JP2001080969A - Nonlithic refractory raw material and monolithic refractries - Google Patents

Nonlithic refractory raw material and monolithic refractries

Info

Publication number
JP2001080969A
JP2001080969A JP2000173540A JP2000173540A JP2001080969A JP 2001080969 A JP2001080969 A JP 2001080969A JP 2000173540 A JP2000173540 A JP 2000173540A JP 2000173540 A JP2000173540 A JP 2000173540A JP 2001080969 A JP2001080969 A JP 2001080969A
Authority
JP
Japan
Prior art keywords
refractory
alumina
powder
weight
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000173540A
Other languages
Japanese (ja)
Other versions
JP3741595B2 (en
Inventor
Tomohiko Hara
智彦 原
Toru Yamagishi
徹 山岸
Hirotaka Ishizuka
洋貴 石塚
Junichi Irimura
純一 入村
Junichi Sano
順一 佐野
Yoshimasa Miura
祥正 三浦
Hideo Shitaya
英雄 下谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Nichias Corp
Original Assignee
Hitachi Zosen Corp
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Nichias Corp filed Critical Hitachi Zosen Corp
Priority to JP2000173540A priority Critical patent/JP3741595B2/en
Publication of JP2001080969A publication Critical patent/JP2001080969A/en
Application granted granted Critical
Publication of JP3741595B2 publication Critical patent/JP3741595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve corrosion resistance, executability and safety at a low cost by specifying a composition consisting of fine ceramic powder containing fine aluminous powder, on aluminous or silicon carbide refractory aggregate, nickel oxide powder or nickel powder and a hydraulic binder. SOLUTION: Monolithic refractories are obtained by firing the kneaded matter obtained by adding water to a raw material consisting of the refractory aggregate, the fine ceramic powder, the nickel oxide powder or the nickel powder and the hydraulic binder. The fine ceramic powder consists of 8 to 26.5 wt.% fine aluminous powder and 0.5 to 10% fine silica powder. The overage grain size thereof is 0.1 to 50 μm. The nickel oxide or nickel powder to improve the corrosion resistance to slag is specified to a content of 0.17 to 18% in terms of NiO and the average grain size thereof is specified to 0.1 to 100 μm. The refractory aggregate preferably contains aluminous material, and further, silicon carbide material is incorporated at need therein. The content thereof is specified to 48 to 80%. The hydraulic binder is preferably hydraulic alumina and the content thereof is specified to 2 to 10%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スラグに対する優
れた耐食性を有するアルミナ−酸化ニッケル系及び炭化
珪素−アルミナ−酸化ニッケル系の不定形耐火物原料及
び該耐火物原料から製造された不定形耐火物に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous refractory raw material based on alumina-nickel oxide and silicon carbide-alumina-nickel oxide having excellent corrosion resistance to slag, and an amorphous refractory produced from the refractory raw material. It is about things.

【0002】[0002]

【従来の技術】従来より、不定形耐火物として、アルミ
ナセメントを無機結合材として用いた、アルミナ骨材を
主成分とするアルミナ系不定形耐火物及び炭化珪素骨材
を主成分とする炭化珪素系不定形耐火物が知られてい
る。アルミナ系不定形耐火物及び炭化珪素系不定形耐火
物は共に耐熱性に優れるが、特に、炭化珪素系不定形耐
火物は、塩基性の溶融スラグに対する浸透性が低く耐食
性に優れる。これら耐火物は、溶鉱取鍋用耐火物として
広く用いられている。
2. Description of the Related Art Conventionally, an alumina-based amorphous refractory having alumina aggregate as a main component and a silicon carbide having silicon carbide aggregate as a main component, using alumina cement as an inorganic binder as an amorphous refractory. Amorphous refractories are known. Both alumina-based amorphous refractories and silicon carbide-based amorphous refractories have excellent heat resistance. In particular, silicon carbide-based amorphous refractories have low permeability to basic molten slag and have excellent corrosion resistance. These refractories are widely used as blast ladle refractories.

【0003】近年、上記不定形耐火物は、溶融炉用耐火
物としての使用が考えられるようになってきている。し
かし、溶融炉用耐火物は塩基性の溶融スラグと直接に接
触するため、溶鉱取鍋用耐火物に比べて耐食性の要求が
厳しい。このため、従来の不定形耐火物は、比較的耐食
性に優れる炭化珪素系不定形耐火物であっても、溶融炉
用耐火物としては耐食性が十分でなかった。
In recent years, the use of the above-mentioned irregular refractories as refractories for melting furnaces has been considered. However, since the refractory for a melting furnace is in direct contact with the basic molten slag, the requirements for corrosion resistance are more stringent than those for a blast ladle. For this reason, even if the conventional amorphous refractory is a silicon carbide-based amorphous refractory having relatively excellent corrosion resistance, the corrosion resistance is not sufficient as a refractory for a melting furnace.

【0004】このような問題を解決するものとして、特
開平9−278540号公報には、カーボンと酸化コバ
ルトを添加して焼成した炭化珪素系不定形耐火物が開示
されており、この耐火物によれば耐食性をより向上させ
ることができる。しかしながら、上記耐火物で用いられ
る酸化コバルトは高価であるため、製造される不定形耐
火物も高価になるという問題があった。
As a solution to such a problem, Japanese Patent Application Laid-Open No. 9-278540 discloses a silicon carbide-based amorphous refractory obtained by adding carbon and cobalt oxide and calcining the refractory. According to this, the corrosion resistance can be further improved. However, since the cobalt oxide used in the refractory is expensive, there is a problem that the amorphous refractory to be manufactured is also expensive.

【0005】[0005]

【発明が解決しようとする課題】酸化コバルトを用いず
に耐食性を向上させる方法としては、例えば、アルミナ
系不定形耐火物で既に用いられ耐火物に高い耐食性を付
与するマグネシアやクロミアを炭化珪素系不定形耐火物
にも配合することが考えられる。しかしながら、マグネ
シアを配合して得られる炭化珪素系不定形耐火物は14
00℃未満で低融点化合物を生成するため耐火物の耐熱
性が低下してしまうという問題があった。
As a method of improving the corrosion resistance without using cobalt oxide, for example, magnesia or chromia, which is already used for an alumina-based irregular refractory and imparts high corrosion resistance to the refractory, is replaced with a silicon carbide-based refractory. It is conceivable to mix it with irregular shaped refractories. However, silicon carbide-based amorphous refractories obtained by blending magnesia are 14
Since a low-melting point compound is generated at a temperature lower than 00 ° C., there is a problem that the heat resistance of the refractory decreases.

【0006】また、一般的に炭化珪素系不定形耐火物
は、高温度雰囲気中において、珪素成分が酸素と反応す
ることで二酸化炭素あるいは一酸化炭素の生成、さらに
は酸化珪素の生成が行われるため、耐食性が低下すると
いう問題があった。
In general, silicon carbide-based amorphous refractories generate carbon dioxide or carbon monoxide and further generate silicon oxide by reacting a silicon component with oxygen in a high-temperature atmosphere. Therefore, there is a problem that the corrosion resistance is reduced.

【0007】また、クロミアを配合して得られる炭化珪
素系不定形耐火物は耐食性は高くなるものの、使用時に
六価クロムの生成が懸念され、環境保全の観点からその
使用は好ましくない。このことは、クロミアを配合して
得られるアルミナ系不定形耐火物についても同様に指摘
される問題である。
[0007] Further, although the silicon carbide-based amorphous refractory obtained by blending chromia has high corrosion resistance, there is a concern that hexavalent chromium is generated during use, and its use is not preferable from the viewpoint of environmental protection. This is a problem pointed out similarly for alumina-based amorphous refractories obtained by blending chromia.

【0008】一方、耐熱性及び耐食性に優れたアルミナ
系不定形耐火物としては、例えば、特公平6−8224
号公報には、所定の耐火材と、シリカ等の超微粉と、超
微粉中に含有される水硬性アルミナとからなる耐火組成
物に、分散剤を添加したセメント無含有不定形耐火物原
料が開示されている。
On the other hand, as an alumina-based amorphous refractory excellent in heat resistance and corrosion resistance, for example, Japanese Patent Publication No. 6-8224
In the official gazette, a predetermined refractory material, an ultrafine powder of silica or the like, and a refractory composition comprising hydraulic alumina contained in the ultrafine powder, a cement-free amorphous refractory raw material added with a dispersant, It has been disclosed.

【0009】この耐火物原料によれば、得られる耐火物
の耐食性及び耐火性等が向上すると共に、流動性及び硬
化性等の施工性が高められる。しかしながら、上記耐火
物原料等は、硬化に適した条件の幅が狭いため、施工の
際に混練現場の温度及び湿度や、骨材等配合材料の配合
割合の影響を受け易く、施工性が十分でないという問題
があった。具体的には、水硬性結合材は基本的に混練時
に流動性が低下し易い上に、施工時の混練現場の気温が
低ければ硬化不良を生じ易く、気温が高ければ硬化が早
すぎて混練時の流動性が急激に低下するという問題があ
った。
According to this refractory raw material, corrosion resistance and fire resistance of the obtained refractory are improved, and workability such as fluidity and curability is enhanced. However, since the refractory raw materials and the like have a narrow range of conditions suitable for curing, they are easily affected by the temperature and humidity at the kneading site and the mixing ratio of the compounding materials such as aggregate during the application, and the workability is sufficient. There was a problem that was not. Specifically, hydraulic binders generally have a tendency to decrease in fluidity during kneading, and are also susceptible to poor curing when the temperature at the kneading site during construction is low, and to cure too quickly when the temperature is high. There is a problem that the fluidity at the time is rapidly reduced.

【0010】すなわち、従来は、耐食性に優れると共
に、安価で、製造時の施工性に優れ、さらに安全性の高
い不定形耐火物は知られていなかった。
That is, conventionally, there has been no known amorphous refractory which has excellent corrosion resistance, is inexpensive, has excellent workability at the time of production, and has high safety.

【0011】従って、本発明の目的は、低コストで耐食
性に優れると共に、製造時の施工性に優れ、安全性の高
い不定形耐火物及び該耐火物を製造可能な不定形耐火物
原料を提供することにある。
Accordingly, an object of the present invention is to provide an amorphous refractory which is low in cost, has excellent corrosion resistance, is excellent in workability at the time of production, has high safety, and a raw material of an amorphous refractory which can be manufactured with the refractory. Is to do.

【0012】[0012]

【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果、耐火骨材及びセラミッ
クス微粉末を用い、耐食性を向上させる添加剤として酸
化ニッケル又はニッケル粉末を用いさらに無機結合剤と
して水硬性結合剤を用いた耐火物原料によれば、得られ
る不定形耐火物は、低コストで耐食性に優れると共に、
製造時の施工性に優れ、さらに安全性の高いものとなる
ことを見出し、本発明を完成するに至った。
Under such circumstances, the present inventors have conducted intensive studies and as a result, have used fire-resistant aggregate and ceramic fine powder, and used nickel oxide or nickel powder as an additive for improving the corrosion resistance. According to the refractory raw material using a hydraulic binder as a binder, the obtained amorphous refractory is excellent in corrosion resistance at low cost,
The present inventors have found that the workability during production is excellent and the safety is further improved, and the present invention has been completed.

【0013】また、本発明者は、特に該耐火物原料にお
いて、前記セラミックス微粉末がアルミナ質微粉末を含
む耐火物原料によれば、得られる不定形耐火物中にスピ
ネル型構造に類似するアルミナ−酸化ニッケル化合物
(以下、「スピネル型アルミナ−酸化ニッケル化合物」
ともいう)が生成されるため、より低コストで耐食性に
優れると共に、製造時の施工性に優れ、さらに安全性の
高いものとなることを見出した。
In addition, the present inventor has found that in the refractory raw material, according to the refractory raw material in which the ceramic fine powder contains alumina fine powder, the obtained amorphous refractory contains alumina having a spinel structure similar to that of the refractory raw material. -Nickel oxide compound (hereinafter, "spinel type alumina-Nickel oxide compound")
) Is produced, so that it is less expensive, has excellent corrosion resistance, is excellent in workability at the time of production, and has higher safety.

【0014】すなわち、本発明は、耐火骨材と、セラミ
ックス微粉末と、酸化ニッケル粉末又はニッケル粉末
と、水硬性結合材とを含むことを特徴とする不定形耐火
物原料を提供するものである。
That is, the present invention provides an irregular-shaped refractory raw material comprising refractory aggregate, ceramic fine powder, nickel oxide powder or nickel powder, and a hydraulic binder. .

【0015】また、本発明は、前記不定形耐火物原料に
おいて、前記セラミックス微粉末がアルミナ質微粉末を
含むことを特徴とする不定形耐火物原料を提供するもの
である。
Further, the present invention provides an amorphous refractory raw material, wherein the ceramic fine powder contains alumina fine powder in the amorphous refractory raw material.

【0016】また、本発明は、前記不定形耐火物原料に
水を加え混練物とし、さらに該混練物を焼成して得られ
ることを特徴とする不定形耐火物を提供するものであ
る。
The present invention also provides an amorphous refractory obtained by adding water to the amorphous refractory raw material to form a kneaded product, and firing the kneaded product.

【0017】[0017]

【発明の実施の形態】本発明に係る不定形耐火物原料
は、耐火骨材と、セラミックス微粉末と、酸化ニッケル
粉末又はニッケル粉末と、水硬性結合材とを含む不定形
耐火物原料である。
BEST MODE FOR CARRYING OUT THE INVENTION The amorphous refractory raw material according to the present invention is an amorphous refractory raw material containing a refractory aggregate, ceramic fine powder, nickel oxide powder or nickel powder, and a hydraulic binder. .

【0018】本発明において用いられる耐火骨材として
は、アルミナ質耐火骨材、炭化珪素質耐火骨材又はこれ
らの両方が挙げられる。このうち、アルミナ質耐火骨材
は、酸化ニッケルと反応してスピネル型アルミナ−酸化
ニッケル化合物を生成して不定形耐火物の耐食性が高く
なるため好ましい。なお、耐火骨材として炭化珪素質耐
火骨材のみを用いる場合は、後述のセラミックス微粉末
にアルミナ質微粉末が含まれているものを用いると、耐
火物原料中のアルミナと酸化ニッケルとでスピネル型ア
ルミナ−酸化ニッケル化合物を生成するため、得られる
耐火物の耐食性が高くなり好ましい。
The refractory aggregate used in the present invention includes alumina-based refractory aggregate, silicon carbide-based refractory aggregate, or both of them. Among these, alumina-based refractory aggregate is preferable because it reacts with nickel oxide to generate a spinel-type alumina-nickel oxide compound and increases the corrosion resistance of the amorphous refractory. When only a silicon carbide refractory aggregate is used as the refractory aggregate, when a ceramic fine powder containing alumina fine powder described later is used, alumina and nickel oxide in the refractory raw material are used as a spinel. Since a type-alumina-nickel oxide compound is generated, the corrosion resistance of the refractory obtained is preferably high.

【0019】アルミナ質耐火骨材の材質としては、例え
ば、高純度アルミナ、アルミナシリカ、ムライト、ボー
キサイト及びシャモットより選択される1種又は2種以
上が挙げられる。ここで、アルミナシリカとは主にアル
ミナ成分とシリカ成分とからなる組成物を広義に含むも
のであり、ムライトとはアルミナ成分とシリカ成分を所
定の配合割合で含みムライト質となっているものをい
う。上記アルミナ質耐火骨材は、アルミナ質以外に他の
成分が含まれていてもよいが、アルミナ質をより高い割
合で含むものが耐熱性(耐火性)の点から好ましい。ま
た、炭化珪素質耐火骨材の材質としては、例えば、純度
80%以上の耐火物用炭化珪素が挙げられる。上記アル
ミナ質耐火骨材又は炭化珪素質耐火骨材は、1種又は2
種以上組み合わせて用いることができる。
Examples of the material of the alumina refractory aggregate include one or more selected from high-purity alumina, alumina silica, mullite, bauxite, and chamotte. Here, alumina silica refers to a composition mainly including an alumina component and a silica component in a broad sense, and mullite refers to a mullite material containing an alumina component and a silica component in a predetermined blending ratio. Say. The above-mentioned alumina-based refractory aggregate may contain other components in addition to the alumina-based, but those containing a higher proportion of the alumina-based are preferred from the viewpoint of heat resistance (fire resistance). Examples of the material of the silicon carbide refractory aggregate include silicon carbide for refractories having a purity of 80% or more. The above-mentioned alumina refractory aggregate or silicon carbide refractory aggregate is one or two kinds.
It can be used in combination of more than one kind.

【0020】耐火骨材としては、粒径が50μmを越え
るものが用いられ、この範囲内の粒径のものであればど
のようなものでもよい。なお、粒径の異なるものを組み
合わせて用いると得られる耐火物の内部組織が緻密化す
ると共に混練物の流動性が向上し施工部位に流し込み易
くなるため好ましい。
As the refractory aggregate, those having a particle size exceeding 50 μm are used, and any material having a particle size within this range may be used. In addition, it is preferable to use a combination of materials having different particle diameters, because the internal structure of the obtained refractory becomes denser, the fluidity of the kneaded material is improved, and the material can be easily poured into the construction site.

【0021】例えば、耐火骨材が、粒径が1mmを越え
て3mm以下である粗粒材と、粒径が0.15mmを越
えて1mm以下である微粒材と、粒径が50μmを越え
て0.15mm以下である粉末材とを組み合わせたもの
であると、粗粒材が耐火物の骨格を形成し、微粒材が粗
粒材同士の空隙を充填し、粉末材が粗粒材及び微粒材間
の空隙をさらに充填して得られる耐火物の緻密性を高め
ると共に混練物の流動性を高める潤滑材として作用し、
また、耐火骨材全体としては得られる耐火物の内部組織
が緻密化すると共に混練物の流動性が向上し施工部位に
流し込み易くなるため好ましい。
For example, the refractory aggregate is composed of a coarse-grained material having a particle size of more than 1 mm and 3 mm or less, a fine-grained material having a particle size of more than 0.15 mm and 1 mm or less, and a fine-grained material having a particle size of more than 0.15 mm and 1 mm or less. When it is a combination of a powder material of 0.15 mm or less, the coarse material forms a skeleton of the refractory, the fine material fills the gap between the coarse materials, and the powder material is a coarse material and a fine material. It acts as a lubricant to increase the denseness of the refractory obtained by further filling the gaps between the materials and to increase the fluidity of the kneaded material,
In addition, the refractory aggregate as a whole is preferable because the internal structure of the obtained refractory is densified, the fluidity of the kneaded material is improved, and it is easy to pour into the construction site.

【0022】耐火骨材の配合量としては、不定形耐火物
原料中に48〜80重量%の量で含まれることが好まし
い。耐火骨材が、粗粒材と微粒材と粉末材とからなるも
のである場合、不定形耐火物原料中に、粗粒材は好まし
くは25〜45重量%、さらに好ましくは28〜40重
量%、微粒材は好ましくは15〜35重量%、さらに好
ましくは20〜30重量%、粉末材は好ましくは4〜2
5重量%、さらに好ましくは5〜22重量%の量で含ま
れる。粗粒材、微粒材及び粉末材が上記比率で配合され
ると、得られる耐火物の内部組織が緻密化すると共に、
混練物の流動性が向上し施工部位に流し込み易くなるた
め好ましい。
The amount of the refractory aggregate to be incorporated is preferably 48 to 80% by weight in the amorphous refractory raw material. When the refractory aggregate is composed of a coarse-grained material, a fine-grained material, and a powdered material, the coarse-grained material is preferably 25 to 45% by weight, more preferably 28 to 40% by weight in the amorphous refractory raw material. The fine particles are preferably 15 to 35% by weight, more preferably 20 to 30% by weight, and the powders are preferably 4 to 2% by weight.
5% by weight, more preferably 5 to 22% by weight. When the coarse-grained material, fine-grained material and powder material are blended in the above ratio, the internal structure of the obtained refractory is densified,
It is preferable because the fluidity of the kneaded material is improved and the kneaded material is easily poured into the construction site.

【0023】本発明において用いられるセラミックス微
粉末は、不定形耐火物原料に水を添加し混練した混練物
の施工性を向上させるため、すなわち、混練物の流動性
及び保水性を高くし、粘性を低くするためのものであ
る。セラミックス微粉末としては、例えば、アルミナ
質、シリカ、チタニア、ジルコニア及び炭化珪素等の微
粉末が挙げられる。
The ceramic fine powder used in the present invention is used for improving the workability of the kneaded material obtained by adding water to the amorphous refractory raw material, that is, increasing the fluidity and water retention of the kneaded material, It is for lowering. Examples of the ceramic fine powder include fine powders of alumina, silica, titania, zirconia, silicon carbide, and the like.

【0024】アルミナ質微粉末の材質としては、上記ア
ルミナ質耐火骨材と同様のものが挙げられ、例えば、高
純度アルミナ、アルミナシリカ、ムライト、ボーキサイ
ト及びシャモットより選択される1種又は2種以上が挙
げられる。アルミナ質微粉末は、アルミナ質以外に他の
成分が含まれいてもよいが、アルミナ質をより高い割合
で含むものが耐熱性(耐火性)の点から好ましい。炭化
珪素微粉末の材質としては、上記炭化珪素質耐火骨材と
同様のものが挙げられ、例えば、純度80%以上の耐火
物用炭化珪素が挙げられる。
Examples of the material of the alumina fine powder include the same materials as the above alumina refractory aggregate. For example, one or more selected from high-purity alumina, alumina silica, mullite, bauxite and chamotte Is mentioned. The alumina fine powder may contain other components besides alumina, but those containing alumina at a higher ratio are preferable from the viewpoint of heat resistance (fire resistance). Examples of the material of the silicon carbide fine powder include the same materials as the above-mentioned silicon carbide refractory aggregate, for example, silicon carbide for refractories having a purity of 80% or more.

【0025】セラミックス微粉末のうち、アルミナ質微
粉末は、混練物に流動性を付与すると共に、酸化ニッケ
ルと反応することによりスピネル型アルミナ−酸化ニッ
ケル化合物を生成するため好ましい。また、シリカ微粉
末は混練物に流動性及び保水性を付与すると共に、耐火
物の加熱後の強度を十分にするため好ましい。さらに、
アルミナ質微粉末及びシリカ微粉末を組み合わせたもの
は、混練物の流動性及び保水性が高く、アルミナ質微粉
末がスピネル型アルミナ−酸化ニッケル化合物を生成す
ると共に、シリカ微粉末が耐火物の加熱後の強度を十分
にするためより好ましい。上記セラミックス微粉末は、
1種又は2種以上組み合わせて用いることができる。
Of the ceramic fine powders, alumina fine powders are preferred because they impart fluidity to the kneaded material and form a spinel-type alumina-nickel oxide compound by reacting with nickel oxide. Further, the silica fine powder is preferable because it imparts fluidity and water retention to the kneaded material and ensures sufficient strength of the refractory after heating. further,
The combination of the alumina fine powder and the silica fine powder has high fluidity and water retention of the kneaded material, the alumina fine powder generates a spinel-type alumina-nickel oxide compound, and the silica fine powder heats the refractory. It is more preferable to make the strength afterward sufficient. The ceramic fine powder,
One type or a combination of two or more types can be used.

【0026】セラミックス微粉末は、平均粒径が0.1
〜50μm、好ましくは0.1〜30μm、さらに好ま
しくは0.1〜10μmである。平均粒径が上記範囲内
にあると、得られる耐火物の内部組織が緻密化すると共
に、混練物の流動性が向上し施工部位に流し込み易くな
るため好ましい。なお、アルミナ質微粉末は平均粒径が
上記範囲内であり、上記アルミナ質耐火骨材とは粒径が
異なっているため、本発明において特定粒径のアルミナ
質粉末はアルミナ質微粉末又はアルミナ質耐火骨材のい
ずれかに分類される。アルミナ質微粉末は、平均粒径が
アルミナ質耐火骨材よりも小さいため、不定形耐火物の
焼成の際に耐火骨材間の隙間に容易に充填される。この
ため、該隙間で酸化ニッケルと反応して耐食性に富むス
ピネル型アルミナ−酸化ニッケル化合物を生成し、一般
的に該隙間で生じ易いスラグの浸漬をより効果的に抑制
できて好ましい。
The ceramic fine powder has an average particle size of 0.1
To 50 μm, preferably 0.1 to 30 μm, more preferably 0.1 to 10 μm. When the average particle size is in the above range, the internal structure of the obtained refractory is densified, and the fluidity of the kneaded material is improved, so that it is easy to pour the material into the construction site. The average particle size of the alumina fine powder is within the above range, and the average particle size is different from that of the alumina refractory aggregate. Classified as one of high quality refractory aggregates. Since the alumina fine powder has an average particle size smaller than that of the alumina-based refractory aggregate, the alumina-based powder easily fills the gaps between the refractory aggregates during firing of the amorphous refractory. For this reason, it is preferable because it reacts with the nickel oxide in the gap to generate a spinel-type alumina-nickel oxide compound having a high corrosion resistance, and can more effectively suppress slag immersion generally generated in the gap.

【0027】セラミックス微粉末は、不定形耐火物原料
中に好ましくは12〜27重量%、さらに好ましくは1
4〜27重量%の量で含まれる。セラミックス微粉末の
配合量が12重量%未満であると不定形耐火物原料の混
練物の流動性及び保水性が十分でないため好ましくな
い。なお、この状態の混練物に対して、流動性及び保水
性を付与するために混練水量を多くすると、耐火骨材と
セラミックス微粉末とが分離し易くなるため好ましくな
い。また、セラミックス微粉末の配合量が27重量%を
越えると不定形耐火物原料の混練物に振動を加えた際の
流動性は向上するが、混練物の粘性が増加しすぎて施工
性が悪化するため好ましくない。
[0027] The ceramic fine powder is preferably 12 to 27% by weight, more preferably 1 to 27% by weight in the raw material of the amorphous refractory.
It is contained in an amount of 4 to 27% by weight. If the content of the ceramic fine powder is less than 12% by weight, the fluidity and water retention of the kneaded product of the amorphous refractory raw material are not sufficient, which is not preferable. It is not preferable to increase the amount of kneading water to impart fluidity and water retention to the kneaded material in this state, because the refractory aggregate and the ceramic fine powder are easily separated. If the amount of the fine ceramic powder exceeds 27% by weight, the fluidity of the kneaded material of the amorphous refractory material when vibration is applied is improved, but the viscosity of the kneaded material is excessively increased and the workability is deteriorated. Is not preferred.

【0028】セラミックス微粉末がアルミナ質微粉末及
びシリカ微粉末の併用系である場合、不定形耐火物原料
中、アルミナ質微粉末の配合量は好ましくは8〜26.
5重量%、さらに好ましくは10〜25重量%、シリカ
微粉末の配合量は好ましくは0.5〜10重量%、さら
に好ましくは1.5〜7重量%の量である。アルミナ質
微粉末及びシリカ微粉末の配合量が上記範囲内にある
と、流動性、保水性及び粘性のバランスに優れた混練物
が得られる。
When the ceramic fine powder is a combination of alumina fine powder and silica fine powder, the amount of the alumina fine powder in the amorphous refractory raw material is preferably from 8 to 26.
5% by weight, more preferably 10 to 25% by weight, and the amount of the silica fine powder is preferably 0.5 to 10% by weight, more preferably 1.5 to 7% by weight. When the blending amount of the alumina fine powder and the silica fine powder is within the above range, a kneaded product having an excellent balance of fluidity, water retention and viscosity can be obtained.

【0029】本発明において用いられる酸化ニッケル粉
末又はニッケル粉末は、不定形耐火物にスラグに対する
耐食性を付与するためのものである。このうち酸化ニッ
ケル粉末としては、例えば、触媒、ガラス着色、ほうろ
う、陶磁器釉薬及びフェライト材等に用いられるニッケ
ル換算で75重量%以上の粉末が挙げられる。また、ニ
ッケル粉末としては、例えば、酸化雰囲気中での加熱に
より酸化ニッケルを生成するものが挙げられる。ここ
で、酸化雰囲気中での加熱とは、例えば、混練成形物の
空気中での焼成工程における加熱や、乾燥だき、又は焼
成後の耐火物を炉内で使用する際における加熱等が挙げ
られる。
The nickel oxide powder or nickel powder used in the present invention is for imparting corrosion resistance to slag to an amorphous refractory. Among these, as the nickel oxide powder, for example, a powder of 75% by weight or more in terms of nickel used for catalyst, glass coloring, enamel, ceramic glaze, ferrite material and the like can be mentioned. Examples of the nickel powder include a powder that generates nickel oxide by heating in an oxidizing atmosphere. Here, the heating in the oxidizing atmosphere includes, for example, heating in the firing step of the kneaded molded product in the air, drying, or heating when the refractory after firing is used in the furnace. .

【0030】酸化ニッケル粉末又はニッケル粉末は、平
均粒径が0.1〜100μm、好ましくは0.3〜30
μmのものが用いられる。平均粒径が該範囲内にある
と、酸化ニッケル又はニッケル粉末が焼成の際に酸化
されて生成した酸化ニッケルが、アルミナ質微粉末又は
アルミナ質骨材と反応して効果的にスピネル型アルミナ
−酸化ニッケル化合物を生成し、不定形耐火物のスラグ
に対する耐浸食性が高くなるため好ましい。
The nickel oxide powder or nickel powder has an average particle size of 0.1 to 100 μm, preferably 0.3 to 30 μm.
μm is used. When the average particle size is within the above range, nickel oxide or nickel oxide generated by oxidation of nickel powder during firing or the like reacts with alumina fine powder or alumina aggregate to effectively produce spinel type alumina. -It is preferable because a nickel oxide compound is generated and the erosion resistance of the amorphous refractory to slag is increased.

【0031】酸化ニッケル粉末又はニッケル粉末は、N
iO換算の重量が、不定形耐火物原料中に好ましくは
0.7〜18重量%、さらに好ましくは1〜15重量
%、特に好ましくは1.5〜5重量%、さらに特に好ま
しくは1.8〜4.5重量%の量で含まれる。
The nickel oxide powder or nickel powder is N
The weight in terms of iO is preferably 0.7 to 18% by weight, more preferably 1 to 15% by weight, particularly preferably 1.5 to 5% by weight, and still more preferably 1.8 in the amorphous refractory raw material. -4.5% by weight.

【0032】上記配合量が0.7重量%未満であると、
得られる不定形耐火物の耐食性が十分に向上しないため
好ましくない。また、上記配合量が0.7重量%以上
1.8重量%未満であると、配合量が微量で品質の安定
性が低下するおそれがあるため、施工時の品質の安定性
を重視する場合には、上記配合量が1.8重量%以上で
あることがより好ましい。また、上記配合量が18重量
%を越えると、耐食性の改善作用が一定以上向上しない
ため不経済であると共に、焼成時に成形体が大きく膨張
し施工体に亀裂を生じ易くなるため好ましくない。
When the amount is less than 0.7% by weight,
It is not preferable because the corrosion resistance of the obtained refractory is not sufficiently improved. Further, if the amount is 0.7% by weight or more and less than 1.8% by weight, the amount of the compounded amount may be small and the stability of quality may be reduced. More preferably, the amount is 1.8% by weight or more. On the other hand, if the amount is more than 18% by weight, the effect of improving corrosion resistance is not improved beyond a certain level, which is uneconomical, and the molded body expands greatly at the time of firing and cracks easily occur in the construction body, which is not preferable.

【0033】図5に、本発明に係る不定形耐火物のうち
のアルミナ−酸化ニッケル系不定形耐火物における、酸
化ニッケル粉末の添加量と浸食指数及び平均細孔径との
関係の一例を示す。図5より、酸化ニッケルの粉末の配
合比率が高くなると、不定形耐火物の耐食性が高くなる
と共に平均細孔径が小さくなることが分かる。これよ
り、不定形耐火物の耐食性、特にアルミナ−酸化ニッケ
ル系不定形耐火物の耐食性は、アルミナと酸化ニッケル
とが反応してスピネル型アルミナ−酸化ニッケル化合物
を生成することにより不定形耐火物の細孔径が小さくな
り、溶融スラグが浸食し難い構造になるため向上すると
考えられる。
FIG. 5 shows an example of the relationship between the amount of nickel oxide powder added, the erosion index, and the average pore diameter in the alumina-nickel oxide-based irregular refractory among the irregular refractories according to the present invention. From FIG. 5, it can be seen that the higher the mixing ratio of the nickel oxide powder, the higher the corrosion resistance of the amorphous refractory and the smaller the average pore diameter. Accordingly, the corrosion resistance of the amorphous refractory, particularly the corrosion resistance of the alumina-nickel oxide-based irregular refractory, is determined by reacting alumina and nickel oxide to form a spinel-type alumina-nickel oxide compound. It is thought that the pore diameter becomes smaller and the molten slag has a structure that is hardly eroded, thereby improving the structure.

【0034】本発明において用いられる水硬性結合材と
しては、特に限定されないが、例えば、水硬性アルミ
ナ、アルミナセメント等が挙げられる。このうち水硬性
アルミナは、CaOを含まないため得られる不定形耐火
物を高温下で繰り返し使用しても耐食性が特に低下し難
いと共に、アルミナ成分が酸化ニッケルと反応してスピ
ネル型アルミナ−酸化ニッケル化合物の生成に寄与する
ため好ましい。水硬性結合材は、平均粒径が1〜20μ
m、好ましくは10〜15μmである。平均粒径が上記
範囲内にあると、施工可能な流動性を混練後30分以上
保つことができるため好ましい。
The hydraulic binder used in the present invention is not particularly limited, and examples thereof include hydraulic alumina and alumina cement. Among them, hydraulic alumina is not particularly reduced in corrosion resistance even when an amorphous refractory obtained without containing CaO is repeatedly used at a high temperature, and an alumina component reacts with nickel oxide to form a spinel-type alumina-nickel oxide. It is preferable because it contributes to the formation of a compound. The hydraulic binder has an average particle size of 1 to 20 μm.
m, preferably 10 to 15 μm. It is preferable that the average particle size is within the above range, since the workable fluidity can be maintained for 30 minutes or more after kneading.

【0035】水硬性結合材は、不定形耐火物原料中に好
ましくは2〜10重量%、さらに好ましくは2〜5重量
%の量で含まれる。水硬性結合材の配合量が2重量%未
満であると施工時の気温が低い場合に硬化不良を生じる
ことがあるため、また、10重量%を越えると施工時の
気温が高い場合に硬化が早すぎて混練時における流動性
が急激に低下するおそれがあるため好ましくない。
The hydraulic binder is contained in the amorphous refractory raw material in an amount of preferably 2 to 10% by weight, more preferably 2 to 5% by weight. If the compounding amount of the hydraulic binder is less than 2% by weight, poor curing may occur when the temperature at the time of construction is low, and if it exceeds 10% by weight, curing may occur at a high temperature during construction. It is not preferable because it is too early and the fluidity at the time of kneading may suddenly decrease.

【0036】本発明に係る不定形耐火物原料には、さら
に、有機繊維や分散剤を適宜配合してもよい。有機繊維
としては、例えば、ポリプロピレン、アクリル、レーヨ
ン、ナイロン及びビニロン等が挙げられ、これらを1種
又は2種以上組み合わせて用いることができる。有機繊
維を配合すると、急速加熱時の施工体の爆裂を防止でき
るため好ましい。有機繊維の配合量は、耐火骨材、酸化
ニッケル粉末又はニッケル粉末のNiO換算の重量、セ
ラミックス微粉末及び水硬性結合材の合計量100重量
部に対し、0.04〜0.1重量部である。
The amorphous refractory raw material according to the present invention may further contain an organic fiber and a dispersant as appropriate. Examples of the organic fiber include polypropylene, acrylic, rayon, nylon, and vinylon, and these can be used alone or in combination of two or more. It is preferable to mix organic fibers because explosion of the construction body during rapid heating can be prevented. The compounding amount of the organic fiber is 0.04 to 0.1 part by weight based on the total amount of the refractory aggregate, nickel oxide powder or nickel powder in terms of NiO, and the total amount of the ceramic fine powder and the hydraulic binder of 100 parts by weight. is there.

【0037】分散剤としては、例えば、金属キレート化
合物、アルカリ金属炭酸塩、芳香族スルホン酸ホルマリ
ン縮合塩等が挙げられ、これらを1種又は2種以上組み
合わせて用いることができる。分散剤を配合すると、低
水量での混練物の流動性が向上し、混練が可能となるた
め好ましい。分散剤の配合量は、耐火骨材、酸化ニッケ
ル粉末又はニッケル粉末のNiO換算の重量、セラミッ
クス微粉末及び水硬性結合材の合計量100重量部に対
し、0.05〜0.5重量部である。分散剤の配合量
が、上記範囲内であると、不定形耐火物原料の混練物の
流動性が長く維持されるため好ましい。本発明に係る不
定形耐火物原料は、上記耐火骨材、酸化ニッケル粉末又
はニッケル粉末、セラミックス微粉末及び水硬性結合
材、さらに必要により有機繊維又は分散剤等を配合して
混合して得られる。これら諸原料は、一回で又は複数回
に分けて混合してもよく、複数回に分けて混合する場合
は混合する順序を問わない。
Examples of the dispersant include a metal chelate compound, an alkali metal carbonate, a condensed salt of aromatic sulfonic acid and formalin, and these can be used alone or in combination of two or more. It is preferable to add a dispersant, since the fluidity of the kneaded material in a low water amount is improved and kneading becomes possible. The amount of the dispersant is 0.05 to 0.5 parts by weight, based on the total amount of the refractory aggregate, nickel oxide powder or Ni powder in terms of NiO, and the total amount of the ceramic fine powder and hydraulic binder of 100 parts by weight. is there. It is preferable that the compounding amount of the dispersant is within the above range, since the fluidity of the kneaded material of the amorphous refractory raw material is maintained for a long time. The amorphous refractory raw material according to the present invention is obtained by mixing and mixing the refractory aggregate, nickel oxide powder or nickel powder, ceramic fine powder and hydraulic binder, and, if necessary, organic fiber or dispersant. . These various raw materials may be mixed once or in a plurality of times, and when mixing in a plurality of times, the order of mixing does not matter.

【0038】本発明に係る不定形耐火物原料には、耐火
物の耐食性をより高めるために、さらにジルコニア、チ
タニア、酸化マンガン及び酸化コバルトより選択される
1種又は2種以上を配合してもよい。
The amorphous refractory raw material according to the present invention may further contain one or more selected from zirconia, titania, manganese oxide and cobalt oxide in order to further enhance the corrosion resistance of the refractory. Good.

【0039】上記本発明に係る不定形耐火物原料は、少
なくともセラミックス微粉末がアルミナ質微粉末を含む
ことが好ましく、さらにセラミックス微粉末がアルミナ
質微粉末を含み且つ耐火骨材がアルミナ質耐火骨材を含
むことがより好ましい。不定形耐火物原料中にアルミナ
質微粉末が含まれていると、アルミナ質微粉末が不定形
耐火物の焼成の際に耐火骨材間の隙間に容易に充填さ
れ、焼成の際又は溶融炉等を使用する際に、該隙間で酸
化ニッケルと反応して耐食性に富むスピネル型アルミナ
−酸化ニッケル化合物を生成するため、一般的に該隙間
で生じ易いスラグの浸漬を効果的に抑制できて耐食性が
より高くなるので好ましい。また、アルミナ質微粉末に
加えさらにアルミナ質耐火骨材が含まれると、アルミナ
質耐火骨材が特に粉末材である場合には、粉末材が粗粒
材や微粒材で形成される空隙においてスピネル型アルミ
ナ−酸化ニッケル化合物を生成するため、耐食性がより
高くなり好ましい。
In the amorphous refractory raw material according to the present invention, it is preferable that at least the ceramic fine powder contains alumina fine powder, and the ceramic fine powder contains alumina fine powder, and the refractory aggregate is alumina-based refractory bone. It is more preferable to include a material. If the amorphous refractory raw material contains alumina fine powder, the alumina fine powder is easily filled into the gaps between the refractory aggregates during firing of the amorphous refractory, and during firing or in the melting furnace. When using, for example, the nickel oxide reacts with the nickel oxide in the gap to produce a highly corrosion-resistant spinel-type alumina-nickel oxide compound. Is more preferred. In addition, when alumina-based refractory aggregate is further included in addition to alumina-based fine powder, when the alumina-based refractory aggregate is particularly a powdered material, the spinel is formed in a void formed by the coarse-grained or fine-grained material. Since a type-alumina-nickel oxide compound is generated, corrosion resistance is further improved, which is preferable.

【0040】本発明に係る不定形耐火物原料がアルミナ
質微粉末を含む場合、不定形耐火物原料は、通常、アル
ミナ質微粉末を8〜27重量%、酸化ニッケル粉末又は
ニッケル粉末をNiO換算で0.7〜18重量%及び水
硬性結合材を2〜10重量%含み、好ましくは、アルミ
ナ質微粉末を10〜25重量%、酸化ニッケル粉末又は
ニッケル粉末をNiO換算で1〜15重量%及び水硬性
結合材を2〜5重量%含む。アルミナ質微粉末と、酸化
ニッケル粉末等とが該比率で含まれると、スピネル型ア
ルミナ−酸化ニッケル化合物が生成され易く、耐食性が
より高くなるため好ましい。
When the amorphous refractory raw material according to the present invention contains alumina fine powder, the amorphous refractory raw material usually contains 8 to 27% by weight of alumina fine powder and nickel oxide powder or nickel powder in terms of NiO. Contains 0.7 to 18% by weight and 2 to 10% by weight of a hydraulic binder, preferably 10 to 25% by weight of alumina fine powder, and 1 to 15% by weight of nickel oxide powder or nickel powder in terms of NiO. And 2 to 5% by weight of a hydraulic binder. It is preferable that the alumina fine powder and the nickel oxide powder or the like be contained in the above ratio, since a spinel-type alumina-nickel oxide compound is easily generated and the corrosion resistance becomes higher.

【0041】また、本発明に係る不定形耐火物原料がア
ルミナ質微粉末を含み且つアルミナ質耐火骨材を含む場
合、不定形耐火物原料は、通常、アルミナ質微粉末を8
〜27重量%、アルミナ質耐火骨材を48〜80重量
%、酸化ニッケル粉末又はニッケル粉末をNiO換算で
0.7〜18重量%及び水硬性結合材を2〜10重量%
含み、好ましくは、アルミナ質微粉末を10〜25重量
%、アルミナ質耐火骨材を55〜80重量%、酸化ニッ
ケル粉末又はニッケル粉末をNiO換算で1〜15重量
%及び水硬性結合材を2〜5重量%含む。アルミナ質微
粉末、アルミナ質耐火骨材及び酸化ニッケル粉末等が該
比率で含まれると、スピネル型アルミナ−酸化ニッケル
化合物が生成され易く、耐食性がより高くなるため好ま
しい。
When the amorphous refractory raw material according to the present invention contains alumina fine powder and also contains alumina refractory aggregate, the amorphous refractory raw material usually contains 8 fine alumina powder.
To 27% by weight, alumina-based refractory aggregate is 48 to 80% by weight, nickel oxide powder or nickel powder is 0.7 to 18% by weight in terms of NiO, and hydraulic binder is 2 to 10% by weight.
Preferably, it contains 10 to 25% by weight of alumina fine powder, 55 to 80% by weight of alumina refractory aggregate, 1 to 15% by weight of nickel oxide powder or nickel powder in terms of NiO, and 2 parts of hydraulic binder. -5% by weight. It is preferable that the alumina fine powder, the alumina refractory aggregate, the nickel oxide powder, and the like be contained in the above ratio because a spinel-type alumina-nickel oxide compound is easily generated and the corrosion resistance is further increased.

【0042】本発明に係る不定形耐火物は、上記不定形
耐火物原料に水を加え混練物とし、さらに該混練物を焼
成して得られる。この際の水の添加量は、上記不定形耐
火物原料100重量部に対して水が通常4〜7重量部、
好ましくは5〜6重量部である。水の添加量が4重量部
未満であると混練物の流動性が低く、混練が困難になり
易いため好ましくなく、7重量部を越えると混練物の流
動性が高くなりすぎ、耐火骨材とセラミックス微粉末と
が分離し易くなるため好ましくない。
The irregular refractory according to the present invention is obtained by adding water to the above-mentioned irregular refractory raw material to form a kneaded product, and then firing the kneaded product. At this time, the amount of water to be added is usually 4 to 7 parts by weight of water with respect to 100 parts by weight of the above-mentioned amorphous refractory raw material,
Preferably it is 5 to 6 parts by weight. If the added amount of water is less than 4 parts by weight, the fluidity of the kneaded material is low, and kneading tends to be difficult, which is not preferable. If it exceeds 7 parts by weight, the fluidity of the kneaded material becomes too high, and It is not preferable because the ceramic fine powder is easily separated.

【0043】混練物とするには、例えば、ミキサー等を
用いて行う。本発明に係る不定形耐火物は、混練物とし
たときに、上記不定形耐火物原料と水とを上記配合量比
で混練してなるため流動性に優れる。また、さらに分散
剤が上記範囲内の量で配合されているため、特に混練物
の流動性が長く維持され、使用可能時間が長くなる。
The kneaded material is prepared by using, for example, a mixer. The amorphous refractory according to the present invention is excellent in fluidity because it is obtained by kneading the above-mentioned amorphous refractory raw material and water in the above-mentioned mixing ratio when kneaded. Further, since the dispersing agent is further blended in an amount within the above range, especially the fluidity of the kneaded material is maintained long, and the usable time is prolonged.

【0044】本発明に係る不定形耐火物は、上記混練物
を適宜、成形、乾燥及び焼成して得られる。例えば、混
練物を型に入れて成形し、所定の形状の成形体とした
後、乾燥、焼成して不定形耐火物を得ることができる。
成形方法としては、例えば、施工現場における型枠への
振動流し込み成形や厚塗りが挙げられる。乾燥は、例え
ば、80〜120℃で17〜24時間行う。焼成は、例
えば、1200〜1500℃で5〜24時間行う。ま
た、本発明に係る不定形耐火物は、耐火物を作製するた
めの上記焼成工程を特に設けることなく、乾燥体のまま
溶融炉の内壁等に施工し、溶融炉等を使用する際の熱で
実質的に焼成することにより得ることもできる。なお、
必要により配合された有機繊維や分散剤は焼成後には焼
失し、不定形耐火物中には存在しない。
The irregular refractory according to the present invention is obtained by appropriately molding, drying and firing the above kneaded material. For example, the kneaded material is molded in a mold to obtain a molded product having a predetermined shape, and then dried and fired to obtain an amorphous refractory.
As a forming method, for example, vibration casting into a form at a construction site or thick coating can be used. Drying is performed, for example, at 80 to 120 ° C. for 17 to 24 hours. The firing is performed, for example, at 1200 to 1500 ° C. for 5 to 24 hours. In addition, the amorphous refractory according to the present invention can be applied to an inner wall or the like of a melting furnace as a dry body without providing the above-described firing step for producing a refractory, and the heat generated when the melting furnace is used. By baking substantially. In addition,
The organic fibers and dispersant incorporated as needed are burned off after firing and do not exist in the amorphous refractories.

【0045】本発明に係る不定形耐火物は、耐食性及び
耐熱性に優れる。特に、アルミナ質微粉末を含む不定形
耐火物原料や、アルミナ質微粉末を含み且つアルミナ質
耐火骨材を含む不定形耐火物原料より得られる不定形耐
火物は、不定形耐火物原料における耐火骨材間の隙間等
にスピネル型アルミナ−酸化ニッケル化合物を含むた
め、より耐食性及び耐熱性に優れる。上記本発明に係る
不定形耐火物原料及び該不定形耐火物原料から製造され
た不定形耐火物は、溶鉱取鍋用耐火物や、灰溶融炉用耐
火物の用途に使用することができる。
The amorphous refractory according to the present invention has excellent corrosion resistance and heat resistance. In particular, an amorphous refractory material containing alumina fine powder or an amorphous refractory obtained from an amorphous refractory material containing alumina fine powder and containing alumina refractory aggregate is a refractory material in the amorphous refractory material. Since the gap between the aggregates contains the spinel-type alumina-nickel oxide compound, it is more excellent in corrosion resistance and heat resistance. The amorphous refractory raw material according to the present invention and the amorphous refractory produced from the amorphous refractory raw material can be used for refractory for blast ladle and refractory for ash melting furnace. .

【0046】[0046]

【実施例】次に、実施例を挙げて、本発明を更に具体的
に説明するが、これは単に例示であって、本発明を制限
するものではない。
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but this is merely an example and does not limit the present invention.

【0047】実施例1 粒径が1mmを越えて3mm以下であるアルミナ質耐火
骨材の粗粒材31.0重量部、粒径が0.15mmを越
えて1mm以下であるアルミナ質耐火骨材の微粒材2
7.1重量部、粒径が50μmを越えて0.15mm以
下であるアルミナ質耐火骨材の粉末材10.4重量部、
平均粒径1μm の酸化ニッケル粉末10.0重量部、平
均粒径2μm のアルミナ超微粉末16.0重量部、平均
粒径0.6μm のシリカ超微粉末1.5重量部、及び平
均粒径10μm の水硬性アルミナ4.0重量部の合計1
00.0重量部に、有機繊維0.08重量部、分散剤
0.1重量部及び水6.0重量部を添加し、これらの混
合物をミキサーで6分間混練した。得られた混練物の流
動性を以下に示す振動フロー値として評価した。配合量
及び振動フロー値の結果を表1に示す。表1中、配合量
は重量部で表す。次に、混練物を鋳込み成形し、105
℃で24時間乾燥し、さらに1400℃で5時間焼成し
不定形耐火物を得た。得られた不定形耐火物の耐食性を
以下に示す浸食指数として評価した。結果を表1に示
す。
Example 1 31.0 parts by weight of coarse alumina refractory aggregate having a particle size of more than 1 mm and 3 mm or less, and alumina refractory aggregate having a particle size of more than 0.15 mm and 1 mm or less Fine grain material 2
7.1 parts by weight, 10.4 parts by weight of alumina refractory aggregate powder having a particle size of more than 50 μm and 0.15 mm or less;
10.0 parts by weight of nickel oxide powder having an average particle size of 1 μm, 16.0 parts by weight of ultrafine alumina powder having an average particle size of 2 μm, 1.5 parts by weight of ultrafine silica powder having an average particle size of 0.6 μm, and average particle size 10 μm of hydraulic alumina 4.0 parts by weight total 1
0.08 parts by weight of organic fiber, 0.1 parts by weight of dispersant and 6.0 parts by weight of water were added to 00.0 parts by weight, and the mixture was kneaded with a mixer for 6 minutes. The fluidity of the obtained kneaded material was evaluated as a vibration flow value shown below. Table 1 shows the results of the compounding amount and the vibration flow value. In Table 1, the blending amounts are expressed in parts by weight. Next, the kneaded material is cast and molded, and 105
C. for 24 hours, and then calcined at 1400.degree. C. for 5 hours to obtain an amorphous refractory. The corrosion resistance of the obtained amorphous refractory was evaluated as an erosion index shown below. Table 1 shows the results.

【0048】〔振動フロー値の測定方法〕まず、振動テ
ーブル上に、JIS R 5201:92 に規定されたフローコーン
をコーンの先端部が上を向くように載置し、該フローコ
ーン内に適宜振動を与えつつ混練物を充填した。次に、
充填された混練物の形状を崩さないようにゆっくりとコ
ーンを除去した後、速やかに60Hzの振動を30秒間与
えた。振動終了後、崩れて広がった混練物の底面におけ
る直径の最大値と、該最大値部分に垂直方向の部分の直
径との2箇所を測定し、2箇所の平均値を振動フロー値
(mm)とした。振動フロー値は、値が大きいほうが流
動性が良好と評価した。
[Measurement Method of Vibration Flow Value] First, a flow cone specified in JIS R 5201: 92 is placed on a vibration table such that the tip of the cone faces upward. The kneaded material was filled while applying vibration. next,
After the cone was slowly removed without disturbing the shape of the filled kneaded material, a 60 Hz vibration was immediately applied for 30 seconds. After the end of the vibration, the maximum value of the diameter at the bottom surface of the kneaded material that has collapsed and spread and the diameter of the portion perpendicular to the maximum value portion are measured, and the average value of the two positions is used as the vibration flow value (mm) And The larger the vibration flow value, the better the fluidity.

【0049】〔浸食指数の測定方法〕まず、図1のよう
な等脚台形柱状(台形面の上底55mm、台形面の下底
130mm、台形面の高さ65mm、台形柱の高さ11
5mm)の不定形耐火物からなる試験サンプルAを作製
し、図2のようにサンプルAの6個を上底側の矩形面の
6面で六角柱状の凹部Dを形成するように組み合わせて
固定し外観が六角柱状の試験体Bを構成した。なお、図
1中の数値は寸法を示し、単位はmmである。次に、図
2のように試験体Bを横に倒した状態で、且つ、試験体
Bが底面に垂直な軸を中心として回転装置Cにより図2
の矢印Xの一定方向に回転する状態にし、試験体Bの凹
部D内にスラグEを装入し、1500℃下で8時間回転
させた。8時間経過後、試験体Bを各サンプルAごとに
バラし、図3のようにサンプルAをスラグが接触した上
底側矩形面の長手方向の中心線abから下底側矩形面の
長手方向の中心線cdへ略矩形の切断面abdcが現れ
るように切断した。次に、図4のように該切断面abd
cのスラグによる浸食部Fの浸食面積を測定し、下記式
(1)により浸食率を算出した。 浸食率(%)=(断面の浸食部の面積/断面の全面積)×100 (1) 次に、得られた対象サンプルの浸食率と、標準サンプル
(従来のアルミナセメントを結合材として焼成された不
定形耐火物)の浸食率とから、下記式(2)により浸食
指数を算出した。標準サンプルの組成と物性について、
表1に示す。 浸食指数=(対象サンプルの浸食率/標準サンプルの浸食率) ×100 (2) 式(2)より、対象サンプルの浸食指数が、標準サンプ
ルの浸食指数100より小さければ耐久性が高く、大き
ければ耐食性が低いと評価した。
[Measurement method of erosion index] First, an isosceles trapezoidal column as shown in FIG. 1 (upper base of trapezoidal surface 55 mm, lower base of trapezoidal surface 130 mm, trapezoidal surface height 65 mm, trapezoidal column height 11)
A test sample A made of an amorphous refractory (5 mm) is prepared, and six samples A are combined and fixed so as to form a hexagonal column-shaped concave portion D on the six rectangular surfaces on the upper bottom side as shown in FIG. Then, a test piece B having a hexagonal column shape was formed. The numerical values in FIG. 1 indicate dimensions, and the unit is mm. Next, in a state where the specimen B is laid down sideways as shown in FIG. 2 and the specimen B is rotated by a rotating device C about an axis perpendicular to the bottom surface as shown in FIG.
, A slag E was charged into the concave portion D of the test piece B, and the test piece B was rotated at 1500 ° C. for 8 hours. After a lapse of 8 hours, the specimen B is disintegrated for each sample A, and as shown in FIG. 3, the sample A is moved from the center line ab in the longitudinal direction of the upper bottom rectangular surface contacted with the slag to the longitudinal direction of the lower bottom rectangular surface. Was cut such that a substantially rectangular cut surface abdc appeared at the center line cd of the above. Next, as shown in FIG.
The erosion area of the erosion part F by the slag of c was measured, and the erosion rate was calculated by the following formula (1). Erosion rate (%) = (Erosion area of cross section / total area of cross section) × 100 (1) Next, the erosion rate of the obtained target sample and a standard sample (calcined using conventional alumina cement as a binder) The erosion index was calculated by the following equation (2) from the erosion rate of the irregular shaped refractory). About the composition and physical properties of the standard sample,
It is shown in Table 1. Erosion index = (Erosion rate of target sample / Erosion rate of standard sample) × 100 (2) From equation (2), if the erosion index of the target sample is smaller than the erosion index 100 of the standard sample, the durability is high, and if it is large, It was evaluated that the corrosion resistance was low.

【0050】[0050]

【表1】 [Table 1]

【0051】比較例1 水硬性アルミナ4.0重量部に代えて、アルミナセメン
ト4.0重量部を用いた以外は実施例1と同様にして混
練物及び不定形耐火物を得、これらを実施例1と同様に
して評価した。原料等の配合量、振動フロー値及び浸食
指数の結果を表1に示す。
Comparative Example 1 A kneaded product and an amorphous refractory were obtained in the same manner as in Example 1 except that 4.0 parts by weight of alumina cement was used instead of 4.0 parts by weight of hydraulic alumina. Evaluation was performed in the same manner as in Example 1. Table 1 shows the results of the amounts of the raw materials and the like, the vibration flow value, and the erosion index.

【0052】比較例2 酸化ニッケルを配合せず、アルミナ質耐火骨材の粉末材
を20.4重量部とした以外は実施例1と同様にして混
練物及び不定形耐火物を得、これらを実施例1と同様に
して評価した。原料等の配合量、振動フロー値及び浸食
指数の結果を表1に示す。
Comparative Example 2 A kneaded product and an amorphous refractory were obtained in the same manner as in Example 1 except that nickel oxide was not added and the powder of alumina refractory aggregate was 20.4 parts by weight. Evaluation was performed in the same manner as in Example 1. Table 1 shows the results of the amounts of the raw materials and the like, the vibration flow value, and the erosion index.

【0053】実施例2〜4、比較例3、4 表2に示すように、酸化ニッケル粉末等の配合量を変え
た以外は、実施例1と同様にして混練物及び不定形耐火
物を得、これらを実施例1と同様にして評価した。原料
等の配合量、振動フロー値及び浸食指数の結果を表2に
示す。なお、比較例4は成形体に亀裂が発生したため浸
食試験が不可能であった。
Examples 2 to 4 and Comparative Examples 3 and 4 As shown in Table 2, kneaded materials and irregular refractories were obtained in the same manner as in Example 1 except that the amounts of the nickel oxide powder and the like were changed. These were evaluated in the same manner as in Example 1. Table 2 shows the results of the amounts of the raw materials and the like, the vibration flow value and the erosion index. In Comparative Example 4, an erosion test was not possible because cracks occurred in the molded body.

【0054】[0054]

【表2】 *1 焼成後に良好な試験体が得られなかったため測定不可能。[Table 2] * 1 Unable to measure because good specimens were not obtained after firing.

【0055】実施例5 粒径が1mmを越えて3mm以下であるSiC(炭化珪
素)質耐火骨材の粗粒材31.0重量部、粒径が0.1
5mmを越えて1mm以下であるSiC質耐火骨材の微
粒材27.1重量部、粒径が50μmを越えて0.15
mm以下であるSiC質耐火骨材の粉末材18.4重量
部、平均粒径1μm の酸化ニッケル粉末2.0重量部、
平均粒径2μm のアルミナ超微粉末16.0重量部、平
均粒径0.6μm のシリカ超微粉末1.5重量部、及び
平均粒径10μm の水硬性アルミナ4.0重量部の合計
99.0重量部に、有機繊維0.08重量部、分散剤
0.1重量部及び水6.0重量部を添加し、これらの混
合物をミキサーで6分間混練した。得られた混練物の流
動性を実施例1と同様に振動フロー値として評価した。
配合量及び振動フロー値の結果を表3に示す。表3中、
配合量は重量部で表す。次に、実施例1と同様にして混
練物から不定形耐火物を得た。得られた不定形耐火物の
耐食性を実施例1と同様に浸食指数として評価した。結
果を表3に示す。
Example 5 31.0 parts by weight of coarse particles of refractory SiC (silicon carbide) aggregate having a particle size of more than 1 mm and 3 mm or less, and a particle size of 0.1
27.1 parts by weight of fine particles of SiC refractory aggregate exceeding 5 mm and not more than 1 mm, particle size exceeding 50 μm and 0.15
18.4 parts by weight of a powder of a refractory SiC aggregate having a diameter of 1 mm or less, 2.0 parts by weight of nickel oxide powder having an average particle size of 1 μm,
16.0 parts by weight of ultrafine alumina powder having an average particle size of 2 μm, 1.5 parts by weight of ultrafine silica powder having an average particle size of 0.6 μm, and 4.0 parts by weight of hydraulic alumina having an average particle size of 10 μm. To 0 parts by weight, 0.08 parts by weight of the organic fiber, 0.1 parts by weight of the dispersant, and 6.0 parts by weight of water were added, and the mixture was kneaded with a mixer for 6 minutes. The fluidity of the obtained kneaded material was evaluated as a vibration flow value in the same manner as in Example 1.
Table 3 shows the results of the compounding amount and the vibration flow value. In Table 3,
The amount is expressed in parts by weight. Next, an amorphous refractory was obtained from the kneaded material in the same manner as in Example 1. The corrosion resistance of the obtained refractory was evaluated as an erosion index in the same manner as in Example 1. Table 3 shows the results.

【0056】[0056]

【表3】 [Table 3]

【0057】比較例5 水硬性アルミナ4.0重量部に代えて、アルミナセメン
ト4.0重量部を用いた以外は実施例5と同様にして混
練物及び不定形耐火物を得、これらを実施例1と同様に
して評価した。原料等の配合量、振動フロー値及び浸食
指数の結果を表3に示す。
Comparative Example 5 A kneaded product and an amorphous refractory were obtained in the same manner as in Example 5 except that 4.0 parts by weight of alumina cement was used instead of 4.0 parts by weight of hydraulic alumina. Evaluation was performed in the same manner as in Example 1. Table 3 shows the amounts of the raw materials and the like, the results of the vibration flow value and the erosion index.

【0058】比較例6 酸化ニッケルを配合せず、SiC質耐火骨材の粉末材を
20.4重量部とした以外は実施例5と同様にして混練
物及び不定形耐火物を得、これらを実施例1と同様にし
て評価した。原料等の配合量、振動フロー値及び浸食指
数の結果を表3に示す。
Comparative Example 6 A kneaded product and an amorphous refractory were obtained in the same manner as in Example 5 except that nickel oxide was not used and the powder of the SiC refractory aggregate was changed to 20.4 parts by weight. Evaluation was performed in the same manner as in Example 1. Table 3 shows the amounts of the raw materials and the like, the results of the vibration flow value and the erosion index.

【0059】実施例6 表3に示すように、酸化ニッケル粉末等の配合量を変え
た以外は、実施例5と同様にして混練物及び不定形耐火
物を得、これらを実施例1と同様にして評価した。原料
等の配合量、振動フロー値及び浸食指数の結果を表3に
示す。
Example 6 As shown in Table 3, kneaded materials and irregular refractories were obtained in the same manner as in Example 5 except that the amounts of the nickel oxide powder and the like were changed. Was evaluated. Table 3 shows the amounts of the raw materials and the like, the results of the vibration flow value and the erosion index.

【0060】実施例7〜9、比較例7 表4に示すように、酸化ニッケル粉末等の配合量を変え
た以外は、実施例1と同様にして混練物及び不定形耐火
物を得、これらを実施例1と同様にして評価した。原料
等の配合量、振動フロー値、浸食指数及び平均細孔径の
結果を表4及び図5に示す。なお、平均細孔径は、得ら
れた不定形耐火物を切断して小片を作製し、水銀ポロシ
メータによって測定した。
Examples 7 to 9 and Comparative Example 7 As shown in Table 4, kneaded materials and amorphous refractories were obtained in the same manner as in Example 1 except that the amounts of the nickel oxide powder and the like were changed. Was evaluated in the same manner as in Example 1. Table 4 and FIG. 5 show the results of the amounts of the raw materials and the like, the vibration flow value, the erosion index, and the average pore diameter. The average pore size was measured by a mercury porosimeter by cutting the obtained amorphous refractory into small pieces.

【0061】[0061]

【表4】 [Table 4]

【0062】表1より、アルミナ系不定形耐火材の実施
例1は、アルミナセメントを用いた比較例1又は酸化ニ
ッケル粉末を配合しなかった比較例2のいずれよりも浸
食指数が小さく、耐食性に優れる。また、表2より、酸
化ニッケルの含有量が少なくとも0.7〜18重量%の
範囲内において、流動性及び耐食性のバランスが優れ
る。また、表3より、炭化珪素系不定形耐火材の実施例
5又は6は、アルミナセメントを用いた比較例5又は酸
化ニッケル粉末を配合しなかった比較例6のいずれより
も浸食指数が小さく、耐食性に優れる。
From Table 1, it can be seen that Example 1 of the alumina-based amorphous refractory material has a smaller erosion index and lower corrosion resistance than Comparative Example 1 using alumina cement or Comparative Example 2 in which no nickel oxide powder was blended. Excellent. Further, from Table 2, when the content of nickel oxide is at least in the range of 0.7 to 18% by weight, the balance between fluidity and corrosion resistance is excellent. Also, from Table 3, Example 5 or 6 of the silicon carbide-based amorphous refractory has a smaller erosion index than Comparative Example 5 using alumina cement or Comparative Example 6 in which no nickel oxide powder was blended, Excellent corrosion resistance.

【0063】表4及び図5より、アルミナ系不定形耐火
材の実施例7〜9は、比較例7よりも平均細孔径及び浸
食指数が小さく耐食性に優れると共に、流動性と耐食性
のバランスに優れることが分かる。また、表4及び図5
より、アルミナ質耐火骨材及びアルミナ微粉末に対して
酸化ニッケル微粉末を配合することで、平均細孔径が小
さくなり、それに伴い耐食性が高くなることが分かる。
図5の平均細孔径と耐食性との関係は、生成されたスピ
ネル型アルミナ−酸化ニッケル化合物によって、得られ
るアルミナ系不定形耐火物中の空隙が埋められ、そのこ
とでスラグの浸漬が抑制されることを示唆するものであ
るといえる。
As can be seen from Table 4 and FIG. 5, Examples 7 to 9 of the alumina-based amorphous refractory material have a smaller average pore diameter and a lower erosion index than Comparative Example 7 and have excellent corrosion resistance, and also have an excellent balance between fluidity and corrosion resistance. You can see that. Table 4 and FIG.
From the above, it can be seen that, by mixing the nickel oxide fine powder with the alumina-based refractory aggregate and the alumina fine powder, the average pore diameter becomes smaller and the corrosion resistance becomes higher accordingly.
The relationship between the average pore diameter and the corrosion resistance in FIG. 5 is that the voids in the obtained alumina-based amorphous refractory are filled by the generated spinel-type alumina-nickel oxide compound, thereby suppressing immersion of the slag. It can be said that it suggests.

【0064】[0064]

【発明の効果】本発明に係る不定形耐火物原料に所定の
混練水を添加すると流動性に優れた混練物を低コストで
得ることができ、該混練物を焼成して得られる不定形耐
火物は耐食性に優れる。すなわち、低コストで耐食性に
優れる不定形耐火物を優れた施工性の下製造することが
できる。
According to the present invention, a kneaded material having excellent fluidity can be obtained at a low cost by adding predetermined kneading water to the amorphous refractory raw material according to the present invention, and the amorphous refractory obtained by firing the kneaded material is obtained. The material has excellent corrosion resistance. That is, it is possible to manufacture an inexpensive amorphous refractory having excellent corrosion resistance at a low cost with excellent workability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】浸食試験におけるサンプル形状を示す斜視図で
ある。
FIG. 1 is a perspective view showing a sample shape in an erosion test.

【図2】浸食試験を示す模式図である。FIG. 2 is a schematic diagram showing an erosion test.

【図3】浸食率の評価方法を示す模式図である。FIG. 3 is a schematic diagram showing a method for evaluating an erosion rate.

【図4】浸食率の評価方法を示す模式図である。FIG. 4 is a schematic view showing a method for evaluating an erosion rate.

【図5】酸化ニッケル添加量と、浸食指数及び平均細孔
径との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the amount of nickel oxide added, the erosion index, and the average pore diameter.

【符号の説明】[Explanation of symbols]

A 不定形耐火物のサンプル B 六角柱状の試験体 C 回転装置 D 凹部 E スラグ F 浸食部 A Amorphous refractory sample B Hexagonal column-shaped specimen C Rotating device D Recess E Slag F Erosion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山岸 徹 静岡県浜松市新都田1−8−1 ニチアス 株式会社浜松研究所内 (72)発明者 石塚 洋貴 静岡県浜松市新都田1−8−1 ニチアス 株式会社浜松研究所内 (72)発明者 入村 純一 静岡県浜松市新都田1−8−1 ニチアス 株式会社浜松研究所内 (72)発明者 佐野 順一 大阪府大阪市住之江区南港北1丁目7番89 号 日立造船株式会社内 (72)発明者 三浦 祥正 大阪府大阪市住之江区南港北1丁目7番89 号 日立造船株式会社内 (72)発明者 下谷 英雄 大阪府大阪市住之江区南港北1丁目7番89 号 日立造船株式会社内 Fターム(参考) 4G033 AA02 AA24 AB02 AB04 AB09 BA01 4K051 AA00 BB03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tohru Yamagishi 1-8-1 Shintoda, Hamamatsu-shi, Shizuoka Nichias Inside Hamamatsu Laboratory Co., Ltd. (72) Inventor Hiroki Ishizuka 1-81-1, Shintoda, Hamamatsu-shi, Shizuoka Nichias Inside the Hamamatsu Laboratory Co., Ltd. (72) Inventor Junichi Irimura 1-81-1, Shintoda, Hamamatsu-shi, Shizuoka Nichias Inside the Hamamatsu Research Laboratories Co., Ltd. (72) Inventor Junichi Sano 1-7-89 Minami Kohoku, Suminoe-ku, Osaka-shi, Osaka Hitachi Zosen Corporation (72) Yoshimasa Miura 1-7-89 Minami Kohoku, Suminoe-ku, Osaka, Osaka Prefecture Hitachi Zosen Corporation (72) Hideo Shimotani 1-7 Minami Kohoku, Suminoe-ku, Osaka, Osaka No. 89 Hitachi Zosen Corporation F term (reference) 4G033 AA02 AA24 AB02 AB04 AB09 BA01 4K051 AA00 BB03

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 耐火骨材と、セラミックス微粉末と、酸
化ニッケル粉末又はニッケル粉末と、水硬性結合材とを
含むことを特徴とする不定形耐火物原料。
1. A refractory raw material comprising a refractory aggregate, a ceramic fine powder, a nickel oxide powder or a nickel powder, and a hydraulic binder.
【請求項2】 前記セラミックス微粉末がアルミナ質微
粉末を含むことを特徴とする請求項1記載の不定形耐火
物原料。
2. The refractory raw material according to claim 1, wherein the ceramic fine powder contains alumina fine powder.
【請求項3】 前記アルミナ質微粉末を8〜27重量
%、前記酸化ニッケル粉末又はニッケル粉末をNiO換
算で0.7〜18重量%及び前記水硬性結合材を2〜1
0重量%含むことを特徴とする請求項2記載の不定形耐
火物原料。
3. The alumina fine powder is 8 to 27% by weight, the nickel oxide powder or the nickel powder is 0.7 to 18% by weight in terms of NiO, and the hydraulic binder is 2 to 1%.
The amorphous refractory raw material according to claim 2, comprising 0% by weight.
【請求項4】 前記セラミックス微粉末がアルミナ質微
粉末を含み且つ前記耐火骨材がアルミナ質耐火骨材を含
むことを特徴とする請求項1記載の不定形耐火物原料。
4. The raw material according to claim 1, wherein the ceramic fine powder contains alumina fine powder and the refractory aggregate contains alumina refractory aggregate.
【請求項5】 前記アルミナ質微粉末を8〜27重量
%、前記アルミナ質耐火骨材を48〜80重量%、前記
酸化ニッケル粉末又はニッケル粉末をNiO換算で0.
7〜18重量%及び前記水硬性結合材を2〜10重量%
含むことを特徴とする請求項4記載の不定形耐火物原
料。
5. The alumina fine powder is 8 to 27% by weight, the alumina refractory aggregate is 48 to 80% by weight, and the nickel oxide powder or the nickel powder is 0.1 to 0.2% in terms of NiO.
7 to 18% by weight and 2 to 10% by weight of the hydraulic binder
The raw material for refractory according to claim 4, wherein the raw material comprises:
【請求項6】 前記アルミナ質耐火骨材又は前記アルミ
ナ質微粉末が、高純度アルミナ、アルミナシリカ、ムラ
イト、ボーキサイト及びシャモットより選択される1種
又は2種以上からなることを特徴とする請求項2〜5の
いずれか1項記載の不定形耐火物原料。
6. The alumina-based refractory aggregate or the alumina-based fine powder comprises one or more selected from high-purity alumina, alumina silica, mullite, bauxite, and chamotte. 6. The amorphous refractory raw material according to any one of 2 to 5.
【請求項7】 前記耐火骨材が、炭化珪素質耐火骨材を
含むことを特徴とする請求項1〜6のいずれか1項記載
の不定形耐火物原料。
7. The refractory raw material according to claim 1, wherein the refractory aggregate includes a silicon carbide refractory aggregate.
【請求項8】 前記耐火骨材を48〜80重量%、前記
セラミックス微粉末を12〜27重量%、前記酸化ニッ
ケル粉末又はニッケル粉末をNiO換算で0.7〜18
重量%及び前記水硬性結合材を2〜10重量%含むこと
を特徴とする請求項1〜7のいずれか1項記載の不定形
耐火物原料。
8. The refractory aggregate is 48 to 80% by weight, the ceramic fine powder is 12 to 27% by weight, and the nickel oxide powder or nickel powder is 0.7 to 18 in terms of NiO.
The amorphous refractory raw material according to any one of claims 1 to 7, comprising 2 to 10% by weight of the hydraulic binder.
【請求項9】 前記セラミックス微粉末の平均粒径が
0.1〜50μmであることを特徴とする請求項1〜8
のいずれか1項記載の不定形耐火物原料。
9. The ceramic fine powder having an average particle size of 0.1 to 50 μm.
The refractory raw material according to any one of the above.
【請求項10】 前記セラミックス微粉末は、アルミナ
質微粉末及びシリカ微粉末よりなるものであることを特
徴とする請求項1〜9のいずれか1項記載の不定形耐火
物原料。
10. The refractory raw material according to claim 1, wherein the ceramic fine powder comprises an alumina fine powder and a silica fine powder.
【請求項11】 前記アルミナ質微粉末の配合量が8〜
26.5重量%、前記シリカ微粉末の配合量が0.5〜
10重量%であることを特徴とする請求項10記載の不
定形耐火物原料。
11. The compounding amount of the alumina fine powder is 8 to 10.
26.5% by weight, the compounding amount of the silica fine powder is 0.5 to
The raw material for refractory according to claim 10, wherein the content is 10% by weight.
【請求項12】 前記酸化ニッケル粉末又はニッケル粉
末の平均粒径が0.1〜100μmであることを特徴と
する請求項1〜11のいずれか1項記載の不定形耐火物
原料。
12. The amorphous refractory raw material according to claim 1, wherein the nickel oxide powder or the nickel powder has an average particle size of 0.1 to 100 μm.
【請求項13】 前記水硬性結合材が水硬性アルミナで
あることを特徴とする請求項1〜12のいずれか1項記
載の不定形耐火物原料。
13. The amorphous refractory raw material according to claim 1, wherein the hydraulic binder is hydraulic alumina.
【請求項14】 請求項1〜13のいずれか1項記載の
不定形耐火物原料に水を加え混練物とし、さらに該混練
物を焼成して得られることを特徴とする不定形耐火物。
14. An amorphous refractory obtained by adding water to the amorphous refractory raw material according to any one of claims 1 to 13 to form a kneaded product, and further firing the kneaded material.
【請求項15】 スピネル型アルミナ−酸化ニッケル化
合物を含むことを特徴とする請求項14記載の不定形耐
火物。
15. The refractory according to claim 14, wherein the refractory comprises a spinel type alumina-nickel oxide compound.
JP2000173540A 1999-07-13 2000-06-09 Unshaped refractory raw material and unshaped refractory Expired - Fee Related JP3741595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000173540A JP3741595B2 (en) 1999-07-13 2000-06-09 Unshaped refractory raw material and unshaped refractory

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-198695 1999-07-13
JP19869599 1999-07-13
JP2000173540A JP3741595B2 (en) 1999-07-13 2000-06-09 Unshaped refractory raw material and unshaped refractory

Publications (2)

Publication Number Publication Date
JP2001080969A true JP2001080969A (en) 2001-03-27
JP3741595B2 JP3741595B2 (en) 2006-02-01

Family

ID=26511122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000173540A Expired - Fee Related JP3741595B2 (en) 1999-07-13 2000-06-09 Unshaped refractory raw material and unshaped refractory

Country Status (1)

Country Link
JP (1) JP3741595B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089583A (en) * 2001-09-14 2003-03-28 Nippon Steel Corp Castable refractory material having excellent corrosion resistance
CN104311056A (en) * 2014-10-08 2015-01-28 宁夏天纵泓光余热发电技术有限公司 Mullite fiber refractory casting material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553671B (en) * 2013-10-29 2014-10-22 宁夏天纵泓光余热发电技术有限公司 High-strength pouring material for pouring basket of continuous caster

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089583A (en) * 2001-09-14 2003-03-28 Nippon Steel Corp Castable refractory material having excellent corrosion resistance
JP4555520B2 (en) * 2001-09-14 2010-10-06 新日本製鐵株式会社 Method for manufacturing amorphous refractories with excellent corrosion resistance
CN104311056A (en) * 2014-10-08 2015-01-28 宁夏天纵泓光余热发电技术有限公司 Mullite fiber refractory casting material

Also Published As

Publication number Publication date
JP3741595B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
JP2013533204A (en) Chrome oxide refractory material
KR100681863B1 (en) Unshaped refractories
JP2002241173A (en) Shaped refractory
JP2001080969A (en) Nonlithic refractory raw material and monolithic refractries
JPH082975A (en) Refractory for casting application
JP4744066B2 (en) Indefinite refractory
JP5663122B2 (en) Castable refractories for non-ferrous metal smelting containers and precast blocks using the same
JP3604301B2 (en) Refractory raw materials, kneaded raw materials and refractories
JPH0633179B2 (en) Irregular refractory for pouring
JPH06345550A (en) Castable refractory
JP4373081B2 (en) Refractory
KR100317307B1 (en) Monolithic Basic Refractories Having High Durability
JP2975849B2 (en) Refractories for steelmaking
JP2000016874A (en) Accelerating agent for refractory and spraying method using the same
JP2766624B2 (en) Alumina / Spinel amorphous refractories
JP2007217260A (en) Porous refractory material
JP2007099562A (en) Air permeable refractory and method of producing the same
JP2575581B2 (en) Zirconia brick
JP2000335980A (en) Graphite-containing monolithic refractory
JP3177200B2 (en) Method for producing low-permeability magnesia-chromium refractory
JPH09142946A (en) Prepared unshaped flowed-in refractories and their molding
JPH06172044A (en) Castable refractory of alumina spinel
JPH08198686A (en) Alumina-spinel casting material
JP2003342080A (en) Castable chromia refractory and precast block manufactured using the same
JPH06107451A (en) Refractory

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees