JP4555520B2 - Method for manufacturing amorphous refractories with excellent corrosion resistance - Google Patents

Method for manufacturing amorphous refractories with excellent corrosion resistance Download PDF

Info

Publication number
JP4555520B2
JP4555520B2 JP2001279540A JP2001279540A JP4555520B2 JP 4555520 B2 JP4555520 B2 JP 4555520B2 JP 2001279540 A JP2001279540 A JP 2001279540A JP 2001279540 A JP2001279540 A JP 2001279540A JP 4555520 B2 JP4555520 B2 JP 4555520B2
Authority
JP
Japan
Prior art keywords
refractory
mass
powder
corrosion resistance
nio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001279540A
Other languages
Japanese (ja)
Other versions
JP2003089583A (en
Inventor
泰次郎 松井
浩志 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001279540A priority Critical patent/JP4555520B2/en
Publication of JP2003089583A publication Critical patent/JP2003089583A/en
Application granted granted Critical
Publication of JP4555520B2 publication Critical patent/JP4555520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、クロム酸化物を含有する高耐食性の不定形耐火物等のように、環境への影響から廃棄の制約を受けることが無く、産業廃棄物であるAl23粉に含まれるNiOを使用した耐食性に優れた不定形耐火物の製造方法に関する。
【0002】
【従来の技術】
従来、転炉や電気炉等の精錬炉に内張りされる耐火煉瓦や不定形耐火物(キャスタブル)等の耐火物は、溶鉄や溶鋼の精錬過程で、高温のスラグや溶鉄や溶鋼に接触し、浸食や磨耗による損耗が激しく、高耐食性の耐火物の実用化が推進されている。
この高耐食性を備えた耐火物として、マグクロ煉瓦が広く使用されており、転炉や電気炉等の精錬炉の長寿命化が達成されている。しかし、精錬炉の内張り耐火物がある程度損耗した際、耐火物の張り替えが必要となる。
この張り替え時に発生する使用済の廃棄耐火物は、クロム酸化物(Cr23 )を含むため、埋め立て等を行う場合に環境上の制約を受ける等の問題がある。
この対策として、特開平10−203862号公報に記載されているように、CaOを1.5〜3.0質量%、Fe23 を0.5質量%未満含むマゲネシアクリンカーと、SiO2 を0.8質量%未満、CaOを0.8〜1.6質量%、Cr23 を15〜25質量%を含む煉瓦屑を配合して焼成したマグクロ煉瓦が使用されており、耐食性や耐スポーリング性を高め、このマグクロ煉瓦を内張りした精錬炉の寿命を延長することによって、使用するマグクロ煉瓦の量を少なくすることが行われている。
更に、特開平6−293580号公報に記載されているように、酸化マグネシウム(MgO)を主成分とする耐火原料に、酸化鉄(Fe23 )と酸化チタン(TiO2 )、酸化ニッケル(NiO)を添加して耐火煉瓦を製造し、Cr23 による環境上の問題を解消した高耐食性の耐火煉瓦を用いることが行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、特開平10−203862号公報に記載されたマグクロ煉瓦では、大幅な長寿命化が困難であり、耐火煉瓦の張り替えを解消することができず、使用後に廃棄耐火物が発生する。しかも、この廃棄耐火物はCr23を15〜25質量%含むため、埋め立て等に廃棄する際、環境上の問題がある。
また、特開平6−293580号公報に記載された耐火煉瓦は、酸化チタンや酸化ニッケルの1種以上を添加するため、例えば酸化ニッケルを微細な粒に加工してから酸化マグネシウムを主成分とする耐火原料に添加する必要があり、加工に手間を要し、微細な粒度にするのに限界がある。
に、酸化ニッケルの購入と破砕処理等の処理費用により、製造コストが高くなる等の問題がある。
不定形耐火物の場合においても、Cr23を含有した不定形耐火物は、環境上の制約から使用することができず、しかも、例え使用したとしても耐火煉瓦の場合と同様に微細な粒に加工する等の手間を要し、製造コストが高くなる等の課題を回避することができない。
【0004】
本発明はかかる事情に鑑みてなされたもので、酸化ニッケルの購入や破砕処理の手間を無くし、安価な酸化ニッケルを使用し、耐食性や耐スポーリング性等の品質を高め、製造コストを低減することができる耐食性に優れた不定形耐火物の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う本発明に係る耐食性に優れた不定形耐火物の製造方法は、NiOを2〜6質量%含むAl23粉を耐火材料に添加している耐食性に優れた不定形耐火物の製造方法であって、前記Al 2 3 粉は、アルミ合金の洗浄廃液を中和処理して生成したNiとAlの水酸化物を含む沈殿物を、500℃以上に加熱し乾燥して形成される
この不定形耐火物は、添加したNiOを耐火材料に均一に混合することができ、しかも、耐火材料中に均一に分散したNiOがAl23と結合したスピネル化合物、あるいはNiOとAl23、酸化鉄等が結合した複合化合物を形成し、高耐食性や耐スポーリング性等を高めることができる。
NiOの含有量が2質量%未満になると、配合した耐火材料中のNiO濃度が低くなり、スピネル化合物を十分に形成できずに耐食性が低下する。一方、NiOの含有量の上限を6質量%としたのは、アルミ合金の洗浄廃液から回収されたAl23粉のNiO濃度に制限があり、これを超えるNiO濃度にすることができないからである。
【0006】
ここで、前記Al23粉は、アルミ合金の洗浄廃液を中和処理して生成したNiとAlの水酸化物を含む沈殿物を乾燥して形成され
これにより、産業廃棄物であるアルミ合金を酸洗した際の洗浄廃液から回収したNiOを含むAl23粉を有効活用することができる。
しかも、洗浄廃液から回収したAl23粉は、100μm以下の微粉であり、耐火材料内への分散性が良好であり、加熱によってAl23粉に含まれるNiOとの反応が促進され、スピネル化合物化を容易に行うことができる。
【0007】
更に、前記沈殿物の乾燥は、500℃以上に加熱することにより行う
これにより、耐火材料内への分散性をより良好にでき、NiOとの反応によるスピネル化合物化を容易し、しかも、緻密なスピネル化合物を形成でき、不定形耐火物の耐食性を向上することができる。
沈殿物の乾燥の温度が500℃未満になると、沈殿物に含まれる水分の除去が不十分になり、不定型耐火物の強度や耐溶損性が低下する。
【0008】
また、前記Al23 粉を添加する前の耐火材料は、Al23 を60質量%以上含んでいることが好ましい。
これにより、耐火材料の組成が添加するAl23 粉の組成と近くなるので、Al23 粉に含まれる80〜95質量%のAl23 分を耐火材料の部分に使用でき、しかも、このAl23 粉を微粉として活用でき、不定形耐火物の製造コストを低減することができる。
Al23 粉を添加する前の耐火材料に含まれるAl23 の量が60質量%より少ないと、Al23 粉を添加した際の不定形耐火物中のAl23 濃度が低下し、不定形耐火物の耐溶損性が低下する。
【0009】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1は本発明の一実施の形態に係る耐食性に優れた不定形耐火物の製造に用いる不定形耐火物製造装置の説明図、図2は不定形耐火物中のNiO量と浸食厚みの関係を表すグラフ、図3は不定形耐火物中のNiO量と強度の関係を表すグラフである。
図1に示すように、本発明の一実施の形態に係る耐食性に優れた不定形耐火物の製造に用いられる不定形耐火物製造装置10は、耐火材料の一例であるアルミナ耐火材料を貯蔵する耐火材料ホッパ11と、ニッケルを含むAl23 粉(アルミナ粉)を貯蔵するホッパ12と、耐火材料ホッパ11から切り出されたアルミナ耐火材料とホッパ12から切り出されたニッケルを含むAl23 粉を搬送して混練機13に供給するベルトコンベア14を有している。
混練機13には、攪拌機15と、混練機13内に水を供給する給水管16と、混練物を型枠17に流し込む開閉弁18を設けたシュート19を備えている。
【0010】
次に、本発明の一実施の形態に係る耐食性に優れた不定形耐火物について不定形耐火物製造装置10を用いて説明する。
ホッパ12には、アルミ合金を酸洗して生成した酸洗廃液を中和処理して沈殿物を回収し、この沈殿物を500℃以上の温度で加熱乾燥して、結晶水を除去して形成したAl23 粉が貯蔵されている。このAl23 粉は、表1に示すように、NiOを2.0〜6.0質量%(本実施の形態では4.0質量%のものを使用)、Al23 を80.0〜90.0質量%含んでいる。
【0011】
【表1】

Figure 0004555520
【0012】
耐火材料ホッパ11には、表2に示すように、その最大粒径が5mmで、粒度が0.075mm以下のものを30質量%含み、その化学成分としては、Al23 を60質量%以上含む(本実施の形態ではAl23 を99質量%含むものを使用)アルミナ耐火材料が貯蔵されている。
【0013】
【表2】
Figure 0004555520
【0014】
耐火材料ホッパ11からアルミナ耐火材料を、更に、ホッパ12からAl23 粉をそれぞれ半々ずつ切り出し、その主成分として、Al23 を92.25質量%、NiOを2質量%含有する混練物をベルトコンベア14で搬送して混練機13に入れた。
そして、攪拌機15を駆動して材料を攪拌しながら混合し、この混合物に、外分で、給水管16から水を6質量%となるように給水し、更に、アルミナセメント、リン酸塩等の硬化剤とヘキサメタリン酸ソーダの分散剤を添加して5分間の混練を行なった。
そして、混練物を混練機13に取付けた開閉弁18を開いてシュート19から型枠17内に流し込みを行ない幅1.2m、長さ1.5m、厚み0.3mの不定形耐火物を製造した。
【0015】
この不定形耐火物は、アルミナ耐火材料とAl23 粉とを混練機13で混練する際、Al23 粉が3mm以下と細かくし、しかも、予めAl23 粉中にNiOを均一に混合しているので、耐火材料へのNiOの分散が良好になり、NiOを均一に混合した不定形耐火物にすることができる。
不定形耐火物中のNiOは、不定形耐火物が加熱された時に、NiOとAl23 粉中のAl23 粒子とが結合してスピネル化合物を生成する。
特に、Al23 粒、及びNiOを微細にしているので、不定形耐火物内に、これ等スピネル化合物が均一に形成され、不定形耐火物の耐食性や曲げ強度等の物性を向上することができ、内張りした精錬炉の寿命を大幅に延長することができる。
【0016】
また、図2に示すように、Al23 粉と耐火材料の配合比を変えて不定形耐火物中のNiO量を0〜6質量%の範囲で変化させ、従来のNiOを添加しないものを指数100として不定形耐火物の浸食厚みについて調査した。浸食厚みは、塩基度が3.1、温度1600℃の転炉スラグに浸漬して回転(回転浸食試験)させた場合の不定形耐火物の浸食厚み(mm)を用いた。
その結果、NiOを2.0質量%以上を添加することにより、浸食厚み指数(溶損指数)を86以下にすることができ、不定形耐火物の浸食を大幅に減少することができた。更に、図3に示すように、不定形耐火物中のNiO量が2.0質量%以上である場合、1500℃で3時間加熱した際の曲げ強度は、NiOを添加しない場合の32Mpaに比べて1.1〜1.2倍に向上することができた。
このように、アルミ合金の洗浄廃液を中和処理して生成したNiOを含むAl23 粉を耐火材料に配合した不定形耐火物を用いることにより、加熱した際、NiOを基にしたスピネル化合物が安定して形成され、このスピネル化合物や複合酸化物が優れた耐食性や高強度等の物性を発現することができ、不定形耐火物の寿命を大幅に向上することができる。
しかも、アルミ合金を酸洗して生成した酸洗廃液を中和処理した沈殿物を回収した産業廃棄物を有効活用するので、産業廃棄物の処理費用が節減でき、安価なAl23 粉を有効活用することができるため、不定形耐火物の製造コストを低減することができる。
更に、不定形耐火物の内張りの際に発生した不定形耐火物の廃棄物は、酸化クロムを含有しないので、環境を汚染することが無く、埋め立てや不定形耐火物の廃棄物のリサイクル等を容易に行うことができる。
【0017】
【実施例】
次に、本発明の耐食性に優れた不定形耐火物の実施例について説明する。
アルミ合金を酸洗して生成した酸洗廃液を中和処理し、この中和処理で沈殿物を回収して500℃以上の温度で加熱乾燥したNiOを4質量%、Al23 を85.5質量%含むAl23 粉と、Al23 を99質量%を含む耐火材料とを、それぞれ半々ずつ切り出してNiOの平均濃度が2質量%になるように配合して混合した。この混合物に外分で、アルミナセメントを6質量%、分散剤としてリン酸ソーダを1質量%、水を6質量%を添加して混練機の攪拌機を回転して5分間の攪拌を行ってから型枠に流し込み、幅1m、長さ1.2m、厚み0.3mの不定形耐火物を製造した。
この不定形耐火物を乾燥した後、取鍋の内張りに使用し、溶損状態や亀裂等の発生状況を確認した。その結果、30回の溶鋼を受湯したが、溶損が少なく、亀裂等の発生が無く良好であった。
更に、NiOの平均濃度が4質量%になるように配合した混合物に外分で、アルミナセメントを6質量%、分散剤としてリン酸ソーダを1質量%、水を6質量%を添加して混練機の攪拌機を回転して5分間の攪拌を行ってから型枠に流し込み、幅1m、長さ1.2m、厚み0.3mの不定形耐火物を製造し、この不定形耐火物を乾燥した後、取鍋の内張りに使用し、溶損状態や亀裂等の発生状況を確認した。その結果、40回の溶鋼を受湯したが、溶損が少なく、亀裂等の発生が無く良好であった。
【0018】
これに対し、Al23 を99質量%含む耐火材料に、外分で、アルミナセメントを6質量%、分散剤としてリン酸ソーダを1質量%、水を6質量%を添加して混練機の攪拌機を回転して5分間の攪拌を行ってから型枠に流し込み、幅1m、長さ1.2m、厚み0.3mの不定形耐火物を製造し、この不定形耐火物を乾燥した後、取鍋の内張りに使用し、溶損状態や亀裂等の発生状況を確認した。その結果、25回の溶鋼を受湯したが、溶損が大きく、亀裂やスポーリングが発生した。
【0019】
以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、アルミ合金の洗浄廃液から回収したAl23 粉に耐火材料として1〜5mmの骨材を添加し、Al23 粉を主体にして混練したものを型枠に流し込んで不定形耐火物を製造することもできる。
更に、Al23 粉は、不定形耐火物の他に、耐火煉瓦の原料として配合することもできる。
【0020】
【発明の効果】
請求項1、2記載の耐食性に優れた不定形耐火物の製造方法においては、NiOを2〜6質量%含むAl23粉を耐火材料に添加しているので、酸化ニッケルの購入や破砕処理の手間を無くした安価な酸化ニッケルを使用し、耐食性や耐スポーリング性等の品質を高め、製造コストを低減することができる。
【0021】
特に、A23粉は、アルミ合金の洗浄廃液を中和処理して生成したNiとAlの水酸化物を沈殿分離したものを乾燥して用いるので、産業廃棄物であるAl23粉を有効活用でき、スピネル化合物を形成して耐食性や耐スポーリング性等の品質を向上することができる。
【0022】
23粉は、NiとAlの水酸化物を500℃以上に加熱した粉を用いるので、耐火材料内への分散性をより良好にでき、NiOとの反応によるスピネル化合物の形成が容易になり、緻密な不定形耐火物にすることができ、不定形耐火物の耐食性や強度、耐スポーリング性等の物性を向上することができる。
【0023】
請求項記載の耐食性に優れた不定形耐火物の製造方法においては、耐火材料は、Al23を60質量%以上を含んでいるので、産業廃棄物であるAl23粉を耐火材料の一部として活用でき、産業廃棄物としてのAl23粉の処理費用を節減することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る耐食性に優れた不定形耐火物の製造に用いる不定形耐火物製造装置の説明図である。
【図2】不定形耐火物中のNiO量と浸食厚みの関係を表すグラフである。
【図3】不定形耐火物中のNiO量と強度の関係を表すグラフである。
【符号の説明】
10:不定形耐火物製造装置、11:耐火材料ホッパ、12:ホッパ、13:混練機、14:ベルトコンベア、15:攪拌機、16:給水管、17:型枠、18:開閉弁、19:シュート[0001]
BACKGROUND OF THE INVENTION
The present invention is not subject to disposal restrictions due to environmental impact, such as highly corrosion-resistant amorphous refractories containing chromium oxide, and NiO contained in Al 2 O 3 powder that is industrial waste. The present invention relates to a method for producing an amorphous refractory having excellent corrosion resistance.
[0002]
[Prior art]
Conventionally, refractories such as refractory bricks and irregular refractories (castable) lined in refining furnaces such as converters and electric furnaces are in contact with hot slag, molten iron and molten steel in the refining process of molten iron and molten steel, The wear due to erosion and wear is severe, and the practical application of refractories with high corrosion resistance is being promoted.
As the refractory having high corrosion resistance, magcro bricks are widely used, and the life of refining furnaces such as converters and electric furnaces has been extended. However, when the refractory lining refractory is worn to some extent, it is necessary to replace the refractory.
Since the used waste refractory material generated at the time of the replacement includes chromium oxide (Cr 2 O 3 ), there are problems such as environmental restrictions when performing reclamation.
As a countermeasure against this, as described in JP-A-10-203862, a magnesia clinker containing 1.5 to 3.0% by mass of CaO and less than 0.5% by mass of Fe 2 O 3 , SiO 2 Magcro bricks are used that are baked by blending brick scraps containing less than 0.8% by mass, CaO 0.8 to 1.6% by mass, and Cr 2 O 3 15 to 25% by mass. By increasing the spalling resistance and extending the life of the smelting furnace lined with this magcro brick, the amount of magcro brick used is reduced.
Furthermore, as described in JP-A-6-293580, a refractory raw material mainly composed of magnesium oxide (MgO) includes iron oxide (Fe 2 O 3 ), titanium oxide (TiO 2 ), nickel oxide ( NiO) is added to produce a refractory brick, and a highly corrosion-resistant refractory brick in which environmental problems due to Cr 2 O 3 are eliminated is used.
[0003]
[Problems to be solved by the invention]
However, with the magcro brick described in Japanese Patent Laid-Open No. 10-203862, it is difficult to prolong the life significantly, and the replacement of the refractory brick cannot be eliminated, and a waste refractory is generated after use. Moreover, since this discarded refractory contains 15 to 25% by mass of Cr 2 O 3 , there is an environmental problem when it is disposed of in landfills.
In addition, the refractory brick described in JP-A-6-293580 adds one or more of titanium oxide and nickel oxide, so that, for example, nickel oxide is processed into fine grains and then magnesium oxide is the main component. It is necessary to add to the refractory raw material, and it takes time for processing, and there is a limit to making it finer .
Further, by the processing costs of disruption treatment such as purchase of nickel oxide, there is a problem that manufacturing cost becomes high.
Even in the case of amorphous refractories, amorphous refractories containing Cr 2 O 3 cannot be used due to environmental constraints, and even if used, they are as fine as refractory bricks. requires effort, such as processing into grain, it can not avoid problems such as manufacturing cost is increased.
[0004]
The present invention has been made in view of such circumstances, without the trouble of purchasing and crushing of nickel oxide, inexpensive to use nickel oxide, corrosion resistance and high because the quality of the spalling resistance and the like, reducing the manufacturing cost An object of the present invention is to provide a method for producing an amorphous refractory having excellent corrosion resistance.
[0005]
[Means for Solving the Problems]
The method for producing an amorphous refractory excellent in corrosion resistance according to the present invention in accordance with the above object comprises adding an Al 2 O 3 powder containing 2 to 6% by mass of NiO to a refractory material, and providing an amorphous refractory excellent in corrosion resistance. The Al 2 O 3 powder is obtained by heating a precipitate containing Ni and Al hydroxides produced by neutralizing an aluminum alloy cleaning waste liquid to 500 ° C. or higher and drying. Formed .
This amorphous refractory can uniformly mix the added NiO into the refractory material, and the spinel compound in which NiO uniformly dispersed in the refractory material is combined with Al 2 O 3 , or NiO and Al 2 O 3. A complex compound in which iron oxide or the like is bonded can be formed, and high corrosion resistance, spalling resistance, and the like can be improved.
When the content of NiO is less than 2% by mass, the NiO concentration in the blended refractory material becomes low, and a spinel compound cannot be formed sufficiently, resulting in a decrease in corrosion resistance. On the other hand, the reason why the upper limit of the NiO content is set to 6% by mass is that the NiO concentration of the Al 2 O 3 powder recovered from the cleaning waste liquid of the aluminum alloy is limited, and a NiO concentration exceeding this cannot be achieved. It is.
[0006]
Here, the Al 2 O 3 powder is Ru is formed by drying the precipitate containing hydroxide of Ni and Al which is generated by neutralizing the washing liquid waste aluminum alloy.
Thereby, Al 2 O 3 powder containing NiO recovered from the washing waste liquid when pickling the aluminum alloy which is industrial waste can be effectively used.
Moreover, the Al 2 O 3 powder recovered from the cleaning waste liquid is a fine powder of 100 μm or less, has good dispersibility in the refractory material, and the reaction with NiO contained in the Al 2 O 3 powder is promoted by heating. Spinel compounds can be easily formed.
[0007]
Moreover, drying of the precipitate is performed Ri by the heating to above 500 ° C..
Thus, can the dispersibility in the refractory material in better facilitates spinel compound of by reaction with NiO, moreover, it can form a dense spinel compounds, making it possible to improve the corrosion resistance of monolithic refractories it can.
When the drying temperature of the precipitate is less than 500 ° C., the moisture contained in the precipitate is not sufficiently removed, and the strength and erosion resistance of the amorphous refractory are lowered.
[0008]
Moreover, it is preferable that the refractory material before adding the Al 2 O 3 powder contains 60% by mass or more of Al 2 O 3 .
Accordingly, since the composition of the refractory material is Al 2 O 3 composition and nearby powder becomes to be added, can be Al 2 O 3 is used minute of 80 to 95 wt% contained Al 2 O 3 powder to the portion of the refractory material, Moreover, this Al 2 O 3 powder can be used as a fine powder, and the manufacturing cost of the amorphous refractory can be reduced.
When the amount of Al 2 O 3 contained in the refractory material before adding the Al 2 O 3 powder is less than 60% by mass, the concentration of Al 2 O 3 in the amorphous refractory when the Al 2 O 3 powder is added Decreases, and the melt resistance of the amorphous refractory decreases.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
FIG. 1 is an explanatory view of an amorphous refractory manufacturing apparatus used for manufacturing an amorphous refractory excellent in corrosion resistance according to an embodiment of the present invention, and FIG. 2 is a relationship between the amount of NiO in the amorphous refractory and the erosion thickness. FIG. 3 is a graph showing the relationship between the amount of NiO and the strength in the amorphous refractory.
As shown in FIG. 1, an amorphous refractory manufacturing apparatus 10 used for manufacturing an amorphous refractory excellent in corrosion resistance according to an embodiment of the present invention stores an alumina refractory material which is an example of a refractory material. A refractory material hopper 11, a hopper 12 for storing Al 2 O 3 powder (alumina powder) containing nickel, an alumina refractory material cut out from the refractory material hopper 11, and Al 2 O 3 containing nickel cut out from the hopper 12 A belt conveyor 14 is provided for conveying the powder and supplying it to the kneader 13.
The kneader 13 includes a stirrer 15, a water supply pipe 16 for supplying water into the kneader 13, and a chute 19 provided with an opening / closing valve 18 for pouring the kneaded material into the mold 17.
[0010]
Next, an amorphous refractory excellent in corrosion resistance according to an embodiment of the present invention will be described using an amorphous refractory manufacturing apparatus 10.
In the hopper 12, a pickling waste solution generated by pickling an aluminum alloy is neutralized to collect a precipitate, and the precipitate is heated and dried at a temperature of 500 ° C. or more to remove crystal water. The formed Al 2 O 3 powder is stored. As shown in Table 1, this Al 2 O 3 powder has a NiO content of 2.0 to 6.0% by mass (in this embodiment, 4.0% by mass) and an Al 2 O 3 content of 80. It contains 0 to 90.0 mass%.
[0011]
[Table 1]
Figure 0004555520
[0012]
As shown in Table 2, the refractory material hopper 11 includes 30% by mass with a maximum particle size of 5 mm and a particle size of 0.075 mm or less, and the chemical component thereof is 60% by mass of Al 2 O 3. The alumina refractory material is stored as described above (in the present embodiment, one containing 99% by mass of Al 2 O 3 is used).
[0013]
[Table 2]
Figure 0004555520
[0014]
Alumina refractory material is cut from refractory material hopper 11 and Al 2 O 3 powder is cut in half from hopper 12, and kneading containing 92.25% by mass of Al 2 O 3 and 2% by mass of NiO as its main components. The product was conveyed by a belt conveyor 14 and placed in a kneader 13.
Then, the stirrer 15 is driven to mix the materials while stirring, and water is supplied from the water supply pipe 16 to the mixture so that the amount becomes 6% by mass. Further, alumina cement, phosphate, etc. A curing agent and a dispersant of sodium hexametaphosphate were added, and kneading was performed for 5 minutes.
Then, the open / close valve 18 attached to the kneading machine 13 is opened and poured into the mold 17 from the chute 19 to produce an irregular refractory having a width of 1.2 m, a length of 1.5 m and a thickness of 0.3 m. did.
[0015]
The monolithic refractory is when kneading the alumina refractory material and Al 2 O 3 powder with a kneading machine 13, Al 2 O 3 powder is finely and 3mm or less, moreover, the pre-Al 2 O 3 NiO into flour Since they are uniformly mixed, the dispersion of NiO in the refractory material is improved, and an amorphous refractory in which NiO is uniformly mixed can be obtained.
NiO in the amorphous refractory forms a spinel compound by combining NiO and Al 2 O 3 particles in the Al 2 O 3 powder when the amorphous refractory is heated.
In particular, since Al 2 O 3 grains and NiO are made fine, these spinel compounds are uniformly formed in the amorphous refractory, and the physical properties such as corrosion resistance and bending strength of the amorphous refractory are improved. The life of the smelting furnace lined up can be greatly extended.
[0016]
Moreover, as shown in FIG. 2, the amount of NiO in the amorphous refractory is changed in the range of 0 to 6% by mass by changing the mixing ratio of the Al 2 O 3 powder and the refractory material, and the conventional NiO is not added. The erosion thickness of the irregular refractory was investigated with an index of 100. As the erosion thickness, the erosion thickness (mm) of the amorphous refractory when immersed in a converter slag having a basicity of 3.1 and a temperature of 1600 ° C. and rotating (rotational erosion test) was used.
As a result, by adding 2.0% by mass or more of NiO, the erosion thickness index (melting loss index) could be made 86 or less, and the erosion of the amorphous refractory could be greatly reduced. Furthermore, as shown in FIG. 3, when the amount of NiO in the amorphous refractory is 2.0 mass% or more, the bending strength when heated at 1500 ° C. for 3 hours is compared with 32 Mpa when NiO is not added. 1.1 to 1.2 times higher.
In this way, by using the monolithic refractories blended with Al 2 O 3 powder containing NiO produced by neutralizing the washing liquid waste aluminum alloy refractory material, when heated, spinel based on NiO The compound is stably formed, and the spinel compound and composite oxide can exhibit excellent physical properties such as corrosion resistance and high strength, and the life of the amorphous refractory can be greatly improved.
In addition, since the industrial waste recovered from the precipitate obtained by neutralizing the pickling waste solution generated by pickling the aluminum alloy is effectively used, the processing cost of the industrial waste can be reduced, and the inexpensive Al 2 O 3 powder. Can be effectively utilized, and the manufacturing cost of the irregular refractory can be reduced.
In addition, the waste of the non-standard refractory generated during the lining of the non-standard refractory does not contain chromium oxide, so it does not pollute the environment and can be used for landfill or recycling of non-standard refractory waste. It can be done easily.
[0017]
【Example】
Next, examples of the amorphous refractory having excellent corrosion resistance according to the present invention will be described.
The pickling waste liquor produced by pickling the aluminum alloy is neutralized, and the precipitate is recovered by this neutralization, and dried by heating at a temperature of 500 ° C. or higher, 4% by mass of NiO and 85% of Al 2 O 3 . The Al 2 O 3 powder containing 0.5% by mass and the refractory material containing 99% by mass of Al 2 O 3 were cut out in half and mixed so that the average concentration of NiO was 2% by mass. After adding 6% by mass of alumina cement, 1% by mass of sodium phosphate as a dispersing agent and 6% by mass of water to this mixture, rotating the stirrer of the kneader and stirring for 5 minutes. Poured into a mold to produce an irregular refractory having a width of 1 m, a length of 1.2 m, and a thickness of 0.3 m.
After drying this amorphous refractory, it was used for the lining of the ladle and the state of occurrence of melting, cracks, etc. was confirmed. As a result, the molten steel was received 30 times, but it was good with little melting loss and no cracks.
Furthermore, 6% by mass of alumina cement, 1% by mass of sodium phosphate as a dispersant, and 6% by mass of water were added to the mixture blended so that the average concentration of NiO was 4% by mass. The agitator of the machine was rotated for 5 minutes and then poured into a mold to produce an amorphous refractory having a width of 1 m, a length of 1.2 m and a thickness of 0.3 m, and this amorphous refractory was dried. Later, it was used for the ladle lining, and the state of occurrence of erosion and cracks was confirmed. As a result, 40 times of molten steel was received, but there was little melting loss and there was no occurrence of cracks or the like, which was good.
[0018]
In contrast, a refractory material containing 99% by mass of Al 2 O 3 is mixed with 6% by mass of alumina cement, 1% by mass of sodium phosphate as a dispersant and 6% by mass of water. After rotating the stirrer of 5 minutes and stirring for 5 minutes, it was poured into a mold to produce an amorphous refractory with a width of 1 m, a length of 1.2 m and a thickness of 0.3 m, and after drying this amorphous refractory , Used for ladle lining, and confirmed the state of melting and cracking. As a result, the molten steel was received 25 times, but the melting loss was large and cracks and spalling occurred.
[0019]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, the addition of aggregate 1~5mm as refractory materials Al 2 O 3 powder recovered from waste wash liquid of aluminum alloy, Al 2 O 3 is poured powder in the mainly those obtained by kneading to mold monolithic refractories A thing can also be manufactured.
Furthermore, the Al 2 O 3 powder can be blended as a raw material for refractory bricks in addition to the amorphous refractory.
[0020]
【The invention's effect】
In the method for producing an amorphous refractory having excellent corrosion resistance according to claims 1 and 2, Al 2 O 3 powder containing 2 to 6% by mass of NiO is added to the refractory material. using inexpensive nickel oxide without the trouble of processing, high order of quality such as corrosion resistance and spalling resistance, it is possible to reduce the manufacturing cost.
[0021]
In particular , Al 2 O 3 powder is used by drying and separating Ni and Al hydroxides produced by neutralizing cleaning waste liquid of aluminum alloy, so that Al 2 O, which is industrial waste, is used. 3 powder can effectively utilized, it can be formed a spinel compound improving the quality such as corrosion resistance and spalling resistance.
[0022]
Formation of A l 2 O 3 powder, since use of the flour heated pressurized hydroxide of Ni and Al in the above 500 ° C., can the dispersibility in the refractory material in the better, spinel compounds by reaction with NiO Can be made into a dense amorphous refractory, and the physical properties such as corrosion resistance and strength of the amorphous refractory, and spalling resistance can be improved.
[0023]
In the production method of the monolithic refractories with excellent corrosion resistance according to claim 2, refractory material, since the Al 2 O 3 contains more than 60 wt%, fire the Al 2 O 3 powder is industrial waste It can be used as a part of the material, and the processing cost of Al 2 O 3 powder as industrial waste can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory view of an amorphous refractory manufacturing apparatus used for manufacturing an amorphous refractory excellent in corrosion resistance according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the amount of NiO in an amorphous refractory and the erosion thickness.
FIG. 3 is a graph showing the relationship between the amount of NiO and the strength in an amorphous refractory.
[Explanation of symbols]
10: Indeterminate refractory manufacturing apparatus, 11: refractory material hopper, 12: hopper, 13: kneader, 14: belt conveyor, 15: stirrer, 16: water supply pipe, 17: mold, 18: on-off valve, 19: shoot

Claims (2)

NiOを2〜6質量%含むAl23粉を耐火材料に添加している耐食性に優れた不定形耐火物の製造方法であって、前記Al 2 3 粉は、アルミ合金の洗浄廃液を中和処理して生成したNiとAlの水酸化物を含む沈殿物を、500℃以上に加熱し乾燥して形成されることを特徴とする耐食性に優れた不定形耐火物の製造方法An Al 2 O 3 powder containing 2 to 6% by mass of NiO is added to a refractory material, and is a method for producing an amorphous refractory with excellent corrosion resistance. The Al 2 O 3 powder is a waste liquid from an aluminum alloy. A method for producing an amorphous refractory having excellent corrosion resistance, which is formed by heating a precipitate containing Ni and Al hydroxide generated by neutralization to 500 ° C or higher and drying . 請求項1記載の耐食性に優れた不定形耐火物の製造方法において、前記Al 2 3 粉を添加する前の耐火材料は、Al 2 3 を60質量%以上含んでいることを特徴とする耐食性に優れた不定形耐火物の製造方法The method for producing an amorphous refractory excellent in corrosion resistance according to claim 1, wherein the refractory material before adding the Al 2 O 3 powder contains 60% by mass or more of Al 2 O 3. A method for producing amorphous refractories with excellent corrosion resistance.
JP2001279540A 2001-09-14 2001-09-14 Method for manufacturing amorphous refractories with excellent corrosion resistance Expired - Fee Related JP4555520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001279540A JP4555520B2 (en) 2001-09-14 2001-09-14 Method for manufacturing amorphous refractories with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001279540A JP4555520B2 (en) 2001-09-14 2001-09-14 Method for manufacturing amorphous refractories with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2003089583A JP2003089583A (en) 2003-03-28
JP4555520B2 true JP4555520B2 (en) 2010-10-06

Family

ID=19103713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279540A Expired - Fee Related JP4555520B2 (en) 2001-09-14 2001-09-14 Method for manufacturing amorphous refractories with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP4555520B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293580A (en) * 1993-02-09 1994-10-21 Mitsubishi Materials Corp Refractory having basic resistance
JP2001080969A (en) * 1999-07-13 2001-03-27 Nichias Corp Nonlithic refractory raw material and monolithic refractries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293580A (en) * 1993-02-09 1994-10-21 Mitsubishi Materials Corp Refractory having basic resistance
JP2001080969A (en) * 1999-07-13 2001-03-27 Nichias Corp Nonlithic refractory raw material and monolithic refractries

Also Published As

Publication number Publication date
JP2003089583A (en) 2003-03-28

Similar Documents

Publication Publication Date Title
CN101550016B (en) Magnesia chrome carbon coating and preparation method thereof
CN105777159B (en) Method for producing large-scale copper smelting furnace lining bricks by smelting chromium slag
CN101333089A (en) Process for producing MgO-C Bricks by using waste MgO-C Bricks as main raw material
CN106083110B (en) High strength steel ladle-lining castable
CN102757251A (en) Nanometer material contained ladle bottom argon blowing permeable brick and preparation process thereof
CN110272292A (en) A kind of magnesia coating of tundish and preparation method thereof
JP2018184315A (en) Carbon-containing castable refractory and method for producing carbon-containing castable refractory
JP4602379B2 (en) Method for producing alumina cement
CN109627026A (en) A kind of regeneration silicon carbide Al2O3- SiC-C iron runner castable and preparation method thereof
CN110156445B (en) High-strength wear-resistant castable for rotary hearth furnace and preparation method thereof
JP4155932B2 (en) Alumina cement and amorphous refractory
JP4555520B2 (en) Method for manufacturing amorphous refractories with excellent corrosion resistance
CN103833382A (en) Environment-friendly refractory castable used for vacuum refining furnaces, and preparation method thereof
CN108440001A (en) A kind of the converter body brick and its production method of addition titanium nitride
CN109133874A (en) A kind of bakie working lining fireproof coating
CN100494119C (en) Alumina-silicon carbide-carbon refractory material preparation method
KR100327165B1 (en) Atypical basic refractory for mending of steel-making furnace
JP2000178074A (en) Castable refractory for blast furnace tapping spout
JPH07291718A (en) Magnesite-chrome refractory brick
CN110845247A (en) Low-cost RH ramming material and preparation method thereof
JP3833800B2 (en) Standard refractory
CN106396645B (en) A kind of ladle resistant to corrosion brick and its application method
JPH02225369A (en) Highly corrosion resistant brick for ladle
JP3751135B2 (en) Indefinite refractory
JP3242740B2 (en) Refractory material with steelmaking slag aggregate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4555520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees