JPH07172904A - Production of base resistant fireproof material - Google Patents

Production of base resistant fireproof material

Info

Publication number
JPH07172904A
JPH07172904A JP6284458A JP28445894A JPH07172904A JP H07172904 A JPH07172904 A JP H07172904A JP 6284458 A JP6284458 A JP 6284458A JP 28445894 A JP28445894 A JP 28445894A JP H07172904 A JPH07172904 A JP H07172904A
Authority
JP
Japan
Prior art keywords
oxide
refractory material
titanium oxide
magnesium
magnesium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6284458A
Other languages
Japanese (ja)
Inventor
Kenichi Yamaguchi
健一 山口
Fumihiko Ogino
文彦 荻野
Etsuji Kimura
悦治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP6284458A priority Critical patent/JPH07172904A/en
Publication of JPH07172904A publication Critical patent/JPH07172904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To easily produce a fireproof material having excellent corrosion resistance against a basic slag and a baked product containing a large amount of iron oxide. CONSTITUTION:A raw material mixture containing 50-99.1wt.% magnesium oxide and 0.1-<50wt.% titanium oxide as a mixing ratio of magnesium oxide and titanium oxide, preferably 2-20wt.% titanium oxide, is heated and baked at 1400-1700 deg.C to obtain a base resistant and fireproof material consisting mainly of magnesium oxide and magnesium orthotitanate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械的強度はもとより
塩基性環境下においても優れた耐蝕性を有する耐火材の
製造方法に関する。本発明の製法で得た耐火材は、酸化
鉄を多量に含む塩基性融体や焼成物と接触する製錬炉や
キルンの耐火煉瓦あるいは炉芯管等の材料として特に有
用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a refractory material having not only mechanical strength but also excellent corrosion resistance in a basic environment. The refractory material obtained by the production method of the present invention is particularly useful as a material for refractory bricks or furnace core tubes of smelting furnaces and kilns that come into contact with a basic melt containing a large amount of iron oxide or a fired product.

【0002】[0002]

【従来技術とその問題点】金属製錬において使用される
各種の炉やセメント製造等に使用される各種キルンに
は、高温から炉材を保護するため炉壁に耐火材が内張り
されている。また、ルツボ、炉芯管あるいはマッフルの
ように内容物を高温で溶解するのに用いられる器具にも
耐火材が使用される。これらの耐火材は使用環境に応じ
て、SiO2あるいはZrO2 を主成分とする酸性耐火
材、Cr2 3 あるいはAl2 3 を主成分とする中性
耐火材、MgOあるいはCaOを主成分とする塩基性耐
火材が用いられており、例えば、塩基性の融体、焼成物
あるいはガス等に曝される環境では塩基性耐火材が用い
られる。
2. Description of the Related Art Various furnaces used in metal smelting and various kilns used for cement production have refractory materials lining the furnace walls to protect the furnace materials from high temperatures. Refractory materials are also used in crucibles, furnace tubes, or muffles, which are used to melt contents at high temperatures. These refractory materials are acidic refractory materials containing SiO 2 or ZrO 2 as a main component, neutral refractory materials containing Cr 2 O 3 or Al 2 O 3 as a main component, and MgO or CaO as a main component, depending on the use environment. The basic refractory material is used. For example, the basic refractory material is used in an environment where it is exposed to a basic melt, a fired product, a gas, or the like.

【0003】[0003]

【発明の解決課題】代表的な耐火材である耐火煉瓦のう
ち塩基性耐火煉瓦についてみると、従来の塩基性耐火煉
瓦は、酸化マグネシウム単味の他に、耐食性を高めるた
めに、酸化クロムを含有させたMgO−Cr2 3 系煉
瓦が多く用いられている。この煉瓦は耐火性および荷重
軟化点が高い利点を有するものの、成分中のクロムない
し酸化クロムが使用条件によっては公害の原因となる問
題があり、その代替品が求められている。また、該酸化
Mg−酸化Cr系煉瓦は、通常の塩基性融体に対しては
良好な耐食性を示すが、酸化鉄に富む塩基性高温融体、
例えば銅製錬において生じるカルシウムフェライトスラ
グなどに対しては耐食性に限界がある。これは上記耐火
材が酸化鉄に富む塩基性高温融体(以下、酸化鉄に富む
雰囲気と言う)に接触すると、耐火材の成分である酸化
マグネシウムおよび酸化クロムと雰囲気中の酸化Feが
反応してMgFe2 4 およびFeCr2 4 のスピネ
ルを形成するためであると考えられる。本発明は、従来
の酸化マグネシウムを主体とした耐火材における上記問
題点を解決した耐塩基性耐火材の製造方法を提供するこ
とを目的とする。
Among basic refractory bricks, which are typical refractory materials, regarding basic refractory bricks, conventional basic refractory bricks contain chromium oxide in order to improve corrosion resistance in addition to magnesium oxide alone. MgO-Cr 2 O 3 based bricks were contained are often used. Although this brick has the advantages of high fire resistance and high softening point under load, there is a problem that chromium or chromium oxide in the component causes pollution depending on the use conditions, and a substitute for it is required. Further, although the oxidized Mg-Cr oxide-based brick shows good corrosion resistance to an ordinary basic melt, a basic high-temperature melt rich in iron oxide,
For example, there is a limit to the corrosion resistance with respect to calcium ferrite slag and the like generated in copper smelting. This is because when the refractory material comes into contact with a basic high-temperature melt rich in iron oxide (hereinafter referred to as an iron oxide-rich atmosphere), magnesium oxide and chromium oxide, which are components of the refractory material, react with Fe oxide in the atmosphere. It is considered that this is because the spinel of MgFe 2 O 4 and FeCr 2 O 4 is formed. An object of the present invention is to provide a method for producing a base-resistant refractory material, which solves the above-mentioned problems in the conventional refractory material mainly containing magnesium oxide.

【0004】[0004]

【課題解決の手段】本発明は、酸化マグネシウムと酸化
チタンとを混合した原料粉末を焼成してオルトチタン酸
マグネシウム(Mg2 TiO4 )を生成させ、酸化マグ
ネシウムとこのMg2 TiO4 を主成分とすることによ
り従来の上記問題を解決した。すなわち、本発明によれ
ば以下の構成からなる耐塩基性耐火材の製造方法が提供
される。
According to the present invention, a raw material powder obtained by mixing magnesium oxide and titanium oxide is fired to generate magnesium orthotitanate (Mg 2 TiO 4 ), and magnesium oxide and this Mg 2 TiO 4 are used as main components. By solving the above, the above-mentioned conventional problems have been solved. That is, according to the present invention, there is provided a method for producing a base-resistant refractory material having the following constitution.

【0005】(1) 酸化マグネシウムと酸化チタンの
混合量比が酸化マグネシウム50〜99.1重量%、酸
化チタン0.1〜50重量%未満である原料混合物を、
1400〜1700℃に加熱焼成して酸化マグネシウム
およびオルトチタン酸マグネシウムを主体とする耐塩基
性耐火材を製造する方法。 (2) 酸化チタンの含有量が2〜20重量%である上
記(1) の製造方法。 (3) 粗粒ないし細粒の酸化マグネシウム粉末に微粒
の酸化チタン粉末を混合して加熱焼成する上記(1) また
は(2) の製造方法。
(1) A raw material mixture in which the mixing ratio of magnesium oxide and titanium oxide is 50 to 99.1% by weight of magnesium oxide and 0.1 to less than 50% by weight of titanium oxide,
A method for producing a base-resistant refractory material mainly composed of magnesium oxide and magnesium orthotitanate by heating and firing at 1400 to 1700 ° C. (2) The method according to (1) above, wherein the content of titanium oxide is 2 to 20% by weight. (3) The production method according to (1) or (2) above, in which coarse or fine magnesium oxide powder is mixed with fine titanium oxide powder and heated and baked.

【0006】[0006]

【具体的な説明】以下に本発明の製造方法を具体的に説
明する。なお説明中、%は特に断らない限り重量%であ
る。本発明に係る製造方法は、酸化マグネシウムと酸化
チタンの混合物を1400〜1700℃に加熱焼成して
酸化マグネシウムおよびオルトチタン酸マグネシウム
(Mg2 TiO4 )からなる耐火材を製造する方法であ
る。酸化マグネシウムと酸化チタンの混合割合は、酸化
マグネシウム50〜99.9%、酸化チタン50%未満
〜0.1%である。酸化チタンの含有量は酸化マグネシ
ウム量より少ないことが必要であり、酸化チタンの含有
量が酸化マグネシウムより多いとMg2TiO4 が生成
しない。好ましくは、酸化マグネシウム粉末80〜95
%、酸化チタン粉末20〜5%が適当である。酸化チタ
ン量が0.1%より少ないと塩基性融体に対して十分な
耐蝕性が得られず、この耐蝕性は後述する実施例に示す
ように酸化チタン量が20〜5%の範囲で最も良好であ
る。
[Detailed Description] The manufacturing method of the present invention will be specifically described below. In the description,% means% by weight unless otherwise specified. The production method according to the present invention is a method for producing a refractory material composed of magnesium oxide and magnesium orthotitanate (Mg 2 TiO 4 ) by heating and firing a mixture of magnesium oxide and titanium oxide at 1400 to 1700 ° C. The mixing ratio of magnesium oxide and titanium oxide is 50 to 99.9% of magnesium oxide and less than 50% to 0.1% of titanium oxide. It is necessary that the content of titanium oxide be smaller than the amount of magnesium oxide, and if the content of titanium oxide is larger than that of magnesium oxide, Mg 2 TiO 4 will not be produced. Preferably, magnesium oxide powder 80-95
%, Titanium oxide powder 20 to 5% are suitable. If the amount of titanium oxide is less than 0.1%, sufficient corrosion resistance cannot be obtained with respect to the basic melt, and this corrosion resistance is in the range of 20 to 5% titanium oxide, as shown in Examples described later. The best.

【0007】酸化マグネシウムと酸化チタンの混合割合
を図1の状態図に基づいて説明すると、図1は1500
〜1800℃におけるMgO−TiO2 系化合物の状態
図であり、図示するように、酸化マグネシウムに対して
酸化チタンの含有量が50%以下の範囲では、1500
〜1750℃の温度下でMg2 TiO4 で表されるオル
トチタン酸マグネシウムの鉱物相になるが、酸化チタン
の量が酸化マグネシウムよりも多いと、酸化チタン50
〜約65%の範囲ではMgOTiO2 で表されるメタチ
タン酸マグネシウムが生じ、また酸化チタン約65〜8
0%の範囲ではMgO・2TiO2 で表される二チタン
酸マグネシウムとなり、いずれの場合も本発明の目的で
あるオルトチタン酸マグネシウム(Mg2 TiO4 )が
得られない。以上のように、酸化チタンはその含有量が
酸化マグネシウムより少ないとオルトチタン酸マグネシ
ウム(Mg2 TiO4 )の鉱物相を形成し、酸化チタン
と反応しない残余の酸化マグネシウムはそのまま残り耐
火材の骨格となる。
The mixing ratio of magnesium oxide and titanium oxide will be described with reference to the state diagram of FIG.
FIG. 3 is a phase diagram of a MgO—TiO 2 system compound at up to 1800 ° C., and as shown in the figure, the content of titanium oxide is 50% or less with respect to magnesium oxide;
At a temperature of ˜1750 ° C., it becomes a mineral phase of magnesium orthotitanate represented by Mg 2 TiO 4 , but when the amount of titanium oxide is larger than that of magnesium oxide, titanium oxide 50
In the range of about 65% to about 65%, magnesium metatitanate represented by MgOTiO 2 is produced, and titanium oxide is about 65 to 8%.
In the range of 0%, magnesium dititanate represented by MgO.2TiO 2 is obtained, and magnesium orthotitanate (Mg 2 TiO 4 ) which is the object of the present invention cannot be obtained in any case. As described above, when the content of titanium oxide is less than that of magnesium oxide, it forms a mineral phase of magnesium orthotitanate (Mg 2 TiO 4 ), and the residual magnesium oxide that does not react with titanium oxide remains and the framework of the refractory material remains. Becomes

【0008】上記原料の焼成は1400〜1700℃で
行う。焼成温度が1400℃未満ではMg2 TiO4
生成が不十分になる場合がある。また1756℃以上で
は図示するようにMgOと液相の混合相となり、Mg2
TiO4 の鉱物相が得られない。原料は大気中で焼成す
れば良い。
The above raw materials are fired at 1400 to 1700 ° C. If the firing temperature is lower than 1400 ° C, the formation of Mg 2 TiO 4 may be insufficient. At 1756 ° C or higher, a mixed phase of MgO and a liquid phase is formed as shown in the figure, and Mg 2
The mineral phase of TiO 4 cannot be obtained. The raw material may be fired in the air.

【0009】酸化マグネシウムと酸化チタンの粒度は、
酸化マグネシウムに対して酸化チタンの粒径が小さいほ
うが好ましい。すなわち、粗粒ないし細粒の酸化マグネ
シウム粉末に微粒の酸化チタン粉末を混合して加熱焼成
するのが良い。この場合、酸化チタン粒子が主成分の酸
化マグネシウム粒子を取り囲み、比較的粒径の大きな酸
化マグネシウムの粒界にMg2 TiO4 の鉱物相が形成
される。
The particle size of magnesium oxide and titanium oxide is
It is preferable that the particle size of titanium oxide is smaller than that of magnesium oxide. That is, it is preferable to mix fine-grained titanium oxide powder with coarse-grained or fine-grained magnesium oxide powder and to heat and sinter. In this case, the titanium oxide particles surround the magnesium oxide particles as the main component, and a mineral phase of Mg 2 TiO 4 is formed at the grain boundary of magnesium oxide having a relatively large particle size.

【0010】一例として、酸化マグネシウム粉末を粗粒
(平均粒径2〜5mm)、中粒(平均粒径1mm前後)およ
び微粒(平均粒径0.1mm 以下)の割合がそれぞれ10〜
50%、10〜50%、10〜50%となるように混合
し、これに微粒の酸化チタン粉末を加えて均一に混合
し、圧縮成型した後、1400〜1700℃で5〜30
時間かけて焼成することにより、気孔率が12〜20%
の比較的低密度の耐火材を製造することができる。ま
た、酸化マグネシウム粉末(平均粒径100 μm 以下)に
粒径50μm 以下の酸化チタン粉末を加えて均一に混合
し、圧縮成型した後、1500〜1700℃で1〜10
時間かけて焼成することにより、緻密度90%以上(気
孔率10%以下)の比較的高密度の耐火材を製造すること
ができる。
As an example, magnesium oxide powder is used in which the proportions of coarse particles (average particle diameter of 2 to 5 mm), medium particles (average particle diameter of about 1 mm) and fine particles (average particle diameter of 0.1 mm or less) are 10 to 10, respectively.
50%, 10 to 50%, 10 to 50% are mixed, fine titanium oxide powder is added to this and uniformly mixed, and after compression molding, 5 to 30 at 1400 to 1700 ° C.
Porosity is 12 to 20% by firing over time
It is possible to manufacture a refractory material having a relatively low density. In addition, titanium oxide powder having a particle size of 50 μm or less is added to magnesium oxide powder (average particle size of 100 μm or less), uniformly mixed, and compression molded, and then 1 to 10 at 1500 to 1700 ° C.
By firing for a long time, a relatively high density refractory material having a density of 90% or more (porosity of 10% or less) can be manufactured.

【0011】低密度の上記耐火材は空隙が多く断熱効果
が高いため、塩基性融体を扱う製錬炉などの内張用耐火
煉瓦に適している。一方、高密度の上記耐火材は酸化M
g粒子と酸化Ti粒子が緻密に焼結しており、これらの
粒子を媒体とした固体熱伝導性が良く、良好な伝熱性を
有するので、塩基性原料を溶融するルツボや炉芯管の材
料として好適である。また、この高密度耐火材は気密性
が高く耐浸透性にも優れているため、従来、アルミナ管
等が使用されてきた高温融体用のセンサー等、例えば、
熱電対など高温の融体に接触する各種測定端末の保護管
として使用することもできる。
Since the refractory material having a low density has many voids and has a high heat insulating effect, it is suitable for a refractory brick for linings such as a smelting furnace handling a basic melt. On the other hand, the high-density refractory material is oxidized M
Since g particles and Ti oxide particles are densely sintered and have good solid thermal conductivity with these particles as a medium and have good heat transfer properties, a material for crucible or furnace core tube that melts a basic raw material. Is suitable as Further, since this high-density refractory material has high airtightness and excellent permeation resistance, conventionally, a sensor for a high-temperature melt in which an alumina tube or the like has been used, for example,
It can also be used as a protective tube for various measuring terminals that come into contact with a high-temperature melt such as a thermocouple.

【0012】本発明の製造方法によって得られた耐火材
は酸化鉄に富む塩基性雰囲気に対して優れた耐食性を有
する。その理由は、該耐火材が酸化鉄に富む雰囲気に接
触した場合、耐火材の酸化マグネシウムおよびMg2
iO4 鉱物相が雰囲気中の酸化鉄と反応してMgO−T
iO2 −Fe2 3 の3成分系の固溶体相の複合酸化物
(Mg2 TiO 4 −MgFe2 O4 )を形成し、これが耐火材の
表面を覆って耐火材の内部に塩基性融体が浸入するのを
阻止するためであると考えられる。すなわち、該MgO
およびMg2 TiO4 鉱物相からなる耐火材がカルシウ
ムフェライトスラグなどの酸化鉄に富む高温の塩基性融
体に接触した場合に、MgO粒子およびMg2 TiO4
鉱物相の間隙を通じて塩基性融体が耐火材の表面層に浸
入し、MgOおよびMg2 TiO4 と反応して、MgO
−TiO2 −Fe2 3 の3成分系の複合酸化物が形成
される。該複合酸化物は図2のMgO−TiO2 −Fe
23 系3元状態図において、TiO2 に対するMgO
量が約42%、Fe2 3に対するMgO量が約8%の
2点を結ぶMgO側の範囲を占める約1750℃以上の
融点を有する固溶体相の高融点複合酸化物(Magnesiowus
tite )である。この複合酸化物が表面層に形成され、耐
火材の内部に塩基性融体が浸入するのを阻止する。しか
も、この複合酸化物は従来のスピネル相と異なり、熱膨
張が小さいので耐火材の強度劣化を招かず、また融体中
のアルカリ成分によって浸蝕され難いので優れた耐食性
を発揮する。
The refractory material obtained by the manufacturing method of the present invention has excellent corrosion resistance to a basic atmosphere rich in iron oxide. The reason is that when the refractory material comes into contact with an atmosphere rich in iron oxide, the refractory materials magnesium oxide and Mg 2 T
The iO 4 mineral phase reacts with iron oxide in the atmosphere to react with MgO-T
A complex oxide (Mg 2 TiO 4 —MgFe 2 O 4 ) of a solid solution phase of ternary system of iO 2 —Fe 2 O 3 (Mg 2 TiO 4 —MgFe 2 O 4 ) is formed, which covers the surface of the refractory material and forms a basic melt inside the refractory material. It is believed that this is to prevent the invasion of That is, the MgO
And a Mg 2 TiO 4 mineral refractory material in contact with a high temperature iron oxide-rich basic melt such as calcium ferrite slag, MgO particles and Mg 2 TiO 4
The basic melt penetrates into the surface layer of the refractory material through the interstices of the mineral phase and reacts with MgO and Mg 2 TiO 4 to form MgO.
A ternary composite oxide of —TiO 2 —Fe 2 O 3 is formed. The composite oxide is MgO-TiO 2 -Fe in FIG
In the 2 O 3 system ternary phase diagram, MgO with respect to TiO 2
High melting point complex oxide of solid solution phase having a melting point of about 1750 ° C. or higher occupying the range on the MgO side connecting the two points of about 42% in amount and about 8% in amount of MgO to Fe 2 O 3 (Magnesiowus
tite). This complex oxide is formed in the surface layer and prevents the basic melt from penetrating into the refractory material. In addition, unlike the conventional spinel phase, this composite oxide does not cause strength deterioration of the refractory material because it has a small thermal expansion, and exhibits excellent corrosion resistance because it is difficult to be corroded by the alkaline component in the melt.

【0013】なお、本発明の製造方法においては、酸化
マグネシウムと酸化チタンを混合した原料粉末に更に酸
化アルミニウムなどの副成分を少量添加しても良い。添
加量は酸化アルミニウムの場合、1〜20%、好ましく
は5〜10%が適当である。酸化アルミニウムを添加す
ることにより緻密性が増し、耐食性が一層向上する。
In the manufacturing method of the present invention, a small amount of a subcomponent such as aluminum oxide may be added to the raw material powder obtained by mixing magnesium oxide and titanium oxide. In the case of aluminum oxide, the addition amount is 1 to 20%, preferably 5 to 10%. The addition of aluminum oxide increases the denseness and further improves the corrosion resistance.

【0014】[0014]

【実施例および比較例】以下、本発明の実施例を比較例
と共に示す。なお本実施例は例示であり本発明の範囲を
限定するものではない。
EXAMPLES AND COMPARATIVE EXAMPLES Examples of the present invention are shown below together with comparative examples. It should be noted that the present embodiment is an example and does not limit the scope of the present invention.

【0015】実施例1 酸化マグネシウム粉末(粒度40〜200 μm )80%と酸
化チタン粉末(粒度40〜200 μm )20%の混合原料を
加圧成形(圧力1500kg/cm2 )し、大気中1500℃で
48時間かけて焼成し、1片約7gの耐火材試料を製造
した。該耐火材の見掛比重は3.07g/cm3 、見掛気孔
率15.43%であり良好な焼結性を有するものであっ
た。上記耐火材試料を、温度1300℃のカルシウムフ
ェライトスラグ(銅製錬スラグ:成分%、Fe2 O3 : 7
0、CaO:15、Cu2 O:15)中に浸漬し、48時間放置して
その耐食性を調べた。その結果、耐火材の外見に大きな
変化は認められなかった。また、耐食性をより詳細に検
討するため、スラグ浸漬中、一定時間毎にスラグを鋼鉄
製ロッドで採取し、スラグ中に溶出したTiO2 とMg
Oの量を測定した。図3(A)(B)はその結果であり、図示
するように、上記成分のスラグ中への溶出は極めて低水
準であり、時間の経過によっても大きな変化はなかっ
た。
Example 1 A mixed raw material of 80% of magnesium oxide powder (particle size 40 to 200 μm) and 20% of titanium oxide powder (particle size 40 to 200 μm) was pressure-molded (pressure 1500 kg / cm 2 ) and left in the atmosphere at 1500 Firing at 48 ° C. for 48 hours produced a refractory material sample of about 7 g per piece. The refractory material had an apparent specific gravity of 3.07 g / cm 3 and an apparent porosity of 15.43%, and had good sinterability. The above refractory material sample was subjected to calcium ferrite slag (copper smelting slag: component%, Fe 2 O 3 : 7) at a temperature of 1300 ° C.
0, CaO: 15, Cu 2 O: 15) and left for 48 hours to examine its corrosion resistance. As a result, no significant change was observed in the appearance of the refractory material. In addition, in order to study the corrosion resistance in more detail, during immersion of the slag, the slag was collected with a steel rod at regular intervals, and TiO 2 and Mg eluted in the slag were collected.
The amount of O was measured. The results are shown in FIGS. 3 (A) and 3 (B). As shown in the figure, the elution of the above components into the slag was at an extremely low level, and there was no significant change over time.

【0016】スラグ浸漬後の上記耐火材の組織状態を図
4に示す。同図は該耐火材のスラグ接触部分の顕微鏡写
真であり、各鉱物相はEPMA分析によりその成分を確
認した。図示するように、耐火材30はMgO粒子3
1、その間隙に存在するMg2TiO4 鉱物相32によ
って形成されている。カルシウムフェライトスラグ33
と耐火材30の接触部分には2つの鉱物相が観察され、
界面の耐火材側の相35はMg2 TiO4 −MgFe2
4 からなる固溶体相(MgO:39.27 %, TiO2 :35.40
%, Fe2 O 3 :18.86%, Cu2 O:1.19%, CaO:0.16%)で
あり、スラグ側の相34はMgFe2 4 のスピネル相
である。上記固溶体相35は融点が約1900℃の複合
金属酸化物相であり、耐火材の表面層がこの複合酸化物
相35によって覆われており、従ってこれより内側には
スラグが浸透していない。なお図中、斜線部は試料調製
時に空隙に充填した樹脂部分である。
The structure of the refractory material after immersion in slag is shown in FIG. The figure is a micrograph of the slag contact portion of the refractory material, and the components of each mineral phase were confirmed by EPMA analysis. As shown, the refractory material 30 is made of MgO particles 3
1. It is formed by the Mg 2 TiO 4 mineral phase 32 existing in the gap. Calcium ferrite slag 33
Two mineral phases were observed in the contact area between the and refractory material 30,
The phase 35 on the refractory side of the interface is Mg 2 TiO 4 —MgFe 2
Solid solution phase consisting of O 4 (MgO: 39.27%, TiO 2 : 35.40
%, Fe 2 O 3 : 18.86%, Cu 2 O: 1.19%, CaO: 0.16%), and the slag-side phase 34 is a MgFe 2 O 4 spinel phase. The solid solution phase 35 is a complex metal oxide phase having a melting point of about 1900 ° C., and the surface layer of the refractory material is covered with this complex oxide phase 35, so that no slag penetrates inside. In the figure, the shaded area is the resin portion filled in the voids during sample preparation.

【0017】実施例2および比較例 酸化マグネシウムと酸化チタンの混合割合および焼成温
度を表1に示す範囲に設定した他は実施例1と同様の条
件下で耐火材試料を製造した。この耐火材について耐ス
ポーリング性、耐クリープ性および塩基性スラグに対す
る耐蝕性を調べた。また比較のため、MgO・2TiO
2 (二チタン酸マグネシウム)を含有させた耐火材につ
いて同様の試験を行った。この結果を表1に示した。な
お、各試験は以下の方法により行なった。 (1)耐スポーリング性試験 並型煉瓦(230×114 ×65 mm)に形成した試験片を用い、
その長手方向の 1/3を試験炉の炉内に突出させ、中央 1
/3が炉の扉の煉瓦枠に挟まれ、残り 1/3が炉外の外気に
曝されるように設置し、30分間、1400℃の炉内に
保持した後に炉外に取り出して30分間空冷する。この
操作を繰り返し、試験片の一部が剥落した時点をスポー
リング回数とした。
Example 2 and Comparative Example A refractory material sample was manufactured under the same conditions as in Example 1 except that the mixing ratio of magnesium oxide and titanium oxide and the firing temperature were set within the ranges shown in Table 1. This refractory material was examined for spalling resistance, creep resistance and corrosion resistance against basic slag. For comparison, MgO · 2TiO
A similar test was performed on a refractory material containing 2 (magnesium dititanate). The results are shown in Table 1. Each test was conducted by the following method. (1) Spalling resistance test Using a test piece formed on a normal brick (230 × 114 × 65 mm),
One-third of its longitudinal direction is projected into the furnace of the test furnace and the center 1
Installed so that / 3 is sandwiched between the bricks of the furnace door and the remaining 1/3 is exposed to the outside air outside the furnace, and it is kept for 30 minutes in the furnace at 1400 ° C and then taken out of the furnace for 30 minutes. Air cool. This operation was repeated and the time when a part of the test piece came off was defined as the number of spalling.

【0018】(2)耐クリープ性試験 円柱状試験片 (50mmφ, 50mmH)に10 kg/cm2 の圧縮力
を加え、1250℃で50時間保持し、その圧縮率を測
量した。 (3)耐スラグ浸蝕性試験 ロータリ浸食試験機を用い、台柱状煉瓦(底面 100×16
0mm 、高さ50mm、上面40×160mm )の試験片を回転炉に
装着し、回転炉を3rpm で回転しながら、炉の片側に装
着されている酸素・アセチレンバーナーにより炉内を酸
化性雰囲気、1300℃に加熱し、ここにフェライトス
ラグ (Fe酸化物:62wt% 、Ca酸化物:16wt% 、Cu酸化
物:17wt%)を1kg投入して1時間保持した後、炉を傾転
して上記スラグを排出し、新たに500gの上記スラグ
を投入し、この操作を1時間毎に繰り返して、合計12
時間継続し、その後、試料を切断し、顕微鏡観察により
スラグによる浸蝕深さおよび浸透深さを調べた。浸蝕深
さは試験片の炉内端部について、試験前の煉瓦厚みと試
験後の煉瓦厚みを比較し、その減少量によって示し、ま
た浸透深さは溶体接触面から外周に向かう変質層の厚さ
によって示した。
(2) Creep resistance test A compressive force of 10 kg / cm 2 was applied to a cylindrical test piece (50 mmφ, 50 mmH), the test piece was held at 1250 ° C. for 50 hours, and the compression rate was measured. (3) Slag erosion resistance test Using a rotary erosion tester, columnar bricks (bottom 100 × 16
A test piece of 0 mm in height, 50 mm in height, and 40 × 160 mm in the upper surface was mounted in a rotary furnace. While rotating the rotary furnace at 3 rpm, an oxygen / acetylene burner mounted on one side of the furnace was used to oxidize the atmosphere in the furnace. After heating to 1300 ° C, 1 kg of ferrite slag (Fe oxide: 62 wt%, Ca oxide: 16 wt%, Cu oxide: 17 wt%) was charged and held for 1 hour, then the furnace was tilted and the above The slag is discharged, 500 g of the above slag is newly charged, and this operation is repeated every one hour, for a total of 12
After continuing for a period of time, the sample was cut, and the erosion depth and penetration depth by slag were examined by microscopic observation. The erosion depth is shown by comparing the brick thickness before the test with the brick thickness after the test at the furnace inner edge of the test piece and showing it by the reduction amount.The penetration depth is the thickness of the altered layer from the solution contact surface to the outer periphery. Showed by

【0019】[0019]

【表1】 [Table 1]

【0020】表1に示すように、酸化チタンの含有量が
0.1〜50%未満、好ましくは2〜20%の本実施例
の試料は塩基性環境下における耐スポール性に優れ、し
かも機械的強度も大きい。一方、比較試料(No.1)は塩基
性環境下の耐スポール性が大幅に低く、また、MgO・
2TiO2 を含有する比較例の耐火材(No.9)は塩基性環
境下における耐スポール性は優れているものの耐蝕性は
本実施例の試料よりも低い。
As shown in Table 1, the sample of this example having a titanium oxide content of 0.1 to less than 50%, preferably 2 to 20%, is excellent in spall resistance in a basic environment and has a mechanical property. The target strength is also large. On the other hand, the comparative sample (No. 1) has a significantly low spall resistance in a basic environment, and the MgO.
The refractory material (No. 9) of the comparative example containing 2TiO 2 has excellent spall resistance in a basic environment, but its corrosion resistance is lower than that of the sample of this example.

【0021】本実施例の耐火材(No.3)について、その
組織状態を表わす顕微鏡写真を図5(A)に示した。ま
た同一試料について、スラグ浸漬後の組織状態を表す顕
微鏡写真を図5(B)に示した。図示する各鉱物相はE
PMA分析によりその成分を確認した。同図(A)に示
すように、耐火材の内部はMgO相に接触してMg2
iO4 相が存在し、両相によって耐火材が形成されてい
ることがわかる。なお両相の間隙に存在するのは試料調
製のために充填した樹脂である。この耐火材をカルシウ
ムフェライトスラグに浸漬すると、その組織状態は同図
(B)に示すように、耐火材とスラグとの界面にはMg
2 TiO4 −MgFe24 の複合酸化物相が形成さ
れ、これが耐火材表面を覆い、スラグが耐火材内部に侵
入するのを阻止しており、従って耐火材の内部はスラグ
浸漬前と同様にMgO相とMg2 TiO4 相が維持され
ている。
FIG. 5 (A) is a micrograph showing the structure of the refractory material (No. 3) of this example. Further, FIG. 5 (B) is a micrograph showing the microstructure of the same sample after immersion in slag. Each mineral phase shown is E
The component was confirmed by PMA analysis. As shown in FIG. 3A, the inside of the refractory material comes into contact with the MgO phase and Mg 2 T
It can be seen that the iO 4 phase exists and the refractory material is formed by both phases. It should be noted that what is present in the gap between both phases is the resin filled for sample preparation. When this refractory material is dipped in calcium ferrite slag, the structure of the refractory material becomes Mg at the interface between the refractory material and the slag as shown in FIG.
A complex oxide phase of 2 TiO 4 -MgFe 2 O 4 is formed, which covers the surface of the refractory material and prevents the slag from entering the refractory material. Therefore, the interior of the refractory material is the same as before the slag immersion. In addition, the MgO phase and the Mg 2 TiO 4 phase are maintained.

【0022】[0022]

【発明の効果】本発明の製造方法によれば、例えば、銅
製錬において生じるカルシウムフェライトスラグや含フ
ェライトセメントのような酸化鉄を多量に含む塩基性ス
ラグや焼成物に対して極めて良好な耐食性を有する耐火
材を容易に製造することができる。この耐火材は銅製錬
炉の内張用耐火煉瓦として最適であり、また焼結密度の
高いものは熱伝導性が良く、また気密性が高いので耐浸
透性に優れているのでルツボや炉心管または高温融体に
接触する各種センサーの保護管としても有用である。ま
た公害の原因となる酸化クロムを含まないため、使用後
の処理にも特別な廃棄処理を必要とせず、環境保護の観
点からも有利である。
EFFECTS OF THE INVENTION According to the production method of the present invention, extremely good corrosion resistance is obtained against basic slag containing a large amount of iron oxide such as calcium ferrite slag and ferrite-containing cement produced in copper smelting and fired products. The refractory material that it has can be easily manufactured. This refractory material is most suitable as a refractory brick for lining of a copper smelting furnace, and a material with high sintering density has good thermal conductivity and high airtightness, so it has excellent penetration resistance, so it can be used in crucibles and core tubes. It is also useful as a protective tube for various sensors that come into contact with the high temperature melt. Further, since it does not contain chromium oxide that causes pollution, it does not require special disposal treatment after use, which is advantageous from the viewpoint of environmental protection.

【図面の簡単な説明】[Brief description of drawings]

【図1】 MgO−TiO2 系状態図。FIG. 1 is a phase diagram of MgO—TiO 2 system.

【図2】 MgO−TiO2 −Fe2 3 系3元状態
図。
FIG. 2 is a ternary phase diagram of a MgO—TiO 2 —Fe 2 O 3 system.

【図3】 実施例1におけるTiO2 とMgOのスラグ
中への溶出量の経時変化を示すグラフであり、図(A)
はTiO2 溶出量、図(B)はMgO溶出量を示す。
FIG. 3 is a graph showing the change over time in the elution amount of TiO 2 and MgO in slag in Example 1. FIG.
Indicates the elution amount of TiO 2 and FIG. (B) indicates the elution amount of MgO.

【図4】 実施例1の耐火材のスラグ接触部分の組織状
態を示す顕微鏡写真。
FIG. 4 is a micrograph showing a structural state of a slag contact portion of the refractory material of Example 1.

【図5】 (A)は実施例2の耐火材の組織状態を示す
顕微鏡写真(倍率40)であり、(B)は同試料のスラグ
浸漬後の組織状態を示す顕微鏡写真(倍率40)である。
5 (A) is a micrograph (magnification 40) showing the microstructure of the refractory material of Example 2, and FIG. 5 (B) is a micrograph (magnification 40) showing the microstructure of the same sample after immersion in slag. is there.

【符号の説明】[Explanation of symbols]

30−耐火材、 31−MgO粒子、32−Mg2 Ti
4 鉱物相、 33−スラグ、34−MgFe2 4
ピネル相、 35−高融点複合酸化物相
30-Refractory material, 31-MgO particles, 32-Mg 2 Ti
O 4 mineral phase, 33-slag, 34-MgFe 2 O 4 spinel phase, 35-high melting point complex oxide phase

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化マグネシウムと酸化チタンの混合量
比が酸化マグネシウム50〜99.1重量%、酸化チタ
ン0.1〜50重量%未満である原料混合物を、140
0〜1700℃に加熱焼成して酸化マグネシウムおよび
オルトチタン酸マグネシウムを主体とする耐塩基性耐火
材を製造する方法。
1. A raw material mixture having a mixing ratio of magnesium oxide and titanium oxide of 50 to 99.1% by weight of magnesium oxide and 0.1 to less than 50% by weight of titanium oxide,
A method for producing a base-resistant refractory material mainly composed of magnesium oxide and magnesium orthotitanate by heating and firing at 0 to 1700 ° C.
【請求項2】 酸化チタンの含有量が2〜20重量%で
ある請求項1の製造方法。
2. The method according to claim 1, wherein the content of titanium oxide is 2 to 20% by weight.
【請求項3】 粗粒ないし細粒の酸化マグネシウム粉末
に微粒の酸化チタン粉末を混合して加熱焼成する請求項
1または2の製造方法。
3. The production method according to claim 1, wherein coarse or fine magnesium oxide powder is mixed with fine titanium oxide powder and the mixture is heated and baked.
JP6284458A 1993-02-09 1994-10-24 Production of base resistant fireproof material Pending JPH07172904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6284458A JPH07172904A (en) 1993-02-09 1994-10-24 Production of base resistant fireproof material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4469293 1993-02-09
JP5-44692 1993-02-09
JP6284458A JPH07172904A (en) 1993-02-09 1994-10-24 Production of base resistant fireproof material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5237436A Division JPH06293556A (en) 1993-02-09 1993-08-30 Base resistant refractory

Publications (1)

Publication Number Publication Date
JPH07172904A true JPH07172904A (en) 1995-07-11

Family

ID=26384647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6284458A Pending JPH07172904A (en) 1993-02-09 1994-10-24 Production of base resistant fireproof material

Country Status (1)

Country Link
JP (1) JPH07172904A (en)

Similar Documents

Publication Publication Date Title
Kusiorowski et al. Influence of zirconia addition on the properties of magnesia refractories
WO1995015932A1 (en) Chromium-free brick
US5595948A (en) Magnesia-titania refractory and method for manufacturing the same
Ewais et al. Effect of hercynite spinel on the technological properties of MCZ products used for lining cement rotary kilns
JPH07172904A (en) Production of base resistant fireproof material
JP4328053B2 (en) Magnesia-spinel brick
JPH06293556A (en) Base resistant refractory
US5840380A (en) Basicity-Resistant Refractory
JP4956044B2 (en) Magnesia brick without lime as a mineral phase and its production method
JPH06293580A (en) Refractory having basic resistance
JPH07315913A (en) Magnesia refractory brick
JPH0867552A (en) Magnesia-titania refractory and its production
JPH07291715A (en) Spinel refractory brick
JP2000263013A (en) Method for using aluminum dross residual ash, and alumina spinel castable refractory material
Addi et al. Degradation of Alumina and Magnesia Chrome refractory bricks in Portland cement kiln–Corrected version
JPH07291716A (en) Basic refractory
JPH04342454A (en) Magnesia-containing unburned refractory
JP2948020B2 (en) Carbon containing refractories
JPH1029852A (en) Low calcium oxide magnesia-titania refractory material
JP2000191364A (en) Shaped magnesia-chrome refractory
JP4881101B2 (en) Basic brick manufacturing method
JPH0510299B2 (en)
JPH0375275A (en) Magnesian refractory mortar
Prigent Study of impregnation-corrosion of Al 2 O 3-MgO refractory castables by secondary metallurgy steel ladle slags.
JP2765458B2 (en) Magnesia-carbon refractories

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001226