JPH06290772A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH06290772A
JPH06290772A JP5075438A JP7543893A JPH06290772A JP H06290772 A JPH06290772 A JP H06290772A JP 5075438 A JP5075438 A JP 5075438A JP 7543893 A JP7543893 A JP 7543893A JP H06290772 A JPH06290772 A JP H06290772A
Authority
JP
Japan
Prior art keywords
alloy
negative electrode
carbon powder
lithium
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5075438A
Other languages
Japanese (ja)
Inventor
Hidetoshi Honbou
英利 本棒
Katsunori Nishimura
勝憲 西村
Akihiro Goto
明弘 後藤
Mamoru Mizumoto
守 水本
Tatsuo Horiba
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5075438A priority Critical patent/JPH06290772A/en
Publication of JPH06290772A publication Critical patent/JPH06290772A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To achieve extending a life of a battery by relaxing changing volume of a lithium alloy at charge/discharge time, suppressing the alloy from pulverization and also holding electrical continuity of the alloy even when generated its pulverization, so as to prevent negative pole capacity from deteriorating. CONSTITUTION:In a compound of a negative pole 1 consisting of lithium alloy, organic polymer binder and carbon power of 1m<2>/g or more 100m<2>/g or less specific surface, a carbon powder amount is set to a 10 to 20vol.% range. By the negative pole 1 prepared by applying this negative pole compound to a metal collector, a battery is constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水系二次電池に係わ
り、特にポータブル機器,電気自動車の電源として用い
るのに好適な長寿命,高エネルギー密度のリチウム二次
電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery, and more particularly to a long-life, high energy density lithium secondary battery suitable for use as a power source for portable equipment and electric vehicles.

【0002】[0002]

【従来の技術】アルカリ金属を負極に用いる非水系二次
電池は、従来の水系二次電池に比べ高エネルギー密度が
得られる。その代表例としてリチウム二次電池が挙げら
れ、ノート型パソコン,ビデオカメラ,携帯電話等のポ
ータブル機器や電気自動車用の電源としての用途が期待
されている。
2. Description of the Related Art A non-aqueous secondary battery using an alkali metal as a negative electrode has a higher energy density than a conventional aqueous secondary battery. A typical example thereof is a lithium secondary battery, which is expected to be used as a power source for portable devices such as laptop computers, video cameras, mobile phones, and electric vehicles.

【0003】しかるに、負極活物質としてリチウム金属
単体を用いた場合、充電時、すなわち負極表面にリチウ
ムが析出する過程で、樹枝(デンドライト)状析出がた
びたび起きる。デンドライト状リチウムは、電極基体か
ら容易に脱落することや電解液と反応することにより電
池容量の低下をまねく。さらに、セパレーターを貫通す
ることより内部短絡を引き起こし電池を壊す原因とな
る。そこで、リチウム金属単体に代わる負極活物質とし
てリチウム合金が用いられている。析出リチウムと合金
母材金属との合金化によって、析出リチウムを合金内部
に取り込み、デンドライト析出と電解液との不活性化反
応が抑制できる。このような合金としては、Li−A
l,Li−Cd,Li−In,Li−Sn,Li−P
b,Li−Bi等が挙げられる。
However, when a simple substance of lithium metal is used as the negative electrode active material, dendrite-like deposition frequently occurs during charging, that is, in the process of depositing lithium on the surface of the negative electrode. The dendrite-like lithium easily drops off from the electrode substrate and reacts with the electrolytic solution, resulting in a decrease in battery capacity. Further, penetrating the separator may cause an internal short circuit and damage the battery. Therefore, a lithium alloy is used as a negative electrode active material instead of a simple substance of lithium metal. By alloying the precipitated lithium with the alloy base metal, the precipitated lithium can be taken into the alloy, and the dendrite precipitation and the inactivation reaction with the electrolytic solution can be suppressed. As such an alloy, Li-A
1, Li-Cd, Li-In, Li-Sn, Li-P
b, Li-Bi and the like.

【0004】ところが、上記リチウム合金を負極活物質
として用いる上で、充放電に伴ってリチウム合金の体積
が膨張収縮し合金内部に応力が発生するため、リチウム
合金が崩壊し微細化することが問題となっている。例え
ば、アルミニウム薄板に電気化学的にリチウムを吸蔵さ
せる方法(特開平1−115062 号公報)により得たLi−
Al合金では、充放電を繰り返し行った場合、電極表面
にひび割れが生じ電極活物質が基体より脱落し、良好な
サイクル特性は望めない。
However, when using the above lithium alloy as a negative electrode active material, the volume of the lithium alloy expands and contracts due to charge and discharge, and stress is generated inside the alloy, so that the lithium alloy collapses and becomes fine. Has become. For example, Li-obtained by a method of electrochemically absorbing lithium in a thin aluminum plate (Japanese Patent Laid-Open No. 1-115062)
With Al alloy, when charging and discharging are repeated, cracks occur on the electrode surface and the electrode active material falls off from the substrate, and good cycle characteristics cannot be expected.

【0005】合金微細化を抑制する方法として、主たる
母材金属以外に他の成分金属を加えることが検討されて
いる。例えば、Li−Al合金にMgを15〜65重量
(wt)%(特開昭60−86760号公報)、Znを15〜
65wt%(特開昭60−89069 号公報)含んだ合金や、
Li−Pb合金にCd,Bi,In,Snの1種類以上
を含む合金(特公平3−64988号公報)が提案されてい
る。
As a method of suppressing alloy refinement, addition of other component metals in addition to the main base metal has been studied. For example, in a Li-Al alloy, Mg is 15 to 65% by weight (JP-A-60-86760), and Zn is 15 to 65%.
An alloy containing 65 wt% (Japanese Patent Laid-Open No. 60-89069),
An alloy containing at least one of Cd, Bi, In, and Sn in a Li-Pb alloy (Japanese Patent Publication No. 3-64988) has been proposed.

【0006】しかし、母材金属に他の成分金属を加えた
リチウム合金もやがて微細化するため、微細化した合金
の電極基体から脱落を防ぎ、合金間あるいは合金集電体
間の電気的導通を保つことが必要である。そのため、例
えば、Li−AlにZnを結着する方法(特開平1−778
70号公報)、負極表面にアルカリ金属イオン導伝性を有
する高分子化合物からなる被覆膜を設ける方法(特開昭
63−289759号公報)や負極をリチウムと合金を形成しに
くい多孔性の導伝部材で梱包する方法(特開昭63−1508
67号公報)が提案されている。しかし、これらはいずれ
も電極表面からの合金の脱落を抑える方法であるため、
電極内部の合金微細化による合金間あるいは合金集電体
間の接触性の低下は抑えられず、良好なサイクル特性は
得られない。
However, since the lithium alloy in which the base metal and other component metals are added is also miniaturized, it is possible to prevent the refined alloy from falling off the electrode base body and to provide electrical continuity between the alloys or between the alloy current collectors. It is necessary to keep. Therefore, for example, a method of binding Zn to Li-Al (JP-A-1-778).
No. 70), a method of providing a coating film made of a polymer compound having an alkali metal ion conductivity on the surface of a negative electrode (Japanese Patent Laid-Open Publication No. Sho 60 (1999) -58242).
No. 63-289759) or a method of packing a negative electrode with a porous conductive member that is hard to form an alloy with lithium (Japanese Patent Laid-Open No. 63-1508).
No. 67) is proposed. However, since all of these are methods of suppressing the drop of alloy from the electrode surface,
It is not possible to suppress the deterioration of the contact between the alloys or between the alloy current collectors due to the refinement of the alloy inside the electrode, and it is not possible to obtain good cycle characteristics.

【0007】[0007]

【発明が解決しようとする課題】二次電池の電極は、充
放電の繰り返しに対して安定であることが必要である。
前記のように、リチウム合金の微細化を抑制するととも
に、合金の微細化が起こっても合金間、あるいは合金集
電体間の電気的導通を保つことが課題となっている。本
発明は、これらの課題を解決することによって、電池の
長寿命化を図ることを目的としている。
The electrode of the secondary battery needs to be stable against repeated charging and discharging.
As described above, it is an object to suppress the refinement of the lithium alloy and to maintain the electrical continuity between the alloys or between the alloy current collectors even when the refinement of the alloy occurs. The present invention aims at prolonging the life of a battery by solving these problems.

【0008】[0008]

【課題を解決するための手段】リチウム合金を負極とし
て用いた場合、充放電時のリチウムの吸蔵放出によっ
て、合金の体積変化が生じ合金内部に応力が発生するた
め、充放電を繰り返した場合やがて合金が崩壊し、崩壊
した合金が負極基体より脱落することによって負極容量
が低下する。板状のリチウム合金負極を用いた場合、表
面にひび割れが生じ合金の脱落が著しい。リチウム合金
粉末を加圧成型した負極では、リチウム合金同士が直接
圧着し負極形状を保持するため、充放電よる体積の変化
を十分緩和できず、合金粉末がさらに微細になり合金間
の接触性が低下するため、活物質の集電性が悪化し電池
の内部抵抗が増加する。
Means for Solving the Problems When a lithium alloy is used as a negative electrode, the volume change of the alloy occurs due to the absorption and desorption of lithium during charge and discharge, and stress is generated inside the alloy. When the alloy collapses and the collapsed alloy falls off from the negative electrode substrate, the negative electrode capacity decreases. When a plate-shaped lithium alloy negative electrode is used, the surface is cracked and the alloy is significantly dropped. In the negative electrode in which lithium alloy powder is pressure-molded, the lithium alloys are directly pressure-bonded to each other to maintain the shape of the negative electrode. Since this decreases, the current collecting ability of the active material deteriorates and the internal resistance of the battery increases.

【0009】負極容量の低下を防ぐには、合金の微細化
を抑制するとともに、合金が微細化しても合金の電気的
導通を保持することが必要である。そこで、リチウム合
金粉末,有機重合体のバインダー,導電剤としての炭素
粉末からなる負極について検討した。合金粒子間にこれ
らの物質が存在することによって、合金体積の変化を緩
和するとともに、合金が微細化しても合金の電気的導通
を保持できると考えられる。とりわけ、負極合剤中の炭
素粉末量が、合金体積の変化の緩和及び合金の電気的導
通の保持に対して大きな影響を及ぼすことが考えられ、
負極合剤中の炭素粉末量について種々検討した。
In order to prevent the negative electrode capacity from decreasing, it is necessary to prevent the alloy from becoming finer and to maintain the electrical continuity of the alloy even if the alloy becomes finer. Therefore, a negative electrode made of lithium alloy powder, an organic polymer binder, and carbon powder as a conductive agent was examined. It is considered that the presence of these substances between the alloy particles can alleviate the change in alloy volume and maintain the electrical continuity of the alloy even if the alloy is miniaturized. In particular, the amount of carbon powder in the negative electrode mixture is considered to have a great influence on the relaxation of changes in the alloy volume and the retention of electrical continuity of the alloy.
Various studies were conducted on the amount of carbon powder in the negative electrode mixture.

【0010】その結果、負極合剤中のリチウム合金粉
末,有機重合体バインダー,炭素粉末の真密度から求め
たそれぞれの体積VLi,Vb,Vcの総和つまり負極合剤
の空隙を除いた実体積Vneg(=VLi+Vb+Vc)に対
するVcが、10〜20vol%の範囲で、負極容量の
低下が小さく良好なサイクル特性を示すことがわかっ
た。また、リチウム合金粉末単独を加圧成型して得られ
た負極の空隙量を検討したところ15〜25vol%の
範囲であることがわかり、炭素粉末の添加量が10vo
l%未満では合金間を埋める炭素粉末量が不足し、合金
同士が過度に圧着するため体積変化を緩和できないこと
がわかった。同時に、合金間に絶縁性の有機重合体の占
める割合が増加し、集電性が低下することがわかった。
逆に、炭素粉末量が20vol%以上では、充放電を繰
り返すうちに、過剰の電解液が炭素粉末の二次細孔に浸
透し電極が膨潤し、かえって集電性が低下することがわ
かった。
As a result, the sum of the respective volumes V Li , V b , and V c obtained from the true densities of the lithium alloy powder, the organic polymer binder, and the carbon powder in the negative electrode mixture, that is, the voids of the negative electrode mixture were removed. It was found that when V c with respect to the actual volume V neg (= V Li + V b + V c ) is in the range of 10 to 20 vol%, the negative electrode capacity is small and good cycle characteristics are exhibited. Further, when the void amount of the negative electrode obtained by pressure molding of the lithium alloy powder alone was examined, it was found to be in the range of 15 to 25 vol%, and the addition amount of the carbon powder was 10 vol.
It has been found that if the content is less than 1%, the amount of carbon powder filling the space between the alloys is insufficient, and the alloys are excessively pressure bonded to each other, so that the volume change cannot be alleviated. At the same time, it was found that the ratio of the insulating organic polymer occupied between the alloys was increased and the current collecting property was lowered.
On the other hand, when the amount of carbon powder was 20 vol% or more, it was found that, during repeated charging and discharging, an excessive electrolytic solution penetrated into the secondary pores of the carbon powder to swell the electrode, rather reducing the current collecting property. .

【0011】添加炭素粉末の比表面積の影響も検討し
た。比表面積が1m2/g 以上,100m2/g 以下であ
る炭素粉末を添加することにより、負極容量の低下が小
さく良好なサイクル特性を示すことがわかった。比表面
積が1m2/g 未満の炭素粉末は、粒子径が大きく負極
合剤中に高分散されないため、導電剤としての機能が低
いことがわかった。逆に、100m2/g より大きい炭
素粉末を用いた場合、前記したように、過剰の電解液が
炭素粉末の二次細孔に浸透し、電極が膨潤し集電性が低
下することがわかった。
The effect of the specific surface area of the added carbon powder was also examined. It was found that by adding the carbon powder having a specific surface area of 1 m 2 / g or more and 100 m 2 / g or less, the negative electrode capacity was reduced less and good cycle characteristics were exhibited. It was found that the carbon powder having a specific surface area of less than 1 m 2 / g has a large particle size and is not highly dispersed in the negative electrode mixture, and thus has a low function as a conductive agent. On the contrary, when a carbon powder having a particle size of more than 100 m 2 / g is used, as described above, the excessive electrolytic solution penetrates into the secondary pores of the carbon powder, the electrode swells, and the current collecting property decreases. It was

【0012】さらに、リチウム合金として、Li−A
l,Li−Cd,Li−In,Li−Sn,Li−P
b,Li−Biを用いた上記の負極によって、長寿命の
電池が得られた。中でも、Li−Pbを用い負極合剤中
の炭素粉末の割合が5〜10wt%と、Li−Alを用
い負極合剤中の炭素粉末の割合が10〜20wt%の負
極によって作成した電池が最も良好なサイクル特性を示
した。
Further, as a lithium alloy, Li-A
1, Li-Cd, Li-In, Li-Sn, Li-P
With the above negative electrode using b, Li-Bi, a long-life battery was obtained. Among them, a battery prepared by using a negative electrode in which the proportion of carbon powder in the negative electrode mixture using Li-Pb is 5 to 10 wt% and the proportion of carbon powder in the negative electrode mixture using Li-Al is 10 to 20 wt% is the most. It showed good cycle characteristics.

【0013】[0013]

【作用】リチウム合金,有機重合体バインダー,炭素粉
末からなる負極合剤中の炭素粉末の比表面積が1m2
g 以上,100m2/g 以下、かつ、その添加量を1
0〜20vol%の範囲とすることにより、合金の体積
変化を緩和し合金の微細化を抑えるとともに、合金が微
細化しても良好な電気的導通を保ち、負極容量の低下を
防ぐことができる。そのため、長寿命の電池が得られ
る。
[Function] The specific surface area of the carbon powder in the negative electrode mixture composed of lithium alloy, organic polymer binder and carbon powder is 1 m 2 /
g or more and 100 m 2 / g or less, and the addition amount is 1
By setting the content in the range of 0 to 20% by volume, it is possible to alleviate the volume change of the alloy and suppress the refinement of the alloy, maintain good electrical continuity even when the alloy is refined, and prevent the negative electrode capacity from decreasing. Therefore, a battery having a long life can be obtained.

【0014】[0014]

【実施例】【Example】

実施例1 化学式Li3.5Pb のLi−Pb合金を乳鉢で粉砕後、
ふるい分けし、粒径45μm以下の粉末を得た。これに、
比表面積61m2/g のアセチレンブラック(AB)と
濃度が40g/lのエチレン−プロピレン−ジエン三元
共重合体(EPDM)のキシレン溶液を、表1に示す組
成で加え、ペースト状の負極合剤を得た。ABの占有体
積は、Li−Pb合金,EPDM,ABのそれぞれの真
密度4.59,1.95,0.86g/cm3 より求めた。
Example 1 A Li-Pb alloy having a chemical formula of Li 3.5 Pb was ground in a mortar,
It was sieved to obtain a powder having a particle size of 45 μm or less. to this,
A acetylene black (AB) having a specific surface area of 61 m 2 / g and a xylene solution of an ethylene-propylene-diene terpolymer (EPDM) having a concentration of 40 g / l were added in the composition shown in Table 1 to prepare a paste-like negative electrode mixture. I got an agent. The occupied volume of AB was determined from the true densities of Li-Pb alloy, EPDM, and AB of 4.59, 1.95, and 0.86 g / cm 3 , respectively.

【0015】[0015]

【表1】 [Table 1]

【0016】これらの負極合剤をエキスパンドメタルに
塗布し、真空乾燥後、1ton/cm2で加圧成形しφ15mm
のディスク型に切り出し、負極を得た。
These negative electrode mixtures were applied to expanded metal, vacuum-dried, and then pressure-molded at 1 ton / cm 2 to give a diameter of 15 mm.
It was cut into a disk shape to obtain a negative electrode.

【0017】また、LiMn24を80wt%,ABを
15wt%,テトラフルオロエチレン(PTFE)を5
wt%の割合で十分混合した正極合剤0.2g を、φ1
5mmのピストンとシリンダーの金型を用い、2ton/cm2
で加圧成形することによって、ディスク型の正極を得
た。六フッ化リン酸リチウムの濃度が1mol/l である
プロピレンカーボネート溶液を電解液とし、プロピレン
不織布をセパレーターとし、図1に示すコイン型の負極
合剤の炭素粉末量の異なる種々の電池を作成した。図中
1は負極、2は正極、3はセパレーター、4は負極側ケ
ース、5は正極側ケース、6はガスケットである。
Further, LiMn 2 O 4 is 80 wt%, AB is 15 wt%, and tetrafluoroethylene (PTFE) is 5 wt%.
0.2 g of the positive electrode mixture mixed well in the proportion of wt% was
2ton / cm 2 using a 5mm piston and cylinder mold
A disk-type positive electrode was obtained by pressure molding with. A propylene carbonate solution having a lithium hexafluorophosphate concentration of 1 mol / l was used as an electrolytic solution, and a propylene non-woven fabric was used as a separator, and various batteries with different carbon powder amounts of coin-shaped negative electrode mixture shown in FIG. 1 were prepared. . In the figure, 1 is a negative electrode, 2 is a positive electrode, 3 is a separator, 4 is a negative electrode side case, 5 is a positive electrode side case, and 6 is a gasket.

【0018】上記の電池を用いて、充放電終止電圧をそ
れぞれ3.6V及び2.0Vに設定し、電流1mAで繰り
返し充放電を行った。図2はその時の電池容量の変化を
示すものであり、仕様番号2及び3の電池が良好に充放
電が可能であることがわかった。これらの電池の負極
は、合金の微細化が抑制さるとともに、合金の電気的導
通を良好に保持できることがわかった。一方、仕様番号
1の電池は内部抵抗が大きく、負極の集電性が悪いこと
が分かった。さらに、仕様番号4及び5の電池を解体し
たところ、負極の厚みが1.3〜1.5倍に増加してお
り、電極の膨潤により集電性が低下したことが分かっ
た。
Using the above batteries, the final charge and discharge voltages were set to 3.6 V and 2.0 V, respectively, and repeated charge and discharge was performed at a current of 1 mA. FIG. 2 shows the change in battery capacity at that time, and it was found that the batteries of specification numbers 2 and 3 can be charged and discharged satisfactorily. It was found that the negative electrodes of these batteries can suppress the refinement of the alloy and can well maintain the electrical continuity of the alloy. On the other hand, it was found that the battery of specification number 1 had a large internal resistance and the negative electrode had a poor current collecting property. Further, when the batteries of specification numbers 4 and 5 were disassembled, it was found that the thickness of the negative electrode was increased by 1.3 to 1.5 times, and the current collecting property was lowered due to the swelling of the electrode.

【0019】実施例2 実施例1と同様に、化学式LiAlのLi−Al合金を
乳鉢で粉砕した後、ふるい分けし、粒径45μm以下の
粉末を得た。比表面積61m2/g のABと濃度が40
g/lのEPDMのキシレン溶液を、表2に示す組成で
加え、ペースト状の負極合剤を得た。ABの占有体積
は、Li−Al合金、EPDM,ABのそれぞれの真密
度1.7,1.95,0.86g/cm3 より求めた。
Example 2 As in Example 1, a Li—Al alloy of the chemical formula LiAl was crushed in a mortar and sieved to obtain a powder having a particle size of 45 μm or less. AB with a specific surface area of 61 m 2 / g and a concentration of 40
A g / l EPDM xylene solution having the composition shown in Table 2 was added to obtain a paste-like negative electrode mixture. The occupied volume of AB was determined from the true densities of Li-Al alloy, EPDM, and AB of 1.7, 1.95, and 0.86 g / cm 3 , respectively.

【0020】[0020]

【表2】 [Table 2]

【0021】これらの負極合剤をエキスパンドメタルに
塗布し、真空乾燥後、1ton/cm2で加圧成形しφ15mm
のディスク型に切り出し、負極を得た。実施例1と同様
に、コイン型の負極合剤中の炭素粉末量の異なる種々の
電池を作成した。
These negative electrode mixtures were applied to expanded metal, vacuum-dried, and then pressure-molded at 1 ton / cm 2 , φ15 mm.
It was cut into a disk shape to obtain a negative electrode. In the same manner as in Example 1, various batteries having different amounts of carbon powder in the coin-type negative electrode mixture were prepared.

【0022】上記の電池を用いて、充放電終止電圧をそ
れぞれ3.6V及び2.0Vに設定し、電流1mAで繰り
返し充放電を行った。図3はその時の電池容量の変化を
示すものであり、仕様番号8及び9の電池が良好に充放
電が可能であることがわかった。これらの電池の負極
は、合金の微細化が抑制されるとともに、合金の電気的
導通を良好に保持できることがわかった。一方、仕様番
号6及び7の電池は内部抵抗が大きく、負極の集電性が
悪いことが分かった。さらに、仕様番号10の電池を解
体したところ、負極の厚みが1.2 倍に増加しており、
電極の膨潤により集電性が低下したことが分かった。
Using the above batteries, the final charge and discharge voltages were set to 3.6 V and 2.0 V, respectively, and repeated charge and discharge was performed at a current of 1 mA. FIG. 3 shows the change in battery capacity at that time, and it was found that the batteries of specification numbers 8 and 9 can be charged and discharged satisfactorily. It has been found that the negative electrodes of these batteries can suppress the refinement of the alloy and can well maintain the electrical continuity of the alloy. On the other hand, it was found that the batteries of specification numbers 6 and 7 had a large internal resistance and the negative electrode had poor current collecting ability. Furthermore, when the battery of specification number 10 was disassembled, the thickness of the negative electrode increased by 1.2 times,
It was found that the swelling of the electrode reduced the current collecting ability.

【0023】実施例3 化学式Li3.5PbのLi−Pb 合金を乳鉢で粉砕した
後、ふるい分けし、粒径45μm以下の粉末を得た。こ
れに、表3に示す組成で、比表面積の異なる炭素粉末と
濃度が40g/lのエチレン−プロピレン−ジエン三重
共重合体(EPDM)のキシレン溶液を加え、ペースト状の負
極合剤を得た。
Example 3 A Li-Pb alloy having a chemical formula of Li 3.5 Pb was crushed in a mortar and then sieved to obtain a powder having a particle size of 45 μm or less. To this, a carbon powder having a composition shown in Table 3 having different specific surface areas and a xylene solution of an ethylene-propylene-diene triple copolymer (EPDM) having a concentration of 40 g / l were added to obtain a paste-like negative electrode mixture. .

【0024】[0024]

【表3】 [Table 3]

【0025】これらの負極合剤をエキスパンドメタルに
塗布し、真空乾燥後、1ton/cm2で加圧成形しφ15mm
のディスク型に切り出し、負極を得た。そして実施例1
と同様に、コイン型の負極合剤中の炭素粉末の比表面積
の異なる種々の電池を作成した。
These negative electrode mixtures were applied to expanded metal, vacuum dried, and pressure-molded at 1 ton / cm 2 to give a diameter of 15 mm.
It was cut into a disk shape to obtain a negative electrode. And Example 1
In the same manner as above, various batteries having different specific surface areas of carbon powder in the coin-shaped negative electrode mixture were prepared.

【0026】上記の電池を用いて、充放電終止電圧をそ
れぞれ3.6V及び2.0Vに設定し、電流1mAで繰り
返し充放電を行った。図4はその時の電池容量の変化を
示すものであり、仕様番号12,13及び14の電池が
充放電を良好に行なえることがわかった。一方、仕様番
号11の電池は内部抵抗が大きく、負極の集電性が悪い
ことが分かった。さらに、仕様番号15の電池を解体し
たところ、負極の厚みが1.6倍 に増加しており、電極
の膨潤により集電性が低下したことが分かった。
Using the above batteries, the final charge and discharge voltages were set to 3.6 V and 2.0 V, respectively, and repeated charge and discharge was performed at a current of 1 mA. FIG. 4 shows changes in the battery capacity at that time, and it was found that the batteries of specification numbers 12, 13, and 14 can charge and discharge favorably. On the other hand, it was found that the battery of specification number 11 had a large internal resistance and the negative electrode had a poor current collecting property. Furthermore, when the battery of the specification number 15 was disassembled, it was found that the thickness of the negative electrode was increased by 1.6 times, and the current collecting property was lowered due to the swelling of the electrode.

【0027】比較例 化学式Li3.5PbのLi−Pb 合金を乳鉢で粉砕した
後、ふるい分けし、粒径45μm以下の粉末を得た。φ
15mmのピストンとシリンダーの金型を用い、この粉末
を5ton/cm2で加圧成形し、負極を得た。そして実施例
1と同様に、コイン型の電池を作成した。
Comparative Example A Li—Pb alloy having a chemical formula of Li 3.5 Pb was pulverized in a mortar and then sieved to obtain a powder having a particle size of 45 μm or less. φ
This powder was pressure-molded at 5 ton / cm 2 using a 15 mm piston and cylinder mold to obtain a negative electrode. Then, in the same manner as in Example 1, a coin-type battery was created.

【0028】上記の電池を用いて、充放電終止電圧をそ
れぞれ3.6V及び2.0Vに設定し、電流1mAで繰り
返し充放電を行った。図1にその時の電池容量の変化が
示してあり、数サイクルで電池容量が低下した。
Using the above batteries, the charge / discharge end voltages were set to 3.6 V and 2.0 V, respectively, and charge / discharge was repeated at a current of 1 mA. FIG. 1 shows the change in the battery capacity at that time, and the battery capacity decreased after several cycles.

【0029】[0029]

【発明の効果】本発明によれば、充放電時のリチウム合
金の体積変化を緩和し合金の微細化を抑制するととも
に、微細化が起こっても合金の電気的導通を保ち、負極
容量の低下を抑えることができる。そのため、電池の長
寿命化が図れる。
EFFECTS OF THE INVENTION According to the present invention, the volume change of the lithium alloy during charging and discharging is alleviated to suppress the refinement of the alloy, and even if refinement occurs, the electrical continuity of the alloy is maintained and the negative electrode capacity is reduced. Can be suppressed. Therefore, the life of the battery can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1〜3及び比較例において作製した電池
の断面図である。
FIG. 1 is a cross-sectional view of batteries manufactured in Examples 1 to 3 and Comparative Example.

【図2】実施例1及び比較例において作製した電池の容
量変化を示すグラフである。
FIG. 2 is a graph showing a change in capacity of batteries manufactured in Example 1 and Comparative Example.

【図3】実施例2において作製した電池の容量変化を示
すグラフである。
FIG. 3 is a graph showing a change in capacity of the battery manufactured in Example 2.

【図4】実施例3において作製した電池の容量変化を示
すグラフである。
FIG. 4 is a graph showing a change in capacity of the battery manufactured in Example 3.

【符号の説明】[Explanation of symbols]

1…負極、2…正極、3…セパレーター、4…負極側ケ
ース、5…正極側ケース、6…ガスケット。
1 ... Negative electrode, 2 ... Positive electrode, 3 ... Separator, 4 ... Negative electrode side case, 5 ... Positive electrode side case, 6 ... Gasket.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水本 守 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 堀場 達雄 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Mamoru Mizumoto Inventor, Mamoru Mizumoto 7-1-1, Omika-cho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor, Tatsuo Horiba 7-chome, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 in Hitachi, Ltd. Hitachi Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】アルカリ金属イオンを含む非水系電解液、
アルカリ金属イオンを可逆的に吸蔵放出する正極、アル
カリ金属合金を活物質とする負極によって構成される二
次電池において、該負極がアルカリ金属合金粉末,炭素
粉末及び有機重合体からなる負極合剤と金属集電体によ
って構成され、該炭素粉末の比表面積が1m2/g 以
上、100m2/g 以下、かつ、負極空隙を除いた該負
極合剤に対する該炭素粉末の割合が10〜20vol%
であることを特徴とする非水系二次電池。
1. A non-aqueous electrolytic solution containing an alkali metal ion,
In a secondary battery composed of a positive electrode reversibly occluding and releasing alkali metal ions and a negative electrode using an alkali metal alloy as an active material, the negative electrode is a negative electrode mixture composed of an alkali metal alloy powder, carbon powder and an organic polymer. It is composed of a metal current collector, and the specific surface area of the carbon powder is 1 m 2 / g or more and 100 m 2 / g or less, and the ratio of the carbon powder to the negative electrode mixture excluding the negative electrode voids is 10 to 20 vol%.
A non-aqueous secondary battery characterized in that
【請求項2】該負極合剤中のアルカリ金属合金がリチウ
ム鉛合金であり、かつ、炭素粉末の割合が5〜10wt
%であることを特徴とする請求項1記載の非水系二次電
池。
2. The alkali metal alloy in the negative electrode mixture is a lithium-lead alloy, and the proportion of carbon powder is 5 to 10 wt.
%, The non-aqueous secondary battery according to claim 1.
【請求項3】該負極合剤中のアルカリ金属合金がリチウ
ムアルミニウム合金であり、かつ、炭素粉末の割合が1
0〜20wt%であることを特徴とする請求項1記載の
非水系二次電池。
3. An alkali metal alloy in the negative electrode mixture is a lithium aluminum alloy, and the ratio of carbon powder is 1.
The non-aqueous secondary battery according to claim 1, which is 0 to 20 wt%.
JP5075438A 1993-04-01 1993-04-01 Nonaqueous secondary battery Pending JPH06290772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5075438A JPH06290772A (en) 1993-04-01 1993-04-01 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5075438A JPH06290772A (en) 1993-04-01 1993-04-01 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH06290772A true JPH06290772A (en) 1994-10-18

Family

ID=13576246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5075438A Pending JPH06290772A (en) 1993-04-01 1993-04-01 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH06290772A (en)

Similar Documents

Publication Publication Date Title
EP0477461B2 (en) Nickel/hydrogen storage battery and method of manufacturing the same
JPH0963651A (en) Nonaqueous secondary battery, and its negative electrode material
JP2005150117A (en) Cathode for lithium secondary battery and lithium secondary battery including the same
JPH1186853A (en) Lithium secondary battery
JP2004047462A (en) Binder for lithium sulfur battery, positive electrode active material composition containing the binder, and lithium sulfur battery manufactured by using the composition
JP2004039491A (en) Nonaqueous electrolyte secondary battery
JP2001052699A (en) Lithium secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JPH11162467A (en) Nonaqueous secondary battery
JP2000294294A (en) Nonaqueous electrolyte secondary battery
JP3152307B2 (en) Lithium secondary battery
KR101551700B1 (en) Zinc air cell, anode for zinc air cell and method of preparing the same
JPH113698A (en) Lithium ion secondary battery
JPH06290772A (en) Nonaqueous secondary battery
JP3321541B2 (en) Lithium secondary battery
JPH04259764A (en) Lithium secondary battery
JPH113706A (en) Lithium secondary battery
JP3212018B2 (en) Non-aqueous electrolyte secondary battery
JPH1154122A (en) Lithium ion secondary battery
JP2701586B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP2898056B2 (en) Rechargeable battery
JP2734793B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JPH02239572A (en) Polyaniline battery
JP2529479B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JPH07130359A (en) Nonaqueous electrolyte secondary battery