same slag was produced. An oxide layer was formed on the surface of the pellet by immersion. When these oxide layers were examined by EPMA, it was found that
It was confirmed to be a ternary complex oxide composed of O-Fe 2 O 3 and the oxide of the second component. Regarding this sample pellet, the slag was sampled with a steel rod at regular intervals during the slag immersion, and the amounts of the oxide of the second component and MgO eluted in the slag were measured.
%, 2.0 wt% or less, which is an extremely low level, and it was confirmed that the corrosion resistance does not change significantly with the passage of time and that it has excellent corrosion resistance.

【0019】実施例3 粒度40μm 〜200 μm のMgO粉末95wt%と粒度 1μm
〜40μm のFe2 3粉末 5wt%とを混合し、1500kg/c
m2 の圧力で円筒状に成形し、大気中1500℃で48時間か
けて焼成し、1片あたり約6gの試料ペレットを製造し
た。この試料ペレットを温度1200℃の酸化Mnを含む酸
化銅の融体(92%Cu2 O- 8%Mn2 O 3 )にドブ漬けし、
試料ペレット表面にMgO-Fe2 O3 -Mn2 O 3 からなる3
元系複合酸化物層を形成した後に取り出して冷却した。
この試料ペレットについて、実施例2と同様にスラグに
浸漬し、一定時間毎にスラグを鋼鉄製ロッドで採取し、
スラグ中に溶出したMn2 3 、MgOの量を測定した
ところ、おのおの 0.1wt%以下、1.0wt %以下と極めて
低水準であり、時間の経過によっても大きな変化がな
く、優れた耐食性を有することが確認された。
Example 3 95% by weight of MgO powder having a particle size of 40 μm to 200 μm and a particle size of 1 μm
Mixing the Fe 2 O 3 powder 5 wt% of ~40μm, 1500kg / c
It was molded into a cylindrical shape at a pressure of m 2 and fired in the air at 1500 ° C. for 48 hours to produce a sample pellet of about 6 g per piece. The sample pellets are soaked in a copper oxide melt (92% Cu 2 O-8% Mn 2 O 3 ) containing Mn oxide at a temperature of 1200 ° C.,
The surface of the sample pellet consists of MgO-Fe 2 O 3 -Mn 2 O 3 3
After forming the original complex oxide layer, it was taken out and cooled.
This sample pellet was immersed in slag in the same manner as in Example 2, and the slag was collected with a steel rod at regular intervals,
When the amounts of Mn 2 O 3 and MgO eluted in the slag were measured, they were extremely low levels of 0.1 wt% or less and 1.0 wt% or less, respectively, which did not change significantly over time and had excellent corrosion resistance. It was confirmed.

【0020】実施例4 粒径が100 μm 以下のMgO粉末と粒径50μm 以下のT
iO2 粉末とを9:1の割合で十分に混合した後、1.5
ton/cm2 の圧力で長さ約20cm、外径20mm、肉厚5mmの盲
管状に成形し、電気炉にて1500℃で1時間かけて焼成し
た。この管材の見掛け比重、真比重および見掛け気孔率
はそれぞれ3.44g/cm3 、3.62g/cm3 および5%であっ
た。この管材を銅精練炉から排出されるカルシウムフェ
ライトスラグ(Fe2 O3 : 70wt%、CaO:15wt%、Cu2 O:
15wt%)に浸漬して管材表面にMgO-TiO 2 -Fe2 O3
らなる複合酸化物層を形成した。上記管材をシ−ス式熱
電対の保護管として用い、温度測定を試みたところ、1
5分間で測定温度(1250℃)が安定し、正確な測定値が
得られた。2時間後、測定管をスラグから引き上げ外見
を観測したが、ひび割れや表面の浸食は認められなかっ
た。一方、同型同径の管を市販の高純度アルミナ(気孔
率:95%)で作成し、これを保護管として用い同様な試
験を行なったところ、保護管の浸漬部分は30分以内で完
全に溶損した。
Example 4 MgO powder having a particle size of 100 μm or less and T having a particle size of 50 μm or less
After thoroughly mixing with the iO 2 powder in a ratio of 9: 1, 1.5
It was molded into a blind tube having a length of about 20 cm, an outer diameter of 20 mm and a wall thickness of 5 mm under a pressure of ton / cm 2 , and fired in an electric furnace at 1500 ° C. for 1 hour. The apparent specific gravity, true specific gravity and apparent porosity of this pipe material were 3.44 g / cm 3 , 3.62 g / cm 3 and 5%, respectively. Calcium ferrite slag is discharged to the tubing from a copper smelting furnace (Fe 2 O 3: 70wt% , CaO: 15wt%, Cu 2 O:
15 wt%) to form a composite oxide layer consisting of MgO-TiO 2 -Fe 2 O 3 on the surface of the pipe. An attempt was made to measure the temperature by using the above tube material as a protective tube for a sheath type thermocouple.
The measurement temperature (1250 ° C) was stabilized in 5 minutes, and accurate measurement values were obtained. After 2 hours, the measuring tube was pulled up from the slag and the appearance was observed, but no cracking or surface erosion was observed. On the other hand, a tube of the same type and same diameter was made of commercially available high-purity alumina (porosity: 95%), and a similar test was conducted using this as a protective tube. The immersion part of the protective tube was completely removed within 30 minutes. Melted down.

【0021】実施例5 粒径100 μm 以下のMgO粉末(40wt%)、Fe2 3
粉末(20wt%)およびTiO2 粉末(40wt%)をスラリ
ー状に混合したものをMgO粉末からなる未焼成の耐火
煉瓦の表面に厚さ1〜2mmに設けた。これを大気中1450
℃で2時間かけて焼成し、1片あたり約10gの試料ペ
レットを製造した。この試料ペレットについて、実施例
2と同様にスラグに浸漬し、一定時間毎にスラグを鋼鉄
製ロッドで採取し、スラグ中に溶出したTiO2 、Mg
Oの量を測定したところ、おのおの 0.1wt%以下、1.0
wt%以下と極めて低水準であり、時間の経過によっても
大きな変化がなく、優れた耐食性を有することが確認さ
れた。
Example 5 MgO powder (40 wt%) having a particle size of 100 μm or less, Fe 2 O 3
A mixture of powder (20 wt%) and TiO 2 powder (40 wt%) was provided on the surface of an unfired refractory brick made of MgO powder to a thickness of 1 to 2 mm. This is 1450 in the atmosphere
Calcination was performed at 2 ° C. for 2 hours to produce about 10 g of sample pellet per piece. This sample pellet was immersed in slag in the same manner as in Example 2, the slag was sampled with a steel rod at regular intervals, and TiO 2 and Mg eluted in the slag were collected.
When the amount of O was measured, each was 0.1 wt% or less, 1.0
It was confirmed to have excellent corrosion resistance, with a very low level of wt% or less, with no significant change over time.

【0022】[0022]

【発明の効果】本発明の耐塩基性耐火材は、例えば銅製
錬において生じるカルシウムフェライトスラグや含フェ
ライトセメントのような酸化鉄を多量に含む塩基性スラ
グや焼成物に対して極めて良好な耐食性を有する。この
ため、通常の煉瓦と同程度の気孔率を有するものは、従
来の酸化Mg−酸化Cr系耐火煉瓦では耐食性に問題の
ある用途、例えば酸化鉄に富む塩基性融体を扱う製錬炉
の内張用耐火煉瓦などとして特に有用である。また本発
明の耐火材は、焼結密度の高いものは熱伝導性及び耐熱
衝撃性に優れており、ルツボや炉心管または高温融体に
接触する各種センサーの保護管としても有用である。ま
た、従来の酸化Mg−酸化Cr系耐火煉瓦と異なり,公
害の原因となる酸化Crを含まないため、使用後の処理
にも特別な廃棄処理を必要とせず、環境保護の観点から
も有利である。
EFFECTS OF THE INVENTION The base-resistant refractory material of the present invention has extremely good corrosion resistance to basic slag and burned material containing a large amount of iron oxide such as calcium ferrite slag and ferrite-containing cement produced in copper smelting. Have. Therefore, a brick having a porosity similar to that of a normal brick is used in a conventional oxide Mg-Cr oxide refractory brick having a problem of corrosion resistance, for example, in a smelting furnace handling a basic melt rich in iron oxide. It is especially useful as a refractory brick for lining. Further, the refractory material of the present invention having a high sintering density is excellent in thermal conductivity and thermal shock resistance, and is useful as a protective tube for various sensors in contact with a crucible, a core tube or a high temperature melt. Further, unlike the conventional Mg oxide-Cr oxide refractory brick, since it does not contain Cr oxide that causes pollution, it does not require special disposal treatment after use, which is advantageous from the viewpoint of environmental protection. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の耐火材をスラグに浸漬した際の界面
付近における成分変化を説明する模式図。
FIG. 1 is a schematic diagram illustrating changes in components near the interface when the refractory material of the present invention is immersed in slag.

【図2】 実施例1における耐火材とスラグ界面付近に
おける成分変化を示す模式図。
FIG. 2 is a schematic diagram showing changes in components near the interface between the refractory material and the slag in Example 1.

【図3】 従来の酸化Mg−酸化Cr煉瓦の浸食状態を
示す模式図。
FIG. 3 is a schematic diagram showing an eroded state of a conventional Mg oxide-Cr oxide brick.

【符号の説明】[Explanation of symbols]

A−MgFe2 4 スピネル相 B−高融点複合酸化物相 C−耐火材 D−スラグ E−耐火材内部Internal A-MgFe 2 O 4 spinel phase B- refractory composite oxide phase C- refractory D- slag E- refractory material

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年3月7日[Submission date] March 7, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】[0007]

【発明の構成】本発明によれば以下の構成からなる耐塩
基性耐火材が提供される。 (1) 酸化マグネシウムを主成分とし、酸化鉄を含
み、さらに酸化チタン、酸化ニオブ、酸化ネオジム、酸
化ランタン、酸化マンガン、酸化ニッケルおよび酸化コ
バルトのうち1種または2種以上を含む複合酸化物層を
基体表面に有することを特徴とする耐塩基性耐火材。 (2) 酸化マグネシウムを主成分とする基体の表面に
上記複合酸化物層を有する上記(1)の耐塩基性耐火
材。 (3) 酸化マグネシウムを主成分とし、酸化チタンお
よび酸化鉄を含み、酸化チタンに対する酸化マグネシウ
ムの量が42重量%以上、酸化鉄に対する酸化マグネシ
ウムの量が8重量%以上である複合酸化物層を有する上
記(1)または(2)の耐塩基性耐火材。 (4) 酸化マグネシウムを主成分とし、酸化鉄を含
み、さらに酸化チタン、酸化ニオブ、酸化ネオジム、酸
化ランタン、酸化マンガン、酸化ニッケルおよび酸化コ
バルトのうち1種または2種以上と共に酸化アルミニウ
ムを1〜20重量%含む上記(1),(2)または
(3)の耐塩基性耐火材。
According to the present invention, there is provided a base-resistant refractory material having the following constitution. (1) A composite oxide layer containing magnesium oxide as a main component, iron oxide, and one or more of titanium oxide, niobium oxide, neodymium oxide, lanthanum oxide, manganese oxide, nickel oxide, and cobalt oxide. A base-resistant refractory material characterized by having: (2) The basic refractory material of (1), which has the composite oxide layer on the surface of a substrate containing magnesium oxide as a main component. (3) A composite oxide layer containing magnesium oxide as a main component, containing titanium oxide and iron oxide, and having an amount of magnesium oxide to titanium oxide of 42% by weight or more and an amount of magnesium oxide to iron oxide of 8% by weight or more. The base-resistant fireproof material according to (1) or (2) above. (4) Magnesium oxide as a main component, iron oxide, titanium oxide, niobium oxide, neodymium oxide, lanthanum oxide, manganese oxide, nickel oxide and cobalt oxide together with one or more aluminum oxides The base-resistant refractory material of the above (1), (2) or (3) containing 20% by weight.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】 上記複合酸化物におけるMgO、Fe
および第2成分の量比は第2成分の種類によって異
なるが、第2成分として酸化Tiを有するMgO−Ti
−Feの系は、この3元状態図において、T
iOに対するMgOの量が42wt%、Fe
対するMgOの量が8wt%の2点を結ぶMgO側の範
囲、即ち、酸化チタンに対する酸化マグネシウムの量が
42重量%以上の範囲、酸化鉄に対する酸化マグネシウ
ムの量が8重量%以上で約1750℃以上の融点を有す
る固溶体相の高融点複合酸化物(Magnesiowu
stite)が形成される。TiOおよびFe
の含有量がこの範囲を上回ると融点が低い酸化鉄の多い
スピネル相となるので好ましくない。
MgO and Fe 2 in the above composite oxide
The amount ratio of O 3 and the second component varies depending on the type of the second component, but MgO—Ti having Ti oxide as the second component.
The O 2 —Fe 2 O 3 system has a T
A range on the MgO side connecting two points where the amount of MgO with respect to iO 2 is 42 wt% and the amount of MgO with respect to Fe 2 O 3 is 8 wt%, that is, the amount of magnesium oxide relative to titanium oxide is 42 wt% or more, iron oxide The solid solution high-melting-point composite oxide having a melting point of about 1750 ° C. or more when the amount of magnesium oxide is 8% by weight or more (Magnesiowu).
state) is formed. TiO 2 and Fe 2 O 3
If the content of Cr exceeds this range, a spinel phase having a low melting point and a large amount of iron oxide is formed, which is not preferable.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】符号の説明[Correction target item name] Explanation of code

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【符号の説明】 A−高融点複合酸化物相 B−MgFeスピネル相 C−耐火材 D−スラグ E−耐火材内部[EXPLANATION OF SYMBOLS] A- internal refractory composite oxide phase B-MgFe 2 O 4 spinel phase C- refractory D- slag E- refractory material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化マグネシウムを主成分とし、酸化鉄
と共に、酸化チタン、酸化ニオブ、酸化ネオジム、酸化
ランタン、酸化マンガン、酸化ニッケルおよび酸化コバ
ルトのうち1種または2種以上を含む複合酸化物層を基
体表面に有することを特徴とする耐塩基性耐火材。
1. A composite oxide layer containing magnesium oxide as a main component, and one or more of titanium oxide, niobium oxide, neodymium oxide, lanthanum oxide, manganese oxide, nickel oxide and cobalt oxide together with iron oxide. A base-resistant refractory material characterized by having:
【請求項2】 酸化マグネシウムを主成分とする基体の
表面に上記複合酸化物層を有する請求項1の耐塩基性耐
火材。
2. The base-resistant refractory material according to claim 1, wherein the composite oxide layer is provided on the surface of a substrate containing magnesium oxide as a main component.
【請求項3】 酸化マグネシウムを主成分とする基体が
酸化アルミニウムを1〜20wt%含む請求項1の耐火
材。
3. The refractory material according to claim 1, wherein the substrate containing magnesium oxide as a main component contains 1 to 20 wt% of aluminum oxide.
JP5237437A 1993-02-09 1993-08-30 Refractory having basic resistance Pending JPH06293580A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5237437A JPH06293580A (en) 1993-02-09 1993-08-30 Refractory having basic resistance
CA002113396A CA2113396A1 (en) 1993-08-30 1994-01-13 Basicity-resistant refractory
DE19944402667 DE4402667A1 (en) 1993-08-30 1994-01-29 Heat-resistant material resistant to basicity
US08/631,959 US5840380A (en) 1993-08-30 1996-04-15 Basicity-Resistant Refractory

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4469293 1993-02-09
JP5-44692 1993-02-09
JP5237437A JPH06293580A (en) 1993-02-09 1993-08-30 Refractory having basic resistance

Publications (1)

Publication Number Publication Date
JPH06293580A true JPH06293580A (en) 1994-10-21

Family

ID=26384646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5237437A Pending JPH06293580A (en) 1993-02-09 1993-08-30 Refractory having basic resistance

Country Status (1)

Country Link
JP (1) JPH06293580A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020268A (en) * 2001-07-06 2003-01-24 Itochu Ceratech Corp Magnesia-cobalt oxide-titania-alumina based clinker and refractory obtained by using the clinker
JP2003089583A (en) * 2001-09-14 2003-03-28 Nippon Steel Corp Castable refractory material having excellent corrosion resistance
JP2003095729A (en) * 2001-09-25 2003-04-03 Itochu Ceratech Corp Calcia clinker, and refractory obtained by using the clinker
EP2216308A1 (en) * 2009-01-26 2010-08-11 General Electric Company Treated Refractory Material and Methods of Making

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020268A (en) * 2001-07-06 2003-01-24 Itochu Ceratech Corp Magnesia-cobalt oxide-titania-alumina based clinker and refractory obtained by using the clinker
JP2003089583A (en) * 2001-09-14 2003-03-28 Nippon Steel Corp Castable refractory material having excellent corrosion resistance
JP4555520B2 (en) * 2001-09-14 2010-10-06 新日本製鐵株式会社 Method for manufacturing amorphous refractories with excellent corrosion resistance
JP2003095729A (en) * 2001-09-25 2003-04-03 Itochu Ceratech Corp Calcia clinker, and refractory obtained by using the clinker
EP2216308A1 (en) * 2009-01-26 2010-08-11 General Electric Company Treated Refractory Material and Methods of Making

Similar Documents

Publication Publication Date Title
WO1995015932A1 (en) Chromium-free brick
US5595948A (en) Magnesia-titania refractory and method for manufacturing the same
JPS602269B2 (en) Method for manufacturing carbon-containing unfired refractories
JPH06293580A (en) Refractory having basic resistance
MX2009000957A (en) Baked refractory product.
JPH09100171A (en) Beta-alumina electrocast refractory
JPH06293556A (en) Base resistant refractory
US5840380A (en) Basicity-Resistant Refractory
JP3343297B2 (en) Fired refractory brick for lining
JP4328053B2 (en) Magnesia-spinel brick
EP3868731A1 (en) Grains for the production of a sintered refractory product, a batch for the production of a sintered refractory product, a process for the production of a sintered refractory product and a sintered refractory product
JP5436498B2 (en) Amorphous refractories for heat treatment furnace and lining structure of the furnace
JP2006513125A5 (en)
JPH0717758A (en) Magnesia-carbon brick for inner lining of vessel for molten metal
JP2951432B2 (en) Unfired refractory containing magnesia
JP4956044B2 (en) Magnesia brick without lime as a mineral phase and its production method
JPH07315913A (en) Magnesia refractory brick
JPH07172904A (en) Production of base resistant fireproof material
JP2999134B2 (en) Magnesia chrome refractory and cement rotary kiln
KR100355140B1 (en) A method of producing and using MgO-C based refractory bricks with a coated back side for prevention of oxidation
JPH06172020A (en) Magnesia component-containing refractory material
JP2000128622A (en) Magnesian refractory
JPH0867552A (en) Magnesia-titania refractory and its production
JP2000191364A (en) Shaped magnesia-chrome refractory
JPH03242369A (en) Magnesia-carbon brick

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010313