JPH06291050A - Vapor growth si film and method and device for vapor growth - Google Patents

Vapor growth si film and method and device for vapor growth

Info

Publication number
JPH06291050A
JPH06291050A JP7365193A JP7365193A JPH06291050A JP H06291050 A JPH06291050 A JP H06291050A JP 7365193 A JP7365193 A JP 7365193A JP 7365193 A JP7365193 A JP 7365193A JP H06291050 A JPH06291050 A JP H06291050A
Authority
JP
Japan
Prior art keywords
wafer
film
vapor phase
phase growth
bell jar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7365193A
Other languages
Japanese (ja)
Inventor
Masaaki Kawamura
雅明 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP7365193A priority Critical patent/JPH06291050A/en
Publication of JPH06291050A publication Critical patent/JPH06291050A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form an improved Si film which does not incorporate a fine flake or mound by forming a single-crystal Si film which is the Si film formed in one piece on a wafer while a negative potential is applied to the wafer by the vapor growth by thermal decomposition of SiH4. CONSTITUTION:A bell jar body 1 is removed from the surface of a substrate 1. Then, a wafer 3 where Si film is allowed to grow, namely Si wafer, is placed on a susceptor 2. Then, after the bell jar body 1 is fitted to the surface of the substrate 8 airtightly, the pressure inside of the bell jar body 1 is evacuated and set to approximately 0.2 Torr. Then, a heat source 4 is operated and the wafer 3, etc., are heated to the retained at a required temperature and at the same time a negative potential and a positive potential are applied to the wafer 3 and the bell jar body 1 by a potential application means 5. Then, single-crystal Si film is deposited and is allowed to grow on the surface of the water 3 after thermal decomposition inside the bell jar body 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気相成長により形成され
たSi膜、このSi膜の気相成長方法およびSi膜の気相成長
に適する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Si film formed by vapor phase growth, a vapor phase growth method for this Si film, and an apparatus suitable for vapor phase growth of a Si film.

【0002】[0002]

【従来の技術】単結晶基板面に成長されたSi単結晶膜
は、たとえばトランジスタ素子などの構成用として多く
の関心が寄せられている。そして、この種のSi単結晶膜
は、一般にウエハ面上に、たとえば減圧 CVD法などの気
相成長によって形成されている。ところで、気相成長法
によるSi単結晶膜の形成手段としては、一般的に、以下
に記述するように要約される (a)熱分解法, (b)不均等
化法, (c)還元法に分けられる。
2. Description of the Related Art A Si single crystal film grown on a surface of a single crystal substrate has attracted much interest as a constituent of, for example, a transistor element. This type of Si single crystal film is generally formed on the wafer surface by vapor phase growth such as low pressure CVD. By the way, as a means for forming a Si single crystal film by a vapor phase growth method, generally, the following are summarized as follows: (a) thermal decomposition method, (b) unequalization method, (c) reduction method It is divided into

【0003】(a)熱分解法, SiH4 →Si+2H2 成長温度:1000〜1100℃,成長速度: 5〜10μm/min , (b)不均等化法, 2SiH2 Cl2 →Si+SiCl4 +2H2 → 2Si+4HCl 成長温度:1050〜1150℃,成長速度:10〜15μm/min , (c)還元法, 2SiHCl3 +2H2 → 2Si+6HCL 成長温度:1100〜1150℃,成長速度: 5〜10μm/min ,(A) Pyrolysis method, SiH 4 → Si + 2H 2 growth temperature: 1000 to 1100 ° C., growth rate: 5 to 10 μm / min, (b) Unequalization method, 2SiH 2 Cl 2 → Si + SiCl 4 + 2H 2 → 2Si + 4HCl growth temperature: 1050 to 1,150 ° C., the growth rate: 10~15μm / min, (c) reduction method, 2SiHCl 3 + 2H 2 → 2Si + 6HCL growth temperature: 1,100-1,150 ° C., the growth rate: 5 to 10 [mu] m / min,

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
気相成長法によるSi単結晶膜の形成においては、次のよ
うな実用上不都合な問題が認められる。
However, in the formation of the Si single crystal film by the conventional vapor phase growth method, the following practically inconvenient problems are recognized.

【0005】先ず、 (a)熱分解法の場合は、比較的低温
で結晶欠陥の少ない良質なエピタキシャル層(膜)を形
成し易いが、反面、気相中に析出したSi微結晶がウエハ
(たとえば単結晶siウエハー)面に付着し易く、この付
着したSi微結晶(微小Siフレーク)が、引き続いて成長
するSi膜中に“マウンド”と称される領域を形成し、結
晶組織としては歪んだ成膜の形成を招来する。つまり、
成長膜の厚さが10μm程度までの場合はよいが、それ以
上の厚さになると半導体素子の形成などに適さないとい
う問題がある。
First, in the case of (a) the thermal decomposition method, it is easy to form a good quality epitaxial layer (film) with few crystal defects at a relatively low temperature, but on the other hand, Si microcrystals deposited in the vapor phase are formed on the wafer ( For example, it tends to adhere to the surface of a single crystal si wafer), and the adhered Si microcrystals (micro Si flakes) form a region called “mound” in the subsequently grown Si film, and the crystal structure is distorted. However, it causes the formation of a film. That is,
It is preferable that the thickness of the growth film be up to about 10 μm, but if the thickness is larger than that, there is a problem that it is not suitable for forming semiconductor elements.

【0006】一方、 (b)不均等化法および (c)還元法の
場合は、気相成長の過程で生成したHClによるエッチン
グ効果で、微小Siフレークの付着が回避ないし低減化さ
れるため、 (a)熱分解法の場合に見られる問題は解消さ
れるが、原料の調製,作業環境,量産性,成長装置に耐
蝕性が要求されるなどコスト面で問題を生じる。
On the other hand, in the case of (b) the nonuniformization method and (c) the reduction method, the adhesion of fine Si flakes is avoided or reduced by the etching effect of HCl generated during the vapor phase growth. (a) Although the problems seen in the case of the thermal decomposition method are solved, there are problems in cost, such as preparation of raw materials, working environment, mass productivity, and corrosion resistance of growth equipment.

【0007】本発明は上記事情に対処してなされたもの
で、微小フレークやマウンドなどを内蔵(含有)しない
単結晶Si膜、および良質なSi膜の形成方法、その形成方
法の実施に適する装置の提供を目的とする。
The present invention has been made in view of the above circumstances, and is a single crystal Si film that does not contain (contains) fine flakes or mounds, a method for forming a high-quality Si film, and an apparatus suitable for carrying out the forming method. For the purpose of providing.

【0008】[0008]

【課題を解決するための手段】本発明に係る単結晶Si膜
は、ウエハ面に一体的に形成されたSi膜であって、前記
Si膜はウエハに負の電位を印加した状態で SiH4 の熱分
解による気相成長で形成されて成ることを特徴とし、ま
た、本発明に係るSi膜の気相成長方法は、気相成長領域
内にウエハを装着する手段と、前記気相成長領域を形成
するケース体ないしウエハに対して負の電位を印加する
手段と、前記負の電位を印加したウエハ面に SiH4 ガス
を供給し、かつ熱分解させてSi膜を堆積・成長させる工
程とを具備して成ることを特徴し、さらに、本発明に係
るSi膜の気相成長装置は、 SiH4 ガスの供給口および排
気口を備えたケース体と、前記ケース体内に配置された
ウエハを載置するサセプタと、前記サセプタに載置され
たウエハを所定の温度に加熱保持することが可能な加熱
用熱源と、前記サセプタに載置されたウエハに負の電位
を印加する電位印加手段とを具備して成ることを特徴と
する。
A single crystal Si film according to the present invention is a Si film integrally formed on a wafer surface,
The Si film is characterized by being formed by vapor phase growth by thermal decomposition of SiH 4 in a state where a negative potential is applied to the wafer, and the vapor phase growth method of the Si film according to the present invention is Means for mounting a wafer in the region, means for applying a negative potential to the case body or wafer forming the vapor phase growth region, and SiH 4 gas supplied to the wafer surface to which the negative potential has been applied. And a step of depositing and growing a Si film by thermal decomposition, and further, a vapor phase growth apparatus for a Si film according to the present invention has a SiH 4 gas supply port and an exhaust port. A case body provided with the susceptor, a susceptor on which the wafer placed in the case body is placed, a heating heat source capable of heating and holding the wafer placed on the susceptor at a predetermined temperature, and a susceptor mounted on the susceptor. Potential applying means for applying a negative potential to the placed wafer, Characterized by comprising comprises.

【0009】そして、このような本発明は、 SiH4 (モ
ノシラン)ガスを原料とするSiの気相成長において、被
成長基板に負の電位を印加した状態に設定しておくと、
気相中に析出した微小フレークの被成長基板に対する付
着現象が効果的に回避され、マウンドの形成など大幅に
低減ないし解消されるという知見に基づいてなされたも
のである。
According to the present invention as described above, when the negative potential is applied to the substrate to be grown in the vapor phase growth of Si using SiH 4 (monosilane) gas as a raw material,
This is based on the finding that the adhesion phenomenon of fine flakes precipitated in the gas phase to the substrate to be grown is effectively avoided and the formation of mounds is greatly reduced or eliminated.

【0010】[0010]

【作用】上記のごとく、本発明に係るSiの気相成長膜
は、被成長基板(ウエハ)面上に成膜する過程におい
て、前記ウエハが負の電位に印加されていることに伴
い、熱分解して気相中に析出した微小フレーク(Si微結
晶)が、いわゆる気相成長用のチャンバーにおいて、そ
の筐体側に優先的ないし選択的に移行するので、ウエハ
面に堆積・成膜するSi膜中にマウンドなどが発生する問
題も全面的に回避される。つまり、膜厚で、かつ結晶組
織に歪みのない良質な単結晶Si膜を保持しているので、
各種半導体素子の製造ないし構成に適するものといえ
る。
As described above, the Si vapor-phase growth film according to the present invention is heated by the negative potential applied to the wafer during the process of forming the film on the growth substrate (wafer) surface. The microflakes (Si microcrystals) that decompose and precipitate in the vapor phase preferentially or selectively move to the case side in a so-called vapor phase growth chamber, so Si that is deposited / deposited on the wafer surface The problem of the formation of mounds in the film is completely avoided. In other words, since a good quality single crystal Si film having a film thickness and no distortion in the crystal structure is held,
It can be said that it is suitable for manufacturing or configuring various semiconductor devices.

【0011】[0011]

【実施例】以下、図1〜図2を参照して本発明の実施例
を説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0012】図1は、本発明に係る単結晶Si膜気相成長
装置の要部構造例を断面的に示したもので、1はベルジ
ャ本体(ケース体)、2は前記ベルジャ本体1内に配置
されたSi膜が成長されるウエハ3を載置するサセプタで
あり、たとえばグラファイトや SiCなど導電性材料で構
成されている。また、4は前記サセプタ2に載置された
ウエハ3を所定の温度に加熱保持することが可能な、た
とえば高周波コイルから成る加熱用熱源、5は前記サセ
プタ2に載置されたウエハ3に負の電位を、またベルジ
ャ本体1などに正の電位をそれぞれ印加する電位印加手
段であり、前記気密形ベルジャ本体1は SiH4 ガスの供
給口6および排気口7を備えた基台8と気密な筐体を構
成する形に、かつ着脱可能に装着されている。換言する
と、このSi膜気相成長装置は、サセプタ2に載置された
ウエハ3に負の電位を、またベルジャ本体1などに正の
電位をそれぞれ印加する電位印加手段5を付設した点で
特徴つけられもので、基本的な構成・構造、さらに操作
などは従来の気相成長装置と何等変わらない。
FIG. 1 is a sectional view showing a structural example of a main part of a single crystal Si film vapor phase growth apparatus according to the present invention. Reference numeral 1 is a bell jar body (case body), 2 is inside the bell jar body 1. This is a susceptor on which the wafer 3 on which the arranged Si film is grown is placed, and is made of a conductive material such as graphite or SiC. Further, 4 is a heating heat source capable of heating and holding the wafer 3 mounted on the susceptor 2 at a predetermined temperature, for example, a heating heat source including a high-frequency coil, and 5 is a negative heat source for the wafer 3 mounted on the susceptor 2. Is a potential applying means for applying a positive potential to the bell jar main body 1 and the like, and the airtight bell jar main body 1 is airtight to a base 8 having a SiH 4 gas supply port 6 and an exhaust port 7. It is attached in a detachable manner in the form of a casing. In other words, this Si film vapor phase growth apparatus is characterized in that potential applying means 5 for applying a negative potential to the wafer 3 mounted on the susceptor 2 and a positive potential to the bell jar body 1 and the like is additionally provided. Since it is attached, the basic configuration and structure, and the operation are no different from the conventional vapor phase growth apparatus.

【0013】次に、前記図1に示した構成のSi膜気相成
長装置による単結晶Si膜の形成方法例について説明す
る。先ず、前記ベルジャ本体1を基台8面から取り外
し、サセプタ2に、Si膜が成長されるウエハ3、たとえ
ばSiウエハーを載置する。次いで、前記ベルジャ本体1
を基台8面に気密に装着した後、排気口7を介してベル
ジャ本体1内を圧力を 0.2torr程度にに排気・設定する
一方、加熱用熱源4を動作させてウエハ3など所要の温
度に加熱保持するとともに、電位印加手段5によってウ
エハ3に負の電位を、またベルジャ本体1などに正の電
位をそれぞれ印加する。ソシテ、前記サセプタ2を図の
矢印方向に回転差せながら、 SiH4 ガスの供給口6から
たとえば SiH4 75sccmと H2 75sccmの混合ガスを供給
し、ベルジャ本体1内で熱分解させて、単結晶Si膜を前
記ウエハ3面に堆積・成長させる。
Next, an example of a method of forming a single crystal Si film by the Si film vapor phase growth apparatus having the structure shown in FIG. 1 will be described. First, the bell jar body 1 is removed from the surface of the base 8, and a wafer 3 on which a Si film is grown, for example, a Si wafer is placed on the susceptor 2. Next, the bell jar body 1
After air-tightly mounting the base on the surface of the base 8, the pressure inside the bell jar main body 1 is exhausted and set to about 0.2 torr through the exhaust port 7, while the heat source 4 for heating is operated and the required temperature such as the wafer 3 is reached. In addition to heating and holding, the potential applying means 5 applies a negative potential to the wafer 3 and a positive potential to the bell jar body 1 and the like. While rotating the susceptor 2 in the direction of the arrow in the figure, a mixed gas of, for example, SiH 4 75sccm and H 2 75sccm is supplied from the SiH 4 gas supply port 6 and pyrolyzed in the bell jar body 1 to produce a single crystal. A Si film is deposited and grown on the surface of the wafer 3.

【0014】前記 SiH4 の熱分解、ウエハ3面への単結
晶Si膜の堆積・成長過程において、電位印加手段5によ
ってウエハ3に負の電位、またベルジャ本体1に正の電
位がそれぞれ印加されているため、図2に模式的に示す
ごとく、気相中に析出し、かつ負の荷電を帯び易いSi微
結晶(微小フレーク)は、正の電位をもつベルジャ本体
1側に選択的・優先的に移行し、ウエハ3面へ付着する
恐れが全面的に解消している。つまり、ウエハ3面への
単結晶Si膜の堆積・成長時に、前記微小フレークの付着
が起こらないので、必然的に成膜中に微小フレークに起
因するマウンド発生も解消し、結晶組織に歪みなどのな
い、半導体そし形成に適する良質(高品質)な単結晶Si
膜として機能することになる。
During the thermal decomposition of SiH 4 and the deposition / growth of the single crystal Si film on the surface of the wafer 3, a negative potential is applied to the wafer 3 and a positive potential is applied to the bell jar body 1 by the potential applying means 5. Therefore, as shown schematically in FIG. 2, Si microcrystals (microflakes) that precipitate in the gas phase and are easily negatively charged are selectively and preferentially attached to the side of the bell jar main body 1 that has a positive potential. The risk of adhesion to the surface of the wafer 3 is completely eliminated. In other words, since the minute flakes do not adhere during the deposition / growth of the single crystal Si film on the wafer 3 surface, the mound generation caused by the minute flakes is inevitably eliminated during the film formation, and the crystal structure is distorted. High quality (high quality) single crystal Si suitable for forming semiconductors
It will function as a film.

【0015】なお、上記ではウエハ3に負の電位を付与
するに当たり、ベルジャ本体1およびベルジャ本体1に
のみ正の電位を付与し、サセプタ2に負の電位を付与す
る態様でもよク、またサセプタ2およびウエハ3を絶縁
体で仕切り(隔絶して)、サセプタ2に正の電位を付与
してもよい。さらに、ベルジャとは別に正の電位を付与
した基体を配置し、これにフレークを堆積させるように
してもよい。また、ベルジャ本体1内に装着・配置され
たサセプタ2、およびサセプタ2面上に載置するウエハ
3は、複数に分割された構成を採り、それらにより複数
の実施態様を採ってもよい。
In the above, in applying the negative potential to the wafer 3, the bell jar main body 1 and the bell jar main body 1 may be provided with the positive potential and the susceptor 2 may be provided with the negative potential. 2 and the wafer 3 may be partitioned (isolated) by an insulator and a positive potential may be applied to the susceptor 2. Further, a base to which a positive potential is applied may be arranged separately from the bell jar, and flakes may be deposited on the base. Further, the susceptor 2 mounted and arranged in the bell jar main body 1 and the wafer 3 mounted on the surface of the susceptor 2 may have a plurality of divided structures, and a plurality of embodiments may be adopted.

【0016】[0016]

【発明の効果】上記説明したように、本発明によれば、
被成長基板(ウエハ)を負の電位に印加した状態で、気
相成長させることに伴い、 SiH4 の熱分解で気相中に析
出した微小フレーク(Si微結晶)が、いわゆる気相成長
用のベルジャーおよび筐体側に優先的ないし選択的に移
行する。このため、被成長基板面に堆積・成膜する単結
晶Si膜中にマウンドなどが発生する問題も全面的に回避
される。つまり、膜厚で、結晶組織に歪みのない良質な
Si膜を保持しているので、各種半導体素子の製造ないし
構成に適する素材を、容易かつ量産的に提供し得るもの
といえる。
As described above, according to the present invention,
The microflakes (Si microcrystals) deposited in the vapor phase due to the thermal decomposition of SiH 4 during the vapor phase growth while the substrate (wafer) to be grown is applied with a negative potential are for so-called vapor phase growth. The bell jar and the case side of the machine are preferentially or selectively transferred. Therefore, the problem that a mound or the like is generated in the single crystal Si film deposited / formed on the surface of the substrate to be grown is completely avoided. In other words, the film thickness is of good quality with no distortion in the crystal structure.
Since the Si film is held, it can be said that a material suitable for manufacturing or configuring various semiconductor elements can be provided easily and in mass production.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る単結晶Si膜気相成長装置の要部構
造例を示す断面図。
FIG. 1 is a sectional view showing a structural example of a main part of a single crystal Si film vapor phase growth apparatus according to the present invention.

【図2】本発明に係るSi膜気相成長の実施態様例で熱分
解にて気相中に析出した微小フレークの挙動を模式的に
示す断面図。
FIG. 2 is a cross-sectional view schematically showing the behavior of fine flakes deposited in the vapor phase by thermal decomposition in an embodiment example of vapor deposition of a Si film according to the present invention.

【符号の説明】[Explanation of symbols]

1…ベルジャー本体 2…サセプタ 3…被成長基
体(ウエハ) 4…加熱用熱源 5…電位印加手段
6…原料ガス供給口 7…排気口 8…基台
DESCRIPTION OF SYMBOLS 1 ... Bell jar main body 2 ... Susceptor 3 ... Growth substrate (wafer) 4 ... Heating heat source 5 ... Potential applying means 6 ... Raw material gas supply port 7 ... Exhaust port 8 ... Base

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ウエハ面に一体的に形成されたSi膜であ
って、前記Si膜はウエハに負の電位を印加した状態で S
iH4 の熱分解による気相成長で形成されて成ることを特
徴とする気相成長Si膜。
1. A Si film integrally formed on a wafer surface, wherein the Si film is formed in a state where a negative potential is applied to the wafer.
A vapor-grown Si film formed by vapor-phase growth of iH 4 by thermal decomposition.
【請求項2】 気相成長領域内にウエハを装着する手段
と、前記気相成長領域を形成するケース体に対して負の
電位を印加する手段と、前記負の電位を印加したウエハ
面に SiH4 ガスを供給し、かつ熱分解させてSi膜を堆積
・成長させる手段とを具備して成ることを特徴とするSi
膜の気相成長方法。
2. A means for mounting a wafer in a vapor phase growth region, a means for applying a negative potential to a case body forming the vapor phase growth region, and a wafer surface to which the negative potential is applied. A means for depositing and growing a Si film by supplying SiH 4 gas and thermally decomposing it.
Film vapor deposition method.
【請求項3】 気相成長領域内にウエハを装着する手段
と、前記気相成長領域内に配置されたウエハに負の電位
を印加する手段と、前記負の電位を印加したウエハ面に
SiH4 ガスを供給し、かつ熱分解させてSi膜を堆積・成
長させる手段とを具備して成ることを特徴とするSi膜の
気相成長方法。
3. A means for mounting a wafer in a vapor phase growth region, a means for applying a negative potential to a wafer arranged in the vapor phase growth region, and a wafer surface to which the negative potential is applied.
A method for vapor phase growth of a Si film, comprising means for supplying SiH 4 gas and thermally decomposing it to deposit and grow the Si film.
【請求項4】 SiH4 ガスの供給口および排気口を備え
た気密形ケース体と、前記気密形ケース体内に配置され
たウエハを載置するサセプタと、前記サセプタに載置さ
れたウエハを所定の温度に加熱保持することが可能な加
熱用熱源と、前記サセプタに載置されたウエハに負の電
位を印加する電位印加手段とを具備して成ることを特徴
とする気相成長装置。
4. An airtight case body having a SiH 4 gas supply port and an exhaust port, a susceptor for mounting a wafer arranged in the airtight case body, and a wafer mounted on the susceptor to a predetermined size. And a potential applying means for applying a negative potential to the wafer mounted on the susceptor.
JP7365193A 1993-03-31 1993-03-31 Vapor growth si film and method and device for vapor growth Withdrawn JPH06291050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7365193A JPH06291050A (en) 1993-03-31 1993-03-31 Vapor growth si film and method and device for vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7365193A JPH06291050A (en) 1993-03-31 1993-03-31 Vapor growth si film and method and device for vapor growth

Publications (1)

Publication Number Publication Date
JPH06291050A true JPH06291050A (en) 1994-10-18

Family

ID=13524408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7365193A Withdrawn JPH06291050A (en) 1993-03-31 1993-03-31 Vapor growth si film and method and device for vapor growth

Country Status (1)

Country Link
JP (1) JPH06291050A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117242205A (en) * 2021-05-31 2023-12-15 Bei实验室株式会社 Method for preparing silicon by gas phase electroreduction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117242205A (en) * 2021-05-31 2023-12-15 Bei实验室株式会社 Method for preparing silicon by gas phase electroreduction

Similar Documents

Publication Publication Date Title
JP3707726B2 (en) Silicon carbide manufacturing method, composite material manufacturing method
KR100284374B1 (en) Method of Forming Crystalline Silicon Carbide Film
JPH01162326A (en) Manufacture of beta-silicon carbide layer
JP3545459B2 (en) Method of making crystalline silicon carbide coating at low temperature
US5471946A (en) Method for producing a wafer with a monocrystalline silicon carbide layer
JPH0211012B2 (en)
CN104412362B (en) Silicon carbide epitaxy chip and preparation method thereof
CN105731825A (en) Method for preparing aluminum nitride thin film by utilizing graphene glass at low cost and large area
CN113832432A (en) Preparation method of two-dimensional compound semiconductor film
TW200807505A (en) Method for maintaining semiconductor manufacturing apparatus, semiconductor manufacturing apparatus, and method for manufacturing semiconductor
JP2000260721A (en) Cvd system, cvd method and method of cleaning the cvd system
US20080187685A1 (en) Method of preparing vertically-aligned carbon nanotube under atmospheric and cold-wall heating treatments and making the same
JP4283478B2 (en) Method for growing SiC single crystal on electronic device substrate
JPH06291050A (en) Vapor growth si film and method and device for vapor growth
JPH05315269A (en) Forming method for thin film
JP2550024B2 (en) Low pressure CVD equipment
JP6783722B2 (en) Boron Nitride Film Growth Device and Method
KR20180040854A (en) Fabrication method of multilayer film, and multilayer film, and semiconductor device using thereof
JP2021046336A (en) Method for processing surface of graphite support substrate, method for depositing silicon carbide polycrystalline film and method for manufacturing silicon carbide polycrystalline substrate
JP2559703B2 (en) Method for epitaxial growth of wiring film
JP2013016562A (en) Vapor-phase growth method
JP2021066624A (en) Manufacturing method of silicon carbide polycrystalline substrate
JP2005317670A (en) Fabricating method of cubic silicon carbide crystal film with orientation (100)
JP7367497B2 (en) Method for forming a silicon carbide polycrystalline film and manufacturing method for a silicon carbide polycrystalline substrate
WO2023067876A1 (en) Method for producing polycrystalline silicon carbide substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704