JPH06291148A - Charge transfer element - Google Patents

Charge transfer element

Info

Publication number
JPH06291148A
JPH06291148A JP9714393A JP9714393A JPH06291148A JP H06291148 A JPH06291148 A JP H06291148A JP 9714393 A JP9714393 A JP 9714393A JP 9714393 A JP9714393 A JP 9714393A JP H06291148 A JPH06291148 A JP H06291148A
Authority
JP
Japan
Prior art keywords
transfer
region
potential
electrodes
transfer electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9714393A
Other languages
Japanese (ja)
Inventor
Kazutoshi Nakajima
和敏 中島
Yasuhiko Naito
靖彦 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9714393A priority Critical patent/JPH06291148A/en
Publication of JPH06291148A publication Critical patent/JPH06291148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To suppress the occurrence of potential dip by setting the impurity concentration in a region below a layer for isolating a plurality of transfer electrodes lower than the concentration in a region below an adjacent transfer electrode thereby making uniform the strength of transfer electrode at each transfer stage. CONSTITUTION:In a vertical resistor 21 for a CCD solid state image pickup device 20, P type impurities which are opposite to N type impurities for forming a transfer region 22 are implanted into a region AR2 located below a layer for isolating a plurality of transfer electrodes 15, 16, 17. Impurity concentration in the region AR2 is set lower than that in a region AR1 located below the transfer electrode. Consequently, the potential in the region AR2 can be lowered and the potential at the lower part can be substantially equalized between two adjacent transfer electrodes 15, 16 even when driving pulses PHI1, PHI2 having identical potential are applied thereto and thereby the potential is lowered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電荷転送素子に関し、例
えばイメージセンサによつて光電変換された信号電荷を
順次転送する転送素子に用いて好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge transfer device, and is suitable for use as a transfer device for sequentially transferring signal charges photoelectrically converted by an image sensor, for example.

【0002】[0002]

【従来の技術】今日、撮像装置には撮像光学系を固体撮
像素子及び電荷結合素子(CCD:Charge Coupled Dev
ice )によつて構成するものが数多く用いられている。
この種の固体撮像装置にはインターライン方式による転
送方式が広く採用されており、図3に示すような構成を
有している。
2. Description of the Related Art Today, an image pickup apparatus has an image pickup optical system including a solid-state image pickup element and a charge coupled device (CCD).
Many things that are composed by ice) are used.
The transfer method based on the interline method is widely adopted for this type of solid-state imaging device and has a configuration as shown in FIG.

【0003】この方式によるCCD固体撮像装置1は、
入射光を信号電荷に光電変換するフオトダイオード2
と、変換後の信号電荷を垂直方向に転送する垂直レジス
タ3とによつて撮像領域4を構成し、撮像領域4によつ
て撮像された信号電荷を水平レジスタ5を介して出力端
に転送するようになされている。
The CCD solid-state image pickup device 1 of this system is
Photodiode 2 that photoelectrically converts incident light into signal charge 2
And the vertical register 3 that vertically transfers the converted signal charges constitute the imaging region 4, and the signal charges imaged by the imaging region 4 are transferred to the output end via the horizontal register 5. It is done like this.

【0004】このうち信号電荷の垂直転送に用いられる
垂直レジスタ3は、図4(A)に示すような層構造を有
し、N型の半導体基板10上に順にP型不純物層11
(以下Pウエル11という)及びN型不純物層12(以
下チヤネル領域12という)を形成し、このうち表面側
に形成されたチヤネル領域12を用いて信号電荷を転送
するようになされている。
Of these, the vertical register 3 used for the vertical transfer of signal charges has a layer structure as shown in FIG. 4A, and is formed on the N-type semiconductor substrate 10 in order by the P-type impurity layer 11.
(Hereinafter, referred to as P well 11) and N-type impurity layer 12 (hereinafter referred to as channel region 12) are formed, and the channel region 12 formed on the front surface side is used to transfer the signal charge.

【0005】電荷の転送にはチヤネル領域12上に形成
されたゲート絶縁膜13を挟んで配置された多数の転送
電極15、16、17……が用いられる。この垂直レジ
スタ3の場合、3組の転送電極15、16及び17には
3相同一波形の駆動パルスφ1、φ2及びφ3が印加さ
れ、駆動されるようになされている(図4(B))。こ
れにより信号電荷は駆動パルスφ1、φ2及びφ3にお
ける1周期の間に3電極分を転送されるようになされて
いる。
A large number of transfer electrodes 15, 16, 17 ... Arranged on both sides of the gate insulating film 13 formed on the channel region 12 are used for transferring charges. In the case of this vertical register 3, drive pulses φ1, φ2 and φ3 having the same three-phase waveform are applied to the three sets of transfer electrodes 15, 16 and 17 to drive them (FIG. 4 (B)). . As a result, the signal charges are transferred for three electrodes during one cycle of the drive pulses φ1, φ2 and φ3.

【0006】[0006]

【発明が解決しようとする課題】ところでこの種の垂直
レジスタ3の場合、電極間の距離ができるだけ小さくな
るように転送電極の両端部分が両隣りに位置する転送電
極の端部付近を覆うような2層構造がとられている。こ
の例の場合、転送電極16の両端部分が隣接する転送電
極15及び17の端部に対して層間絶縁膜14を介して
覆いかぶさるように形成されている。
By the way, in the case of this type of vertical register 3, both end portions of the transfer electrodes cover the vicinity of the end portions of the transfer electrodes located on both sides so that the distance between the electrodes becomes as small as possible. It has a two-layer structure. In the case of this example, both end portions of the transfer electrode 16 are formed so as to cover the end portions of the adjacent transfer electrodes 15 and 17 via the interlayer insulating film 14.

【0007】ところが2つの転送電極を互いに分離する
層間絶縁膜14の領域(すなわち領域AR2)は、転送
電極の領域(すなわちAR1)に比べて酸化膜の膜厚が
層間絶縁膜14の厚さだけ厚くなるため、この領域AR
2にチヤネル領域12のポテンシヤルが隣接する領域A
R1におけるチヤネル領域12のポテンシヤルに比して
浅くなつている(図5)。
However, in the region of the interlayer insulating film 14 (that is, the region AR2) that separates the two transfer electrodes from each other, the oxide film is thinner than the region of the transfer electrode (that is, AR1) by the thickness of the interlayer insulating film 14. This area AR becomes thicker
Area A in which the potential of the channel area 12 is adjacent to 2
It is shallower than the potential of the channel region 12 in R1 (FIG. 5).

【0008】すなわち転送電極間を分離する層間絶縁膜
14より下のポテンシヤルプロフアイル(図5において
破線で示す)は、転送電極下のポテンシヤルプロフアイ
ル(図5において実線で示す)に対して深くなつてい
る。このため層間絶縁膜14の下部領域AR2の部分に
ポテンシヤルのデツプ(電位のポケツト)が発生し、信
号電荷の転送残りが生じていた(図4(B))。
That is, the potential profile below the interlayer insulating film 14 for separating the transfer electrodes (shown by a broken line in FIG. 5) is deeper than the potential profile below the transfer electrode (shown by a solid line in FIG. 5). ing. For this reason, a potential drop (potential pocket) is generated in the lower region AR2 of the interlayer insulating film 14, and a transfer residue of the signal charge is generated (FIG. 4B).

【0009】本発明は以上の点を考慮してなされたもの
で、各転送段における転送電界の強さを均一にできると
共に、転送段内におけるポテンシヤルデツプの発生を抑
制することができる電荷転送素子を提案しようとするも
のである。
The present invention has been made in consideration of the above points, and makes it possible to make the strength of the transfer electric field uniform in each transfer stage and to suppress the occurrence of potential depletion in the transfer stage. It is intended to propose a device.

【0010】[0010]

【課題を解決するための手段】かかる課題を解決するた
め本発明においては、半導体基板10の表面に形成され
た不純物拡散層を信号電荷の転送領域22とし、当該転
送領域22上に酸化膜を挟んで形成された複数の転送電
極15、16、17……のそれぞれに対して駆動パルス
φ1、φ2、φ3……を印加することにより転送電極下
に蓄積された信号電荷を隣接する転送電極下に順次転送
する電荷転送素子において、転送領域20のうち、複数
の転送電極15、16、17……をそれぞれ分離する分
離層下部に位置する領域部分AR2に、転送領域22を
形成する不純物(N型)に対して逆形の不純物(P型)
を注入し、当該領域AR2における不純物濃度を転送電
極下部の領域AR1の濃度に比して低くする。
In order to solve such a problem, in the present invention, the impurity diffusion layer formed on the surface of the semiconductor substrate 10 is used as a signal charge transfer region 22, and an oxide film is formed on the transfer region 22. By applying drive pulses φ1, φ2, φ3, ... To each of the plurality of transfer electrodes 15, 16, 17, ... Formed between them, the signal charges accumulated under the transfer electrodes are transferred under the adjacent transfer electrodes. In the charge transfer element that sequentially transfers the transfer region 20, the impurity (N) forming the transfer region 22 is formed in the transfer region 20 in the region AR2 located below the separation layer that separates the transfer electrodes 15, 16, 17 ... Type) and the opposite type of impurity (P type)
Are implanted to lower the impurity concentration in the region AR2 compared to the concentration in the region AR1 below the transfer electrode.

【0011】[0011]

【作用】複数の転送電極15、16、17……をそれぞ
れ分離する分離層14下部に位置する領域AR2におけ
る不純物濃度を転送電極下部の領域AR1の濃度に比し
て低くしたことにより、当該領域AR2のポテンシヤル
を従来に比して浅くでき、隣接する2つの転送電極15
及び16に同電位の駆動パルスφ1及びφ2が印加さ
れ、ポテンシヤルが浅くなつた場合にも、2つの転送電
極15及び16間下部のポテンシヤルを2つのポテンシ
ヤルとの間でほぼ同じにできる。これにより信号電荷の
転送の際、転送電極間に従来生じていたポテンシヤルの
デツプをなくすことができ、信号電荷の転送効率を一段
と向上させることができる。
By lowering the impurity concentration in the region AR2 located under the separation layer 14 for separating the plurality of transfer electrodes 15, 16, 17 ... As compared with the concentration in the region AR1 below the transfer electrode, the region concerned is reduced. The potential of AR2 can be made shallower than the conventional one, and two adjacent transfer electrodes 15 can be provided.
Even when the drive pulses φ1 and φ2 having the same potential are applied to the control terminals 16 and 16, and the potentials become shallow, the potentials under the two transfer electrodes 15 and 16 can be made substantially the same between the two potentials. As a result, when transferring signal charges, it is possible to eliminate the potential depth that has conventionally occurred between the transfer electrodes, and it is possible to further improve the transfer efficiency of signal charges.

【0012】[0012]

【実施例】以下図面について、本発明の一実施例を詳述
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0013】図4との対応部分に同一符号を付して示す
図1において、20は全体としてCCD固体撮像装置に
おける垂直レジスタ21を示し、チヤネル領域22のう
ち転送電極を分離する層間絶縁膜14の下部に位置する
領域AR2にP型の不純物をイオン注入することにより
転送電極下の領域AR1に比して低濃度のN型不純物領
域22Aを形成したことを除いて同様の構成を有してい
る。
In FIG. 1 in which parts corresponding to those in FIG. 4 are designated by the same reference numerals, numeral 20 generally indicates a vertical register 21 in a CCD solid-state image pickup device, and an interlayer insulating film 14 for separating transfer electrodes in a channel region 22. It has the same configuration except that an N-type impurity region 22A having a lower concentration than that of the region AR1 under the transfer electrode is formed by ion-implanting a P-type impurity into a region AR2 located below the region AR2. There is.

【0014】この実施例の場合、N型不純物領域22A
にはP型不純物としてボロンBがフオトリソグラフイー
技術を用いて選択的にイオン注入されている。これによ
り転送電極を分離する領域AR2における半導体基板の
厚み方向への不純物構造は、転送チヤネル層22から半
導体基板10に対して順にN- 、P+、Nとなる。
In the case of this embodiment, the N-type impurity region 22A is formed.
Boron B is selectively ion-implanted as a P-type impurity using the photolithography technique. As a result, the impurity structure in the thickness direction of the semiconductor substrate in the region AR2 separating the transfer electrodes becomes N−, P +, N from the transfer channel layer 22 to the semiconductor substrate 10 in order.

【0015】このため転送電極間を分離する下部領域の
ポテンシヤルプロフアイルは、図2において破線で示す
ように従来構造(N+ 、P+ 、N)におけるポテンシヤ
ルプロフアイル(図2において実線で示す)に対して浅
くなり、転送電極下のポテンシヤルプロフアイルと同じ
特性になるようになされている。
Therefore, the potential profile in the lower region separating the transfer electrodes is the potential profile (shown by the solid line in FIG. 2) in the conventional structure (N +, P +, N) as shown by the broken line in FIG. It becomes shallower than that of the transfer electrode and has the same characteristics as the potential profile under the transfer electrode.

【0016】以上の構成において、転送電極15に
「H」レベル(ここでは0〔V〕)の駆動パルスφ1が
与えられ、かつ他の2つの転送電極16及び17に
「L」レベル(ここでは−9〔V〕)の駆動パルスφ2
及びφ3が与えられている状態を初期状態として信号電
荷の転送過程を説明する。
In the above structure, the drive pulse φ1 of "H" level (here, 0 [V]) is applied to the transfer electrode 15, and the other two transfer electrodes 16 and 17 are at "L" level (here: -9 [V]) drive pulse φ2
The transfer process of the signal charges will be described with the state in which φ and φ3 are given as the initial state.

【0017】このとき「H」レベルの駆動パルスが与え
られている転送電極下部のポテンシヤルプロフアイル
は、図1(B)の10個の特性曲線L1〜L10のうち
最下層の曲線L1となり、このポテンシヤル井戸に信号
電荷が蓄積されている。
At this time, the potential profile under the transfer electrode to which the driving pulse of "H" level is given becomes the lowermost layer curve L1 among the ten characteristic curves L1 to L10 of FIG. 1B. Signal charges are accumulated in the potential well.

【0018】この状態から転送電極16に印加される駆
動パルスφ2の電位を「H」レベルから「L」レベルに
徐々に低下させると、転送電極16の下部にできたポテ
ンシヤル井戸は次第に浅くなる(L1→L2→……)。
これにより転送電極16の下部に蓄積されていた信号電
荷は深い井戸が形成されままたの状態になつている転送
電極17側に順次移動される。
When the potential of the drive pulse φ2 applied to the transfer electrode 16 is gradually lowered from the "H" level to the "L" level in this state, the potential well formed under the transfer electrode 16 becomes gradually shallower ( L1 → L2 → ……).
As a result, the signal charge accumulated under the transfer electrode 16 is sequentially moved to the transfer electrode 17 side where a deep well is formed.

【0019】ところでこの実施例の場合には、ボロンB
の注入によつて転送電極間の領域AR2における見かけ
上の酸化膜厚は転送電極下の酸化膜厚とほぼ同じ厚さと
なるように形成されているため、転送電極15及び16
に「L」レベルの駆動パルスφ1及びφ2が印加された
際にも2つの電極間にデツプが生じることはない。この
結果、転送電極16の下部に蓄積されていた分の信号電
荷は全て右隣の転送電極17の下部に転送されることに
なる。
In the case of this embodiment, boron B is used.
Is formed so that the apparent oxide film thickness in the region AR2 between the transfer electrodes is approximately the same as the oxide film thickness under the transfer electrodes.
Even when the "L" level drive pulses .phi.1 and .phi.2 are applied to the two electrodes, no depletion occurs between the two electrodes. As a result, all the signal charges accumulated in the lower portion of the transfer electrode 16 are transferred to the lower portion of the right adjacent transfer electrode 17.

【0020】以上の構成によれば、チヤネル領域22の
うち転送電極間にあたる領域AR2の不純物濃度が転送
電極下の不純物濃度に対して低くなるように領域AR2
のみにP型の不純物をイオン注入することにより、この
領域における見かけ上の酸化膜厚を転送電極下の酸化膜
厚とほぼ等しくでき、層間絶縁膜の存在によるポテンシ
ヤルデイツプの発生を抑制することができる。これによ
り垂直レジスタ21による信号電荷の転送効率を従来に
比して一段と向上させることができる。
According to the above structure, the region AR2 of the channel region 22 is arranged so that the impurity concentration of the region AR2 between the transfer electrodes is lower than the impurity concentration below the transfer electrodes.
By implanting P-type impurities only in this region, the apparent oxide film thickness in this region can be made substantially equal to the oxide film thickness under the transfer electrode, and the occurrence of potentiometric dip due to the existence of the interlayer insulating film can be suppressed. You can As a result, the transfer efficiency of signal charges by the vertical register 21 can be further improved as compared with the conventional case.

【0021】なお上述の実施例においては、N型の半導
体基板10上にPウエル11及びN型不純物層でなるチ
ヤネル領域22を形成する場合について述べたが、本発
明はこれに限らず、半導体基板、ウエル及びチヤネル領
域22を実施例に対して逆形の半導体材料を用いて形成
する場合にも適用し得る。
In the above embodiment, the case where the P well 11 and the channel region 22 made of the N type impurity layer are formed on the N type semiconductor substrate 10 has been described, but the present invention is not limited to this. It can also be applied to the case where the substrate, the well and the channel region 22 are formed by using a semiconductor material having an inverse shape to that of the embodiment.

【0022】また上述の実施例においては、P型不純物
としてボロンBをフオトリソグラフ技術を利用してイオ
ン注入し、転送電極間に対応するチヤネル領域22にお
ける不純物濃度を下げる場合について述べたが、本発明
はこれに限らず、ポリシンコンの酸化前にボロンBを転
送方向に対して逆方向に斜めにイオン注入すると共に、
ポリシリコンの酸化後にリンP又は砒素Asを斜めにイ
オン注入することによりチヤネル領域22にうち特定領
域の不純物濃度のみを下げるようにしても良い。
Further, in the above-mentioned embodiment, the case where boron B is ion-implanted as the P-type impurity by utilizing the photolithographic technique to reduce the impurity concentration in the channel region 22 corresponding to the transfer electrodes has been described. The invention is not limited to this, and boron B is ion-implanted obliquely in the opposite direction to the transfer direction before the oxidation of polycincon.
After the oxidation of polysilicon, phosphorus P or arsenic As may be obliquely ion-implanted to reduce only the impurity concentration in a specific region of the channel region 22.

【0023】さらに上述の実施例においては、チヤネル
領域22を形成するN型不純物の不純物濃度をボロンB
をイオン注入することにより低下させる場合について述
べたが、本発明はこれに限らず、ボロンB以外のP型不
純物を注入することによりチヤネル領域22の不純物濃
度を低下させても良い。
Further, in the above-described embodiment, the impurity concentration of the N-type impurity forming the channel region 22 is boron B.
However, the present invention is not limited to this, and the impurity concentration of the channel region 22 may be lowered by implanting P-type impurities other than boron B.

【0024】さらに上述の実施例においては、CCD固
体撮像素子によつて光電変換された信号電荷を転送する
垂直レジスタについて本発明を適用する場合について述
べたが、本発明はこれに限らず、水平レジスタの場合に
も適用し得る。
Further, in the above-mentioned embodiment, the case where the present invention is applied to the vertical register for transferring the signal charge photoelectrically converted by the CCD solid-state image pickup element has been described, but the present invention is not limited to this, and the present invention is not limited to this. It can also be applied to the case of a register.

【0025】さらに上述の実施例においては、垂直レジ
スタ21を3相駆動する場合について本発明を適用する
場合について述べたが、本発明はこれに限らず、他の駆
動方式によつて、例えば4相駆動の場合にも適用し得
る。
Further, in the above-described embodiment, the case where the present invention is applied to the case where the vertical register 21 is driven in three phases has been described, but the present invention is not limited to this, and according to another driving method, for example, 4 It can also be applied to the case of phase drive.

【0026】さらに上述の実施例においては、転送電極
15、16及び17に印加される駆動パルスφ1、φ2
及びφ3の「H」レベルを0〔V〕とし、かつ「L」レ
ベルを−9〔V〕とする場合について述べたが、本発明
はこれに限らず、駆動パルス電圧は他の電圧でも良い。
Further, in the above-described embodiment, the drive pulses φ1 and φ2 applied to the transfer electrodes 15, 16 and 17 are used.
The case where the “H” level of φ3 and φ3 are set to 0 [V] and the “L” level is set to −9 [V] has been described, but the present invention is not limited to this, and the drive pulse voltage may be another voltage. .

【0027】さらに上述の実施例においては、ポリシリ
コン電極が2層に重ね合わされた構造を有する場合につ
いて述べたが、本発明はこれに限らず、3層以上重ね合
わせる構造のCCDにも適用し得る。
Further, in the above-mentioned embodiment, the case where the polysilicon electrode has a structure in which two layers are superposed has been described, but the present invention is not limited to this, and is applied to a CCD having a structure in which three or more layers are superposed. obtain.

【0028】さらに上述の実施例においては、図1に示
す構造のCCDをCCD固体撮像素子の信号転送段とし
て用いる場合について述べたが、本発明はこれに限ら
ず、2次元領域を撮像する他の2次元イメージセンサに
おける信号転送段に用いる場合にも適用し得る。また図
1に示す構造のCCDをフアクシミリや電子複写機等の
1次元イメージセンサにおける信号転送段に用いても良
く、またアナログデータのデイレイライン等として用い
ても良い。
Further, in the above-mentioned embodiment, the case where the CCD having the structure shown in FIG. 1 is used as the signal transfer stage of the CCD solid-state image pickup element has been described, but the present invention is not limited to this, and other two-dimensional area is imaged. It can also be applied to the case of being used in the signal transfer stage in the two-dimensional image sensor of. The CCD having the structure shown in FIG. 1 may be used as a signal transfer stage in a one-dimensional image sensor such as a facsimile or electronic copying machine, or may be used as a delay line for analog data.

【0029】[0029]

【発明の効果】上述のように本発明によれば、複数の転
送電極をそれぞれ分離する分離層下部に位置する領域の
不純物濃度を、隣接する転送電極下部の領域の濃度に比
して低くしたことにより、当該領域のポテンシヤルを従
来に比して浅くでき、隣接する2つの転送電極に同電位
の駆動パルスが印加され、ポテンシヤルが浅くなつた場
合におけるポテンシヤルを2つの転送電極間下部のポテ
ンシヤルをほぼ同じにできる。これにより信号電荷の転
送の際、転送電極間に従来生じていたポテンシヤルのデ
ツプをなくすことができ、信号電荷の転送効率を一段と
向上させることができる。
As described above, according to the present invention, the impurity concentration of the region located under the separation layer that separates each of the plurality of transfer electrodes is made lower than the concentration of the region under the adjacent transfer electrode. As a result, the potential of the area can be made shallower than in the conventional case, the drive pulse of the same potential is applied to two adjacent transfer electrodes, and the potentiometer in the case where the potential is shallow becomes Can be almost the same. As a result, when transferring signal charges, it is possible to eliminate the potential depth that has conventionally occurred between the transfer electrodes, and it is possible to further improve the transfer efficiency of signal charges.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による電荷転送素子の一実施例を示す部
分断面図及びそのポテンシヤル図である。
FIG. 1 is a partial cross-sectional view and a potential diagram showing an embodiment of a charge transfer device according to the present invention.

【図2】転送電極を分離する層間絶縁膜下部における深
さ方向へのポテンシヤルプロフアイルを示すポテンシヤ
ル図である。
FIG. 2 is a potential diagram showing a potential profile in a depth direction in a lower portion of an interlayer insulating film separating a transfer electrode.

【図3】インターライン転送方式による2次元イメージ
センサの説明に供する略線的平面図である。
FIG. 3 is a schematic plan view for explaining a two-dimensional image sensor using an interline transfer system.

【図4】従来の電荷転送素子の説明に供する部分断面図
及びそのポテンシヤル図である。
FIG. 4 is a partial sectional view and a potential diagram thereof for explaining a conventional charge transfer device.

【図5】その転送電極を分離する層間絶縁膜下部におけ
る深さ方向へのポテンシヤルプロフアイルを示すポテン
シヤル図である。
FIG. 5 is a potential diagram showing a potential profile in a depth direction in a lower portion of an interlayer insulating film separating the transfer electrode.

【符号の説明】[Explanation of symbols]

1、20……CCD固体撮像素子、2……フオトダイオ
ード、3、21……垂直レジスタ、4……撮像領域、5
……水平レジスタ、10……半導体基板、11……Pウ
エル、12……チヤネル領域、13……ゲート絶縁膜、
14……層間絶縁膜、15、16、17……転送電極。
1, 20 ... CCD solid-state image sensor, 2 ... Photodiode, 3, 21 ... Vertical register, 4 ... Imaging area, 5
... Horizontal register, 10 ... Semiconductor substrate, 11 ... P well, 12 ... Channel region, 13 ... Gate insulating film,
14 ... Interlayer insulating film, 15, 16, 17 ... Transfer electrodes.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の表面に形成された不純物拡散
層を信号電荷の転送領域とし、当該転送領域上に酸化膜
を挟んで形成された複数の転送電極のそれぞれに対して
駆動パルスを印加することにより上記転送電極下に蓄積
された信号電荷を隣接する転送電極下に順次転送する電
荷転送素子において、 上記転送領域のうち、上記複数の転送電極をそれぞれ分
離する分離層下部に位置する領域部分に、上記転送領域
を形成する不純物に対して逆形の不純物を注入し、当該
領域における不純物濃度を上記転送電極下部の領域の濃
度に比して低くすることを特徴とする電荷転送素子。
1. A drive pulse is applied to each of a plurality of transfer electrodes formed on the surface of a semiconductor substrate by using an impurity diffusion layer as a signal charge transfer region and sandwiching an oxide film on the transfer region. In the charge transfer element for sequentially transferring the signal charges accumulated under the transfer electrodes to the adjacent transfer electrodes by doing so, in the transfer region, a region located under the separation layer that separates the plurality of transfer electrodes from each other. A charge transfer element characterized in that an impurity having an inverse shape to the impurity forming the transfer region is injected into the portion, and the impurity concentration in the region is made lower than the concentration in the region below the transfer electrode.
【請求項2】1次元又は2次元イメージセンサによつて
光電変換された電荷を上記信号電荷として順次転送する
ことを特徴とする請求項1に記載の電荷転送素子。
2. The charge transfer device according to claim 1, wherein charges photoelectrically converted by a one-dimensional or two-dimensional image sensor are sequentially transferred as the signal charges.
【請求項3】アナログ信号処理回路に入力された入力信
号を上記信号電荷とし、当該信号電荷を任意の時間遅延
して転送することを特徴とする請求項1に記載の電荷転
送素子。
3. The charge transfer device according to claim 1, wherein an input signal input to an analog signal processing circuit is used as the signal charge, and the signal charge is delayed by an arbitrary time and transferred.
JP9714393A 1993-03-31 1993-03-31 Charge transfer element Pending JPH06291148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9714393A JPH06291148A (en) 1993-03-31 1993-03-31 Charge transfer element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9714393A JPH06291148A (en) 1993-03-31 1993-03-31 Charge transfer element

Publications (1)

Publication Number Publication Date
JPH06291148A true JPH06291148A (en) 1994-10-18

Family

ID=14184355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9714393A Pending JPH06291148A (en) 1993-03-31 1993-03-31 Charge transfer element

Country Status (1)

Country Link
JP (1) JPH06291148A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886441A (en) * 1987-11-06 1989-12-12 Food Equipment Engineering, Inc. Apparatus for forming three dimensional food products
US6011282A (en) * 1996-11-28 2000-01-04 Nec Corporation Charge coupled device with a buried channel two-phase driven two-layer electrode structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4886441A (en) * 1987-11-06 1989-12-12 Food Equipment Engineering, Inc. Apparatus for forming three dimensional food products
US6011282A (en) * 1996-11-28 2000-01-04 Nec Corporation Charge coupled device with a buried channel two-phase driven two-layer electrode structure
KR100367901B1 (en) * 1996-11-28 2003-02-19 닛뽕덴끼 가부시끼가이샤 A charge coupled device

Similar Documents

Publication Publication Date Title
US20060103750A1 (en) Imaging device
JPS62160758A (en) Solid-state image pickup element
JPS6262553A (en) Solid state image pick-up device
JPH0518465B2 (en)
US7750376B2 (en) Solid-state imaging device and imaging apparatus
US5397730A (en) Method of making a high efficiency horizontal transfer section of a solid state imager
JPH06291148A (en) Charge transfer element
JPH04167470A (en) Solid-state imaging device, solid-state imaging device production method and operating method
JP3214428B2 (en) Color linear image sensor and driving method thereof
JP2812003B2 (en) Solid-state imaging device and driving method thereof
JP3370249B2 (en) Solid-state imaging device, driving method and manufacturing method thereof
JPH0425714B2 (en)
JP2907841B2 (en) Line sensor
KR100259065B1 (en) Ccd image device
JP2713975B2 (en) Solid-state imaging device and method of manufacturing the same
JP3467918B2 (en) Method for manufacturing solid-state imaging device and solid-state imaging device
JPH05145056A (en) Solid state image sensor
JP2000299456A (en) Solid-state image pickup device
JPH09252106A (en) Solid-state image pickup device
JPS63234677A (en) Drive method of charge coupling element
JPH07120773B2 (en) Interline solid-state image sensor
JPH06181225A (en) Signal-charge transmission apparatus
JPH08316459A (en) Charge transfer device and solid-state image-pickup device
JPH036836A (en) Charge transfer device
JPS5925481A (en) Solid state image pickup element