JP4155932B2 - Alumina cement and amorphous refractory - Google Patents

Alumina cement and amorphous refractory Download PDF

Info

Publication number
JP4155932B2
JP4155932B2 JP2004058926A JP2004058926A JP4155932B2 JP 4155932 B2 JP4155932 B2 JP 4155932B2 JP 2004058926 A JP2004058926 A JP 2004058926A JP 2004058926 A JP2004058926 A JP 2004058926A JP 4155932 B2 JP4155932 B2 JP 4155932B2
Authority
JP
Japan
Prior art keywords
cao
alumina
alumina cement
mass
al2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004058926A
Other languages
Japanese (ja)
Other versions
JP2005247618A (en
Inventor
正晃 海賀
和人 串橋
裕智 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004058926A priority Critical patent/JP4155932B2/en
Publication of JP2005247618A publication Critical patent/JP2005247618A/en
Application granted granted Critical
Publication of JP4155932B2 publication Critical patent/JP4155932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、石油廃触媒及び還元剤を溶融し、精錬する際に発生するスラグと、CaO源を原料として製造されるカルシウムアルミネート、それを用いたアルミナセメント、並びに不定形耐火物に関する。 The present invention relates to slag generated when a petroleum waste catalyst and a reducing agent are melted and refined, calcium aluminate produced using a CaO source as a raw material, alumina cement using the same, and an amorphous refractory.

アルミナセメントは、一般に、CaO原料として石灰石や生石灰を、Al2O3原料として精製アルミナ、ボーキサイト、アルミ残灰等を使用し、焼成法又は溶融法にて製造したクリンカーを単独で粉砕、或いは、クリンカーにアルミナや各種添加剤を添加して混合粉砕することにより製造される。一般的なアルミナセメントの製造方法及びその特性は、広く知られている(例えば、非特許文献1)。
耐火物 Vol.29,pp368-374(1977)
Alumina cement generally uses limestone or quick lime as a CaO raw material, refined alumina, bauxite, aluminum residual ash, etc. as an Al2O3 raw material, and pulverizes clinker produced by a firing method or a melting method alone, or alumina is used as a clinker. And various additives are added and mixed and pulverized. A general method for producing alumina cement and its characteristics are widely known (for example, Non-Patent Document 1).
Refractory Vol.29, pp368-374 (1977)

近年、環境問題への対応の一環として、廃棄物処理プロセスにおける環境負荷低減が強く求められ、廃棄物の溶融処理に注目が集まっている(例えば、非特許文献2)。そして、バナジウム含有廃棄物から有用金属を回収する方法(特許文献1)や、Mo系廃触媒から有価金属を回収する方法(特許文献2)等が知られている。
耐火物、vol55、pp.168-173(2003) 特開2000-204420号公報 特開2001-214223号公報
In recent years, as part of dealing with environmental problems, there has been a strong demand for reducing the environmental load in waste treatment processes, and attention has been focused on waste melting treatment (for example, Non-Patent Document 2). A method for recovering useful metals from vanadium-containing waste (Patent Document 1), a method for recovering valuable metals from Mo-based waste catalysts (Patent Document 2), and the like are known.
Refractory, vol55, pp.168-173 (2003) JP 2000-204420 A JP 2001-214223 A

一方、石油精製時に使用するコバルト、ニッケル、銅、バナジウム、モリブデン、白金等の遷移金属を担持した石油廃触媒(アルミナ廃触媒)に関しては、これまでほとんど有効利用されていなかった。 On the other hand, a petroleum waste catalyst (alumina waste catalyst) carrying a transition metal such as cobalt, nickel, copper, vanadium, molybdenum and platinum used in petroleum refining has not been effectively used so far.

本発明の目的は、上記の状況に鑑み、石油廃触媒及び還元剤を溶融、精錬する際に発生するスラグを、カルシウムアルミネートの製造原料として有効利用することである。 In view of the above situation, an object of the present invention is to effectively utilize slag generated when melting and refining a petroleum waste catalyst and a reducing agent as a raw material for producing calcium aluminate.

即ち、本発明は、石油廃触媒及び還元剤を溶融し、精錬する際に発生するスラグとCaO源を原料として製造されるカルシウムアルミネートであり、石油廃触媒、石油コークス未燃灰及び金属アルミニウムを溶融し、精錬する際に発生するスラグと生石灰を原料として製造されるカルシウムアルミネートである。 That is, the present invention is a calcium aluminate produced from slag generated when melting and refining a petroleum waste catalyst and a reducing agent and a CaO source as raw materials, the petroleum waste catalyst, petroleum coke unburned ash and metallic aluminum It is a calcium aluminate produced from slag and quicklime produced when melting and refining.

さらに、鉱物としてCaO・2Al2O3(以下CA2と記載)、12CaO・7Al2O3(以下C12A7と記載)、3CaO・Al2O3(以下C3Aと記載)の1種類以上とCaO・Al2O3(以下CAと記載)及び非晶質を含有する該カルシウムアルミネートであり、CaO/Al2O3モル比が1.0〜2.0であり、且つ、遷移金属酸化物類、SiO2、Fe2O3、TiO2、MgOの群から選ばれる1または2以上を、酸化物換算で5〜30質量%含有することを特徴とする該カルシウムアルミネートである。また、これらのカルシウムアルミネートを含有するアルミナセメントであり、該アルミナセメントと耐火骨材を含有する不定形耐火物である。 Furthermore, as minerals, one or more of CaO.2Al2O3 (hereinafter referred to as CA2), 12CaO.7Al2O3 (hereinafter referred to as C12A7), 3CaO.Al2O3 (hereinafter referred to as C3A), CaO.Al2O3 (hereinafter referred to as CA) and amorphous. 1 or 2 selected from the group consisting of transition metal oxides, SiO2, Fe2O3, TiO2, and MgO, and having a CaO / Al2O3 molar ratio of 1.0 to 2.0. The calcium aluminate characterized by containing 5 to 30% by mass in terms of oxide. Moreover, it is an alumina cement containing these calcium aluminates, and is an amorphous refractory containing the alumina cement and a refractory aggregate.

本発明により、石油精製において発生する石油廃触媒を、カルシウムアルミネート及びアルミナセメントの原料として有効利用することが可能である。   According to the present invention, it is possible to effectively use a petroleum waste catalyst generated in petroleum refining as a raw material for calcium aluminate and alumina cement.

本発明者は、環境問題の対象となっている廃棄物の有効利用を種々検討した結果、今まで有効利用できていなかった遷移金属担持アルミナ触媒に関して、遷移金属の精錬時に発生する排滓(スラグ)を利用し、カルシウムアルミネートを製造する技術を確立するに至った。 As a result of various investigations on the effective use of wastes that are the subject of environmental problems, the present inventor has found that the transition metal-supported alumina catalyst that has not been used effectively so far has been subjected to waste (slag) generated during refining of transition metals. ) To establish a technology to produce calcium aluminate.

本発明者は、アルミナセメントの特徴である可使時間、流動性、硬化特性及び強度発現性等の諸特性を満足させる為に、カルシウムアルミネート中にCA2、C12A7、C3Aの群から選ばれる1種以上の鉱物、CA及び非晶質を含有することが好適であり、更に、CaO/Al2O3モル比が1.0〜2.0で、且つ、精錬時に取り除かれないコバルト、ニッケル、銅、バナジウム、モリブデン、白金等の遷移金属酸化物類、SiO2、Fe2O3、TiO2、MgOの群から選ばれる1種又は2種以上を、酸化物換算で5〜30質量%含有してもよく、既存のアルミナセメントとほぼ同等の性能を示すとの知見を得て、本発明を完成するに至った。 The present inventor is selected from the group of CA2, C12A7, and C3A in calcium aluminate in order to satisfy various characteristics such as pot life, fluidity, hardening characteristics, and strength development characteristics that are characteristic of alumina cement. Cobalt, nickel, copper, and vanadium, which are preferable to contain minerals other than seeds, CA and amorphous, and have a CaO / Al2O3 molar ratio of 1.0 to 2.0 and are not removed during refining. , Molybdenum, platinum and other transition metal oxides, SiO2, Fe2O3, TiO2, MgO may contain 5-30% by mass in terms of oxide, existing alumina The inventor has obtained the knowledge that it exhibits almost the same performance as cement, and has completed the present invention.

本発明に係るカルシウムアルミネートは、石油廃触媒を精錬したスラグをアルミナ源として使用し、石灰石や生石灰などのCaO源を、所定の成分割合になるように配合し、ガス化溶融炉で溶融、或いは、キルンで焼成して得られるクリンカーである。以下、本発明を詳細に説明する。 Calcium aluminate according to the present invention uses a slag refined from a petroleum waste catalyst as an alumina source, blends a CaO source such as limestone and quicklime to a predetermined component ratio, and melts in a gasification melting furnace. Or it is a clinker obtained by baking with a kiln. Hereinafter, the present invention will be described in detail.

本発明に係る石油廃触媒は、石油精製やガス処理の分野における、水素化脱硫等の脱硫装置に設けられる遷移金属酸化物を含む使用済み脱硫触媒である。これらの使用済み脱硫触媒から有用金属を回収した後のスラグを、アルミ源として再利用できないか検討し、従来、廃棄処理されてきた産業廃棄物の有効利用を可能にした。ここで、遷移金属酸化物とは、触媒中に担持された遷移金属類をいい、例えば、水素化脱硫用触媒にはCo、Ni、Cu、V、Mo、Pt等が含まれている。 The petroleum waste catalyst according to the present invention is a used desulfurization catalyst containing a transition metal oxide provided in a desulfurization apparatus such as hydrodesulfurization in the fields of petroleum refining and gas processing. We investigated whether slag after recovering useful metals from these used desulfurization catalysts could be reused as an aluminum source, and made it possible to effectively use industrial waste that had been disposed of in the past. Here, the transition metal oxide refers to transition metals supported in the catalyst. For example, the hydrodesulfurization catalyst contains Co, Ni, Cu, V, Mo, Pt and the like.

使用済み脱硫触媒から有用金属を回収する方法は、使用済み触媒をまず、酸化焙焼し、廃棄物中のC、S、N分を分解してCO,SOx及びNOxとして除去する。この後、還元剤と混合して加熱し、遷移金属合金を回収するが、この際、スラグが副生する。このスラグは、アルミニウムが主成分であり、石灰石や生石灰などのCaO源を添加し、溶融又は焼結処理を施すことにより、種々の組成のカルシウムアルミネートを作製することが可能である。 In the method of recovering useful metals from the used desulfurization catalyst, the used catalyst is first oxidized and roasted, and C, S, and N components in the waste are decomposed and removed as CO 2 , SO x and NO x . Thereafter, it is mixed with a reducing agent and heated to recover the transition metal alloy. At this time, slag is by-produced. This slag is mainly composed of aluminum, and it is possible to produce calcium aluminates having various compositions by adding a CaO source such as limestone or quicklime and subjecting it to melting or sintering treatment.

本発明に係る還元剤は、遷移金属の種類により異なるが、鉄、アルミニウム、シリカ及びコークスが一般的である。本発明においては、還元剤として、石油精製後のアスファルト、ピッチを更に分留した後の残渣である石油コークスの未燃灰(可燃分を含んだ焼却灰)と、アルミニウムを使用することが好ましい。 Although the reducing agent according to the present invention varies depending on the type of transition metal, iron, aluminum, silica and coke are common. In the present invention, as the reducing agent, it is preferable to use asphalt after petroleum refining, unburned ash of petroleum coke (incinerated ash containing combustible components), which is a residue after further fractionation of pitch, and aluminum. .

Co、Ni、Mo、V、Cu、Ptは、加熱還元時に還元剤として金属アルミニウムを使用した場合、以下の反応で回収する事が可能である。
3CoO + 2Al → 3Co + Al2O3
3NiO + 2Al → 3Ni + Al2O3
MoO3 + 2Al → Mo + Al2O3
3CuO + 2Al → 3Cu + Al2O3
3PtO + 2Al → 3Pt + Al2O3
Co, Ni, Mo, V, Cu, and Pt can be recovered by the following reaction when metallic aluminum is used as a reducing agent during heat reduction.
3CoO + 2Al → 3Co + Al2O3
3NiO + 2Al → 3Ni + Al2O3
MoO3 + 2Al → Mo + Al2O3
3CuO + 2Al → 3Cu + Al2O3
3PtO + 2Al → 3Pt + Al2O3

本発明のカルシウムアルミネートは、廃触媒を精錬したスラグと、石灰石や生石灰などのCaO源を所定の成分割合になるように調合し、ガス化溶融炉等で溶融又はキルンで焼成して得られ、CaO・2Al2O3、12CaO・7Al2O3、3CaO・Al2O3の群から選ばれる1種以上の鉱物、CaO・Al2O3及び非晶質を含有することを特徴とする。 The calcium aluminate of the present invention is obtained by preparing a slag obtained by refining a waste catalyst and a CaO source such as limestone or quicklime so as to have a predetermined component ratio, and melting or baking in a gasification melting furnace or the like in a kiln. It is characterized by containing at least one mineral selected from the group consisting of CaO · 2Al2O3, 12CaO · 7Al2O3, 3CaO · Al2O3, CaO · Al2O3 and amorphous.

不純物としては、SiO2、Fe2O3、TiO2、MgO、及び遷移金属類が挙げられ、これらは、2CaO・Al2O3・SiO2、4CaO・Al2O3・Fe2O3、CaTiO3、MgAl2O4、MgO、遷移金属酸化物の形態で存在している。これらの中で、4CaO・Al2O3・Fe2O3はセメントの水和を早め、2CaO・Al2O3・SiO2はセメントの水和を遅くする。一方、CaTiO3、MgAl2O4、MgO、遷移金属酸化物はアルミナセメントの水和反応にほとんど影響をおよぼさない。 Impurities include SiO2, Fe2O3, TiO2, MgO, and transition metals, which exist in the form of 2CaO · Al2O3 · SiO2, 4CaO · Al2O3 · Fe2O3, CaTiO3, MgAl2O4, MgO, transition metal oxides. ing. Among these, 4CaO · Al2O3 · Fe2O3 accelerates hydration of cement, and 2CaO · Al2O3 · SiO2 slows hydration of cement. On the other hand, CaTiO3, MgAl2O4, MgO, and transition metal oxides hardly affect the hydration reaction of alumina cement.

カルシウムアルミネートのCaO/Al2O3モル比は1.0〜2.0が、SiO2、TiO2, MgO, Fe2O3及び遷移金属酸化物類の合計量は酸化物換算で5〜30質量%であることが、強度発現性及び耐火性の点から好ましい。CaO/Al2O3モル比が1.0未満では初期強度の低下が起こる場合があり、一方、2.0を超えると速硬性が強くなり、作業性が十分に確保できない場合がある。 The CaO / Al2O3 molar ratio of calcium aluminate is 1.0 to 2.0, and the total amount of SiO2, TiO2, MgO, Fe2O3 and transition metal oxides is 5 to 30% by mass in terms of oxide, It is preferable from the standpoint of strength development and fire resistance. When the CaO / Al2O3 molar ratio is less than 1.0, the initial strength may decrease. On the other hand, when the CaO / Al2O3 molar ratio is more than 2.0, the rapid hardening becomes strong and workability may not be sufficiently secured.

SiO2、TiO2、MgO、Fe2O3及び遷移金属酸化物類等の不純物が多くなると、耐火性、強度発現性、高温下での硬化体の体積安定性、耐スポーリング抵抗性等の特性が悪化するばかりでなく、スラグなどへの耐食性が低下する場合がある。 When impurities such as SiO2, TiO2, MgO, Fe2O3 and transition metal oxides increase, the properties such as fire resistance, strength development, volume stability of the cured product at high temperature, and spalling resistance will be deteriorated. In addition, the corrosion resistance to slag may be reduced.

溶融法で本発明のカルシウムアルミネートクリンカーを製造する場合、Al2O3源であるスラグとCaO源を所定の割合で混合又は混合粉砕し、ガス化溶融炉等の溶融炉にて1500℃以上の高温で、完全に未反応原料が無くなるまで溶融し、高圧空気や水に接触させて冷却することが好ましい。 When producing the calcium aluminate clinker of the present invention by the melting method, the slag as the Al2O3 source and the CaO source are mixed or mixed and pulverized at a predetermined ratio, and at a high temperature of 1500 ° C. or higher in a melting furnace such as a gasification melting furnace. It is preferable to melt until there is no unreacted raw material, and to cool by contacting with high-pressure air or water.

クリンカーの粉砕・混合は、クリンカー同士を混合後、粉砕しても良く、あるいは、各々粉砕したものを混合しても良い。クリンカーの粉砕機は特に限定されず、通常、粉塊物の微粉砕に使用される粉砕機が使用できる。例えば、ローラーミル、ジェットミル、チューブミル、ボールミル、及び振動ミル等が使用可能である。 The clinker may be pulverized and mixed after mixing the clinker, or may be mixed. The clinker pulverizer is not particularly limited, and a pulverizer usually used for finely pulverizing a lump can be used. For example, a roller mill, a jet mill, a tube mill, a ball mill, and a vibration mill can be used.

本発明に係るクリンカー中の非晶質量は、溶融又は焼成した高温のクリンカーの冷却速度により調整可能である。非晶質量は、例えば、粉末X線回折のパターンをもとに行うリートベルト解析により求めることができる。 The amorphous amount in the clinker according to the present invention can be adjusted by the cooling rate of the molten or baked high-temperature clinker. The amorphous amount can be obtained, for example, by Rietveld analysis performed based on a powder X-ray diffraction pattern.

クリンカーの粒度は、流動性、硬化特性及び強度発現性に関連するため、重要な品質管理項目の一つである。粉砕したクリンカーの粒度は、ブレーン法による比表面積で、2000cm2/g以上が好ましく、3500cm2/g以上がより好ましく、4000〜6000cm2/gがさらに好ましい。この範囲を外れると、流動性と強度発現性が悪くなる場合がある。 The particle size of the clinker is one of important quality control items because it is related to fluidity, curing characteristics, and strength development. The particle size of the pulverized clinker is preferably 2000 cm 2 / g or more, more preferably 3500 cm 2 / g or more, and further preferably 4000 to 6000 cm 2 / g in terms of the specific surface area by the Blaine method. Outside this range, fluidity and strength development may be deteriorated.

クリンカーの平均粒子径は、20μm以下が流動性と高温下での可使時間に優れるため好ましく、1〜15μmがより好ましい。本発明に係る平均粒子径は、メジアン径であり、レーザー回折法やレーザー散乱法等の一般的に使用されている粒度分布測定法により得られる。 The average particle diameter of the clinker is preferably 20 μm or less because of excellent fluidity and pot life at high temperatures, and more preferably 1 to 15 μm. The average particle diameter according to the present invention is a median diameter, and is obtained by a particle size distribution measuring method generally used such as a laser diffraction method or a laser scattering method.

本発明に係るアルミナセメントに、耐火性及び耐食性を向上させる目的でアルミナを添加することは好ましい。ここでいうアルミナは、水酸化アルミニウムや仮焼アルミナなどのAl2O3源を、ロータリーキルン等の焼成装置やガス化溶融炉等の溶融装置によって、焼結又は溶融したものを、所定のサイズに粉砕し、篩い分けしたものである。鉱物組成としては、α-Al2O3やβ-Al2O3などと示される酸化アルミニウムで、焼結アルミナ、仮焼アルミナ、及び易焼結アルミナ等と呼ばれるものであって、通常、Al2O3を90質量%以上含有するα-Al2O3の使用が最も好ましい。 It is preferable to add alumina to the alumina cement according to the present invention for the purpose of improving fire resistance and corrosion resistance. Alumina here refers to an Al2O3 source such as aluminum hydroxide or calcined alumina, which is sintered or melted by a firing device such as a rotary kiln or a melting device such as a gasification melting furnace, and pulverized to a predetermined size, Sifted. The mineral composition is aluminum oxide, such as α-Al2O3 or β-Al2O3, which is called sintered alumina, calcined alumina, easily sintered alumina, etc., and usually contains 90% by mass or more of Al2O3 Most preferred is the use of α-Al2O3.

更に本発明では、流動性を改善する目的で、通常、不定形耐火物に配合される硬化遅延剤や硬化促進剤、流動化剤等の添加剤を併用することが可能である。 Furthermore, in the present invention, for the purpose of improving fluidity, it is possible to use additives such as a curing retarder, a curing accelerator, a fluidizing agent, etc., which are usually blended in an amorphous refractory.

硬化促進剤としては、Ca(OH)2,Li2CO3,NaOH,KOH等の水酸化物やリチウム塩が挙げられ、中でも、リチウム塩は硬化促進作用が強い。また、硬化遅延剤としては、カルボン酸類、アルカリ金属炭酸塩、硼酸類、ポリアクリル酸類、ポリメタクリル酸類及びヘキサメタ燐酸、トリポリ燐酸、ピロ燐酸等のアルカリ塩類が挙げられる。 Examples of the curing accelerator include hydroxides such as Ca (OH) 2, Li2CO3, NaOH, KOH, and lithium salts. Among these, lithium salts have a strong curing accelerating action. Further, examples of the retarder include carboxylic acids, alkali metal carbonates, boric acids, polyacrylic acids, polymethacrylic acids, and alkali salts such as hexametaphosphoric acid, tripolyphosphoric acid, and pyrophosphoric acid.

添加剤の配合方法は、特に限定されるものではなく、各添加剤を所定の割合になるように配合し、予め粉砕したクリンカーと、V型ブレンダー、コーンブレンダー、ナウターミキサー、パン型ミキサー、及びオムニミキサー等の混合機を用いて均一混合するか、あるいは、所定の割合でクリンカーに配合後、振動ミル、チューブミル、ボールミル、及びローラーミル等の粉砕機で混合粉砕することが可能である。 The method of blending the additive is not particularly limited, and each additive is blended so as to have a predetermined ratio, and a crushed pulverizer, a V-type blender, a cone blender, a nauter mixer, a pan-type mixer, It can be mixed uniformly using a mixer such as an omni mixer or mixed with a clinker at a predetermined ratio, and then mixed and pulverized by a pulverizer such as a vibration mill, a tube mill, a ball mill, and a roller mill. .

本発明の不定形耐火物に係る耐火骨材は、通常、不定形耐火物に使用されている耐火骨材が使用可能であって、具体的には、溶融マグネシア、焼結マグネシア、天然マグネシア、及び軽焼マグネシア等のマグネシア、溶融マグネシアスピネルや焼結マグネシアスピネルなどのマグネシアスピネル、溶融アルミナ、焼結アルミナ、軽焼アルミナ、及び易焼結アルミナ等のアルミナ、シリカヒューム、コロイダルシリカ、軽焼アルミナ、及び易焼結アルミナ等の超微粉、その他、溶融シリカ、焼成ムライト、酸化クロム、ボーキサイト、アンダルサイト、シリマナイト、シャモット、ケイ石、ロー石、粘土、ジルコン、ジルコニア、ドロマイト、パーライト、バーミキュライト、煉瓦屑、陶器屑、窒化珪素、窒化ホウ素、炭化珪素、及び窒化珪素鉄等の使用が可能である。 As the refractory aggregate according to the amorphous refractory of the present invention, the refractory aggregate usually used in the amorphous refractory can be used. Specifically, molten magnesia, sintered magnesia, natural magnesia, And magnesia such as light calcined magnesia, magnesia spinel such as fused magnesia spinel and sintered magnesia spinel, alumina such as fused alumina, sintered alumina, light calcined alumina, and easily sintered alumina, silica fume, colloidal silica, light calcined alumina , And ultra-fine powder such as easy-sintered alumina, etc., fused silica, calcined mullite, chromium oxide, bauxite, andalusite, sillimanite, chamotte, quartzite, rholite, clay, zircon, zirconia, dolomite, perlite, vermiculite, brick Scrap, pottery scrap, silicon nitride, boron nitride, silicon carbide, and silicon nitride The use of an is possible.

特に本発明の不定形耐火物については、耐食性、耐用性、及び耐火性の面から、マグネシア、マグネシアスピネル、シャモット、アルミナ、炭化珪素、及び超微粉、更にはオイルピッチ、タール、鱗状黒鉛等のカーボン質骨材の中から選ばれた一種又は二種以上の耐火骨材を配合して、耐火骨材 99〜92質量%、アルミナセメント添加量が1〜8質量%の低セメントキャスタブルタイプに使用することが好ましい。 Especially for the amorphous refractories of the present invention, from the aspects of corrosion resistance, durability, and fire resistance, magnesia, magnesia spinel, chamotte, alumina, silicon carbide, and ultrafine powder, as well as oil pitch, tar, scaly graphite, etc. One or two or more refractory aggregates selected from carbon aggregates are blended, and used in low cement castable types with 99 to 92 mass% refractory aggregate and 1 to 8 mass% alumina cement. It is preferable to do.

本発明の不定形耐火物の製造方法は、特に限定されるものではないが、通常の不定形耐火物の製造方法に準じ、各構成原料を所定の割合になるように配合し、V型ブレンダー、コーンブレンダー、ナウターミキサー、パン型ミキサー、及びオムニミキサー等の混合機を用いて均一混合するか、あるいは、所定の割合で混練り施工する際、混練り機に直接秤込むことも可能である。 The method for producing the amorphous refractory according to the present invention is not particularly limited, but in accordance with the usual method for producing an irregular refractory, each constituent raw material is blended in a predetermined ratio to obtain a V-type blender. It is possible to mix evenly using a mixer such as a cone blender, a nauter mixer, a bread mixer, and an omni mixer, or to directly weigh into a kneader when performing kneading at a predetermined ratio. is there.

石油廃触媒を電気炉で800℃に加熱して酸化焙焼した。還元剤として金属アルミニウムを、遷移金属酸化物の還元に必要な化学等量以上添加し、高周波炉で1850℃に加熱溶解してアルミナ原料を作製した。CaO原料として生石灰を用い、生成物中の鉱物組成が所定の割合になるように、アルミナ及びCaO原料を配合し、ガス化溶融炉にて1500℃で溶融後、高圧冷却エアーにより溶融物を急冷してカルシウムアルミネートを作製した。次に、得られたカルシウムアルミネートをバッチ式ボールミルにて、ブレーン値4800±500cm2/gに調整した。カルシウムアルミネートの鉱物組成及び化学成分を表1-1に示す。さらに、JISR2521に準じてモルタル試験を実施した。結果を表1-2に示す。 The petroleum waste catalyst was heated to 800 ° C. in an electric furnace for oxidation roasting. Metal aluminum was added as a reducing agent in an amount equal to or more than the chemical amount necessary for the reduction of the transition metal oxide, and heated and melted at 1850 ° C. in a high-frequency furnace to produce an alumina raw material. Quick lime is used as a CaO raw material, and alumina and CaO raw materials are blended so that the mineral composition in the product becomes a predetermined ratio. After melting at 1500 ° C in a gasification melting furnace, the melt is rapidly cooled with high-pressure cooling air. Thus, calcium aluminate was produced. Next, the obtained calcium aluminate was adjusted to a brain value of 4800 ± 500 cm 2 / g by a batch type ball mill. Table 1-1 shows the mineral composition and chemical composition of calcium aluminate. Furthermore, a mortar test was performed according to JIS R2521. The results are shown in Table 1-2.

<使用材料>
(1)Al2O3原料:石油廃触媒(遷移金属酸化物を含む使用済み脱硫触媒)
(2)CaO原料 :市販生石灰
(3)アルミナセメント:電気化学工業製アルミナセメント1号(比較用アルミナセメント)
<Materials used>
(1) Al2O3 raw material: petroleum waste catalyst (used desulfurization catalyst including transition metal oxide)
(2) CaO raw material: Commercial quicklime
(3) Alumina cement: Alumina cement No. 1 manufactured by Denki Kagaku Kogyo (alumina cement for comparison)

<評価方法>
(1)養生強度:4×4×16cmの型枠に混練物を入れ、20℃恒温室内で24時間養生した後、試験片の圧縮強度を測定した。
(2) 乾燥強度:4×4×16cmの型枠に混練物を入れ、20℃恒温室内で24時間養生した後、更に110℃にて24時間乾燥して、試験片の圧縮強度を測定した。
(3)鉱物組成:カルシウムアルミネート中の鉱物組成は、アルミナセメントを粉末X線回折法により測定し、回折図形をリードベルト法によって解析・定量した。
(4)非晶質:既知量のα―Quartzとアルミナセメントの混合粉末をX線回折法により測定し、回折図形をリードベルト法によって解析・定量した。
<Evaluation method>
(1) Curing strength: The kneaded product was put into a 4 × 4 × 16 cm mold and cured in a constant temperature room at 20 ° C. for 24 hours, and then the compressive strength of the test piece was measured.
(2) Dry strength: The kneaded product was put into a 4 × 4 × 16 cm mold, cured in a constant temperature room at 20 ° C. for 24 hours, and then dried at 110 ° C. for 24 hours, and the compressive strength of the test piece was measured. .
(3) Mineral composition: As for the mineral composition in calcium aluminate, alumina cement was measured by the powder X-ray diffraction method, and the diffraction pattern was analyzed and quantified by the lead belt method.
(4) Amorphous: A known amount of a mixed powder of α-Quartz and alumina cement was measured by the X-ray diffraction method, and the diffraction pattern was analyzed and quantified by the lead belt method.

Figure 0004155932
Figure 0004155932

Figure 0004155932
Figure 0004155932

実施例1で作製したカルシウムアルミネート100質量部に対して、α-Al2O3を表2に示す量(質量部)添加して、CaO含有量が18質量%となるよう調整した。このアルミナセメント3質量部、焼結アルミナ骨材76質量部、シリカヒューム3質量部、微粉アルミナ18質量部、並びに、分散剤として、トリポリ燐酸ナトリウム0.05質量部及びほう酸0.03質量部配合して、不定形耐火物を製造した。次に水を6.0質量部加えて、ミキサーにて5分間混練り後、20℃における特性を評価した。結果を表2に示す。 Α-Al 2 O 3 was added in an amount (part by mass) shown in Table 2 to 100 parts by mass of the calcium aluminate produced in Example 1, and the CaO content was adjusted to 18% by mass. Mixing 3 parts by mass of this alumina cement, 76 parts by mass of sintered alumina aggregate, 3 parts by mass of silica fume, 18 parts by mass of finely divided alumina, and 0.05 parts by mass of sodium tripolyphosphate and 0.03 parts by mass of boric acid as a dispersant, A regular refractory was produced. Next, 6.0 parts by mass of water was added, and after kneading for 5 minutes with a mixer, the characteristics at 20 ° C. were evaluated. The results are shown in Table 2.

<使用材料>
(1)焼結アルミナ:昭和電工社製商品名「焼結アルミナSRW」
(2)微粉アルミナ:住友化学社製商品名「AM21アルミナ」
(3)シリカヒューム:エルケム社製商品名「マイクロシリカU−971」
(4)トリポリ燐酸ナトリウム:関東化学社製試薬1級
(5)ほう酸:石津製薬社製試薬1級
(5)α-Al2O3:昭和電工社製易焼結性アルミナA―172
<Materials used>
(1) Sintered alumina: Trade name “Sintered Alumina SRW” manufactured by Showa Denko
(2) Fine powder alumina: Trade name “AM21 alumina” manufactured by Sumitomo Chemical Co., Ltd.
(3) Silica fume: trade name “Microsilica U-971” manufactured by Elchem
(4) Sodium tripolyphosphate: Reagent grade 1 manufactured by Kanto Chemical Co., Inc.
(5) Boric acid: Ishizu Pharmaceutical reagent grade 1
(5) α-Al2O3: Sinterable alumina A-172 manufactured by Showa Denko KK

<評価方法>
(1)流動性:20℃恒温室内に混練物を所定時間放置した後、15回タッピングしてフロー値を測定した。
(2)可使時間:20℃恒温室内で、混練物をポリエチレン製の袋に移し取り、触指にて硬化するまでに要した時間を測定し、可使時間とした。
(3)硬化時間: 20℃恒温室内に混練物を放置した際の、注水から発熱温度が最大に到達するまでの時間を温度記録計を用いて測定し、硬化時間とした。
(4)養生強度:4×4×16cmの型枠に混練物を入れ、20℃恒温室内で24時間養生した後、試験片の圧縮強度を測定した。
(5) 乾燥強度:4×4×16cmの型枠に混練物を入れ、20℃恒温室内で24時間養生した後、更に110℃にて24時間乾燥して、試験片の圧縮強度を測定した。
<Evaluation method>
(1) Fluidity: The kneaded material was left in a constant temperature room at 20 ° C. for a predetermined time, and then tapped 15 times to measure the flow value.
(2) Pot life: In a constant temperature room at 20 ° C., the kneaded product was transferred to a polyethylene bag, and the time required for curing with a finger was measured to determine the pot life.
(3) Curing time: When the kneaded material was left in a constant temperature room at 20 ° C., the time from the injection of water until the exothermic temperature reached the maximum was measured using a temperature recorder, and was defined as the curing time.
(4) Curing strength: The kneaded product was put into a 4 × 4 × 16 cm mold and cured in a constant temperature room at 20 ° C. for 24 hours, and then the compressive strength of the test piece was measured.
(5) Drying strength: The kneaded product was put into a 4 × 4 × 16 cm mold, cured in a constant temperature room at 20 ° C. for 24 hours, and further dried at 110 ° C. for 24 hours, and the compressive strength of the test piece was measured. .

表2に示す様に、本発明の不定形耐火物は、従来品に比べて、遜色ない特性を示した。 As shown in Table 2, the amorphous refractory of the present invention exhibited inferior characteristics compared to the conventional products.

Figure 0004155932
Figure 0004155932

実施例1のカルシウムアルミネート20質量部、下記の耐火骨材80質量部を配合し、千代田技研工業社製オムニミキサーで、20分間混合し、不定形耐火物を製造した。この不定形耐火物100質量部に対して、9.0質量部の水と、分散剤としてトリポリ燐酸ナトリウムを0.05質量部、及びほう酸を0.03質量部を添加し、混練りした。
混練りは、20℃恒温室内で行い、実施例2と同様に評価を行った。結果を表3に示す。
20 parts by mass of calcium aluminate of Example 1 and 80 parts by mass of the following refractory aggregate were blended and mixed for 20 minutes with an omni mixer manufactured by Chiyoda Giken Kogyo Co., Ltd. to produce an amorphous refractory. To 100 parts by mass of this amorphous refractory, 9.0 parts by mass of water, 0.05 parts by mass of sodium tripolyphosphate as a dispersant, and 0.03 parts by mass of boric acid were added and kneaded.
The kneading was performed in a constant temperature room at 20 ° C., and evaluation was performed in the same manner as in Example 2. The results are shown in Table 3.

<骨材>
(1)焼結アルミナ:モラルコ社製T―60 粒度3,360〜1,190μm:28質量部
(2)焼結アルミナ:モラルコ社製T―60 粒度1,190〜590μm:17質量部
(3)焼結アルミナ:モラルコ社製T―60 粒度590〜297μm:15質量部
(4)焼結アルミナ:モラルコ社製T―60 粒度297μm下:14質量部
(5)焼結アルミナ:モラルコ社製T―60 粒度45μm下:6質量部
<Aggregate>
(1) Sintered alumina: Moralco T-60 particle size 3,360-1,190 μm: 28 parts by mass (2) Sintered alumina: Moralco T-60 particle size 1,190-590 μm: 17 parts by mass (3) Sintered alumina: Moralco T-60 particle size 590-297 μm: 15 parts by mass (4) Sintered alumina: Moralco T-60 particle size 297 μm below: 14 parts by mass (5) Sintered alumina: Moralco T-60 particle size 45 μm below : 6 parts by mass

表3に示す様に、本発明の不定形耐火物は、従来の市販アルミナセメントを配合したものに比べて、可使時間が長く、流動性も十分で、硬化時間及び強度とも問題のないものであった。 As shown in Table 3, the amorphous refractory according to the present invention has a longer pot life, sufficient fluidity, and no problem in curing time and strength than those obtained by blending conventional commercial alumina cement. Met.

Figure 0004155932
Figure 0004155932

Claims (3)

石油廃触媒及び還元剤を溶融し精錬する際に発生するスラグと、CaO原料とから製造されるカルシウムアルミネートであって、CaO・2Al 2 O 3 、12CaO・7Al 2 O 3 、3CaO・Al 2 O 3 の群から選ばれる1種以上の鉱物、CaO・Al 2 O 3 及び非晶質を含有し、CaO/Al 2 O 3 モル比が1.0〜2.0で、かつ、SiO 2 、TiO 2 , MgO, Fe 2 O 3 及び遷移金属酸化物類の合計量が酸化物換算で5〜30質量%であるカルシウムアルミネートを含有するアルミナセメント。 And slag generated when melting the oil spent catalyst and a reducing agent refining, a calcium aluminate prepared from the CaO material, CaO · 2Al 2 O 3, 12CaO · 7Al 2 O 3, 3CaO · Al 2 One or more minerals selected from the group of O 3 , CaO · Al 2 O 3 and amorphous, CaO / Al 2 O 3 molar ratio is 1.0 to 2.0, and SiO 2 , An alumina cement containing calcium aluminate in which the total amount of TiO 2 , MgO, Fe 2 O 3 and transition metal oxides is 5 to 30% by mass in terms of oxide . 還元剤が石油コークス未燃灰及び金属アルミニウムであり、CaO原料が生石灰であることを特徴とする請求項1記載のアルミナセメント。 The alumina cement according to claim 1, wherein the reducing agent is petroleum coke unburned ash and metallic aluminum, and the CaO raw material is quicklime. 請求項1又は2記載のアルミナセメントと耐火骨材を含有する不定形耐火物。 An amorphous refractory containing the alumina cement according to claim 1 or 2 and a refractory aggregate.
JP2004058926A 2004-03-03 2004-03-03 Alumina cement and amorphous refractory Expired - Fee Related JP4155932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058926A JP4155932B2 (en) 2004-03-03 2004-03-03 Alumina cement and amorphous refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004058926A JP4155932B2 (en) 2004-03-03 2004-03-03 Alumina cement and amorphous refractory

Publications (2)

Publication Number Publication Date
JP2005247618A JP2005247618A (en) 2005-09-15
JP4155932B2 true JP4155932B2 (en) 2008-09-24

Family

ID=35028478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058926A Expired - Fee Related JP4155932B2 (en) 2004-03-03 2004-03-03 Alumina cement and amorphous refractory

Country Status (1)

Country Link
JP (1) JP4155932B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4754318B2 (en) * 2005-10-19 2011-08-24 新日鐵住金ステンレス株式会社 Soil improvement method
JP4527656B2 (en) * 2005-11-28 2010-08-18 電気化学工業株式会社 Calcium aluminate, alumina cement and amorphous refractories
JP2009173458A (en) * 2006-05-10 2009-08-06 Denki Kagaku Kogyo Kk Alumina cement and monolithic refractory
JP4602379B2 (en) * 2007-06-05 2010-12-22 電気化学工業株式会社 Method for producing alumina cement
JP5227150B2 (en) * 2008-12-04 2013-07-03 太平洋マテリアル株式会社 Fast-curing composition and method for producing the same
KR101179189B1 (en) 2010-04-21 2012-09-03 신희동 Preparation method for C12A7 mineral using rotary kiln
FR3072960B1 (en) * 2017-10-30 2022-03-04 Saint Gobain Weber ALUMINA-RICH SLAG BINDER
KR101964386B1 (en) * 2018-08-29 2019-04-01 에코플러스 주식회사 Composite of eco-friendly binding materials with low CO2 emission property for manufacturing marine concrete and marine concrete structure with epiphytic property of marine plants
CN114959269B (en) * 2022-04-25 2023-05-05 北京科技大学 Method for recycling valuable metals of waste hydrogenation catalyst in short-process fire method

Also Published As

Publication number Publication date
JP2005247618A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4527656B2 (en) Calcium aluminate, alumina cement and amorphous refractories
JP4602379B2 (en) Method for producing alumina cement
JP2006282486A (en) Alumina cement, alumina cement composition, and monolithic refractory
JP4155932B2 (en) Alumina cement and amorphous refractory
WO2007129752A1 (en) Process for production of alumina cement and prepared unshaped refractories
JP5949426B2 (en) Alumina-chromia-magnesia refractory brick
JP2005154180A (en) Alumina cement composition and monolithic refractory
RU2401820C1 (en) Chromous calcium hexaaluminate-based refractory aggregate and production method thereof
JP2004203702A (en) Monolithic refractory containing serpentine or talc, applied body of the same, and furnace lined with the same
JP3348813B2 (en) Alumina cement substance, alumina cement containing the same, and amorphous refractory using the same
JP2003171184A (en) SiC FOR MONOLITHIC REFRACTORY HAVING EXCELLENT CORROSION RESISTANCE, SPALLING RESISTANCE AND DRYNESS, PRODUCTION METHOD THEREFOR, AND RAW MATERIAL FOR THE MONOLITHIC REFRACTORY
JP2000178074A (en) Castable refractory for blast furnace tapping spout
JP4101162B2 (en) Alumina cement, alumina cement composition and amorphous refractory using the same
JP4312190B2 (en) Calcium aluminate, alumina cement composition and amorphous refractory
JP7368648B1 (en) Method for manufacturing unfired basic bricks
JP4397839B2 (en) Silicon iron nitride powder and refractory
JP2007099545A (en) Alumina cement composition and monolithic refractory using the same
JP2005067930A (en) Alumina cement, alumina cement composition, and monolithic refractory using it
JP3807773B2 (en) Alumina cement, alumina cement composition, and amorphous refractory using the same
JP4205926B2 (en) Unshaped refractory for waste melting furnace and waste melting furnace lined with it
JP3340298B2 (en) Alumina cement and amorphous refractories using it
JP3348815B2 (en) Alumina cement substance, alumina cement containing the same, and amorphous refractory using the same
JP2003226583A (en) Unshaped refractory for hot metal
JPH09165240A (en) Alumina cement and monolithic refractory using the same
JP4204246B2 (en) Silicon carbide raw material and amorphous refractory raw material for amorphous refractories with excellent drying and corrosion resistance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4155932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees