JPH06287668A - Vapor deposition material - Google Patents

Vapor deposition material

Info

Publication number
JPH06287668A
JPH06287668A JP10027793A JP10027793A JPH06287668A JP H06287668 A JPH06287668 A JP H06287668A JP 10027793 A JP10027793 A JP 10027793A JP 10027793 A JP10027793 A JP 10027793A JP H06287668 A JPH06287668 A JP H06287668A
Authority
JP
Japan
Prior art keywords
workability
vapor deposition
amount
added
deposition material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10027793A
Other languages
Japanese (ja)
Other versions
JP3103458B2 (en
Inventor
Yukihiro Oishi
幸広 大石
Teruyuki Murai
照幸 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP05100277A priority Critical patent/JP3103458B2/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to PCT/JP1993/000594 priority patent/WO1993023586A1/en
Priority to ES93911971T priority patent/ES2110094T3/en
Priority to EP93911971A priority patent/EP0603407B1/en
Priority to DE69315309T priority patent/DE69315309T2/en
Priority to US08/178,277 priority patent/US5441010A/en
Publication of JPH06287668A publication Critical patent/JPH06287668A/en
Priority to US08/861,764 priority patent/US6126760A/en
Application granted granted Critical
Publication of JP3103458B2 publication Critical patent/JP3103458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To produce a vapor deposition material excellent in toughness as well as in workability into wire so that stable vapor deposition conditions can be obtained at the time of vapor-depositing a Co-Ni alloy onto a base film at the production of VTR tape, etc. CONSTITUTION:This alloy is a Co alloy containing <=30wt.% Ni and further containing 0.01-0.1wt.% of elements selected from Mn, Cr, Mg, Zr, and Ca. By this method, superior workability can be obtained without causing deterioration in magnetic properties.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蒸着VTRテープなど
を製造する工程で用いられるCo−Ni基合金又はCo
の蒸着用材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Co-Ni based alloy or Co used in a process for producing a vapor deposited VTR tape or the like.
The present invention relates to the vapor deposition material.

【0002】[0002]

【従来の技術】Co−Ni基合金又はCoは、磁気特
性、即ち保磁力,残留磁束密度が優れているため磁気記
録材料として優れた特性を持つ。従来その蒸着方法は1
-5〜10-6Torr程度に真空引きした真空チャンバ
ー内で行われ、るつぼ内の蒸着材料を電子ビームで20
00℃程度に加熱、溶融して蒸発させ、ベースフィルム
上に蒸着させていた。ここで、蒸着材料は、蒸発した分
補給しなければならず、その補給には約10mmφ×1
0〜30mmのペレット状のものをるつぼ溶湯中に落下
させて行うのが一般的であった。
2. Description of the Related Art Co--Ni based alloys or Co have excellent magnetic properties, that is, coercive force and residual magnetic flux density, and therefore have excellent properties as a magnetic recording material. Conventionally, the vapor deposition method is 1
It is carried out in a vacuum chamber evacuated to about 0 -5 to 10 -6 Torr, and the vapor deposition material in the crucible is irradiated with an electron beam to 20
It was heated to about 00 ° C., melted, evaporated, and deposited on the base film. Here, the vapor deposition material must be replenished for the amount of evaporation, and the replenishment requires about 10 mmφ × 1
It was common practice to drop pellets of 0 to 30 mm into the melt of the crucible.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の供給方
法では、ペレットの落下に伴い、蒸着材料湯面の乱れ、
溶湯の飛散、溶湯内温度分布の不均一など、蒸着条件が
不安定となり、安定した品質のテープ製造に支障を来
す。
However, in the above-mentioned feeding method, when the pellets are dropped, the surface of the vapor deposition material is disturbed,
Vapor deposition conditions become unstable, such as molten metal scattering and non-uniform temperature distribution inside the molten metal, which hinders the production of stable quality tape.

【0004】このような問題の対策として、蒸発材料を
長尺の線材とし、これをるつぼ内に連続供給して、蒸着
条件を安定化し、信頼性の高いテープを製造することが
考えられる。この場合、長時間の連続蒸着作業が可能に
なるというメリットもあるため、Co−Ni基合金又は
Coの線材化が要望されていた。
As a measure against such a problem, it can be considered that a long wire rod is used as the evaporation material, and this is continuously supplied into the crucible to stabilize the vapor deposition conditions and to manufacture a highly reliable tape. In this case, since there is a merit that continuous vapor deposition work can be performed for a long time, there has been a demand for a Co—Ni-based alloy or Co wire rod.

【0005】しかし、これら合金は難加工性材料である
ため、線引加工などにより長尺化することが極めて困難
である。尚、特開昭59−64734号公報に示される
ように、Co−Ni合金中にFeを添加し、線材の加工
性や靱性を改善する方法もあるが、この方法では、Fe
を2〜10wt%含有させるため、Co−Ni基合金の
特徴である優れた磁気特性の劣化は避けられない。又、
特開平3−236435号公報に示されるように、合金
中の不純物限定を行い靱性等を改善する方法もある。し
かし、不純物元素である酸素,窒素,硫黄の含有量を低
く抑えるだけでは線引加工などに十分な特性を示さな
い。
However, since these alloys are difficult-to-work materials, it is extremely difficult to make them long by drawing or the like. As disclosed in JP-A-59-64734, there is a method of adding Fe to a Co-Ni alloy to improve the workability and toughness of the wire rod.
Is contained in an amount of 2 to 10 wt%, deterioration of the excellent magnetic properties, which is a characteristic of the Co—Ni based alloy, cannot be avoided. or,
As disclosed in JP-A-3-236435, there is also a method of improving the toughness by limiting the impurities in the alloy. However, merely suppressing the contents of the impurity elements oxygen, nitrogen and sulfur to low levels does not show sufficient characteristics for wire drawing and the like.

【0006】本発明は、このような技術的背景のもとに
なされたもので、安定した蒸着条件が得られるよう、加
工性や靱性に優れたCo−Ni基合金又はCoの蒸着材
料を提供することを目的とする。
The present invention has been made under such a technical background, and provides a Co-Ni based alloy or a Co vapor deposition material having excellent workability and toughness so that stable vapor deposition conditions can be obtained. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明蒸着材料は、30wt%以下のNiを含有
するCo−Ni基合金又はCoであって、Mn,Cr,
Mg,Zr,Caから選択された元素を0.01〜0.
1wt%含有することを特徴とする。ここで、選択する
元素はいずれか一つの場合は勿論、任意の複数でも良
い。
In order to achieve the above-mentioned object, the vapor deposition material of the present invention is a Co-Ni based alloy or Co containing Ni of 30 wt% or less, and Mn, Cr,
An element selected from Mg, Zr, and Ca is added in an amount of 0.01 to 0.
It is characterized by containing 1 wt%. Here, the element to be selected may be any one element or may be any plural element.

【0008】[0008]

【作用】上記のように組成限定した理由を以下に述べ
る。先ず、Ni含有量を限定したのは、磁気特性を考慮
したことに基づく。即ち、Co基合金において、30w
t%を越えるNiを含む合金は、磁気テープとしての特
性を示す残留磁束密度が良好な値を示さないからであ
る。
The reason for limiting the composition as described above will be described below. First, the reason why the Ni content is limited is that the magnetic characteristics are taken into consideration. That is, in Co-based alloy, 30w
This is because the alloy containing Ni in excess of t% does not show a good residual magnetic flux density, which is a characteristic of a magnetic tape.

【0009】又、Mn,Cr,Mg,Zr,Caは、C
o−Ni基合金又はCoの加工性を向上させるのに有効
な元素である。この添加量を0.01〜0.1wt%と
極めて微量にすることで、Co−Ni基合金又はCo本
来の磁気特性(保磁力,残留磁束密度)を全く損なわな
い。この点は、特開昭59−64734号公報記載技術
におけるFeの添加量(2〜10wt%)と比較して極
めて顕著である。
Mn, Cr, Mg, Zr and Ca are C
It is an element effective for improving the workability of an o-Ni based alloy or Co. By setting the addition amount to an extremely small amount of 0.01 to 0.1 wt%, the original magnetic characteristics (coercive force, residual magnetic flux density) of the Co—Ni based alloy or Co are not impaired at all. This point is extremely remarkable as compared with the amount of addition of Fe (2 to 10 wt%) in the technique described in JP-A-59-64734.

【0010】Mn,Cr,Mg,Zr,Caから選択さ
れた元素の含有量が0.01wt%未満では十分な加工
性(引張強度400MPa以上、絞り5%、好ましくは
10%以上)が得られず、逆に0.1wt%を越えても
それ以上の加工性の向上は望めず、不必要に不純物を増
加させるだけである。加工性及び純度の両面を考慮する
と0.02〜0.05wt%が望ましい。
When the content of the element selected from Mn, Cr, Mg, Zr and Ca is less than 0.01 wt%, sufficient workability (tensile strength 400 MPa or more, drawing 5%, preferably 10% or more) can be obtained. On the contrary, even if it exceeds 0.1 wt%, further improvement in workability cannot be expected, and only impurities are unnecessarily increased. Considering both workability and purity, 0.02 to 0.05 wt% is desirable.

【0011】[0011]

【実施例】【Example】

(実施例1)以下、本発明の実施例について説明する。
表1に示す成分のCo−Ni基合金(No1〜No1
3)をサンプル(実施例及び比較例)としてその加工性
と磁気特性を評価した。
Example 1 An example of the present invention will be described below.
Co-Ni based alloys of the components shown in Table 1 (No1 to No1
Using 3) as a sample (Example and Comparative Example), its workability and magnetic properties were evaluated.

【0012】[0012]

【表1】 [Table 1]

【0013】サンプルは10.0mmφに熱間圧延を行
ったもので、加工性はその室温での機械的特性(引張強
度,絞り)によって評価した。又、磁気特性(保磁力,
残留磁束密度)は、上記各サンプルを蒸着材料とし、基
材テープ上に蒸着させて評価した。加工性及び磁気特性
をそれぞれ図1及び図2に示す。尚、図1において、○
は引張強度(T.S.)、△は絞り(R.A.)を示し、図2におい
て、○は保磁力(Hc)、△は残留磁束密度(Br)を示す。
The sample was hot-rolled to 10.0 mmφ, and the workability was evaluated by its mechanical properties (tensile strength, drawing) at room temperature. In addition, magnetic characteristics (coercive force,
The residual magnetic flux density) was evaluated by vapor-depositing each sample as a vapor deposition material on a base tape. The workability and magnetic properties are shown in FIGS. 1 and 2, respectively. In addition, in FIG.
Indicates tensile strength (TS), Δ indicates reduction (RA), and in FIG. 2, ○ indicates coercive force (Hc) and Δ indicates residual magnetic flux density (Br).

【0014】図1に示すように、0.01wt%以上の
Mnを含むCo−Ni基合金には絞りの向上が見られ、
加工性の向上が確認された。逆に、0.1%を越えると
Mnの添加量に関わらず、加工性向上の効果は殆ど変わ
らない。又、図2に示すように、Mnの添加量に関わら
ず、磁気特性の劣化は殆ど見られない。
As shown in FIG. 1, improvement in drawing was observed in the Co-Ni based alloy containing 0.01 wt% or more of Mn.
It was confirmed that the workability was improved. On the other hand, if it exceeds 0.1%, the effect of improving the workability hardly changes regardless of the amount of Mn added. Further, as shown in FIG. 2, the magnetic characteristics are hardly deteriorated regardless of the amount of Mn added.

【0015】(実施例2)次に、実施例1と同様の各サ
ンプルにおいて、Mnの代わりにMg又はCaを添加
し、得られたサンプルの加工性(引張強度,絞り)及び
磁気特性(保磁力,残留磁束密度)を測定した。添加量
と各特性との関係を図3及び図4に示す。図3におい
て、丸はMgを、三角はCaを示し、そのうち白抜きは
引張強度を、黒塗りは絞りを示す。又、図4において、
丸はMgを、三角はCaを示し、そのうち白抜きは保磁
力を、黒塗りは残留磁束密度を示す。
(Example 2) Next, in each sample similar to Example 1, Mg or Ca was added in place of Mn, and the obtained sample was processed (tensile strength, drawing) and magnetic properties (protection). The magnetic force and the residual magnetic flux density) were measured. The relationship between the added amount and each characteristic is shown in FIGS. 3 and 4. In FIG. 3, circles indicate Mg, triangles indicate Ca, white indicates tensile strength, and black indicates stop. Also, in FIG.
The circles indicate Mg, the triangles indicate Ca, the white outline indicates the coercive force, and the black outline indicates the residual magnetic flux density.

【0016】本例の場合も、実施例1と同様に、図3に
示すように、0.01wt%以上のMg又はCaを含む
Co−Ni基合金には絞りの向上が見られ、加工性の向
上が確認された。逆に、0.1%を越えるとMg又はC
aの添加量に関わらず、加工性向上の効果は殆ど変わら
ない。又、図4に示すように、Mg又はCaの添加量に
関わらず、磁気特性の劣化は殆ど見られない。
Also in the case of this example, as in Example 1, as shown in FIG. 3, the Co—Ni based alloy containing 0.01 wt% or more of Mg or Ca showed an improvement in drawing and workability. It was confirmed that On the contrary, if it exceeds 0.1%, Mg or C
The workability improving effect is almost unchanged regardless of the amount of a added. Further, as shown in FIG. 4, the magnetic characteristics are hardly deteriorated regardless of the added amount of Mg or Ca.

【0017】(実施例3)又、実施例1と同様の各サン
プルにおいて、Mnの代わりにZr又はCrを添加し、
得られたサンプルの加工性(引張強度,絞り)及び磁気
特性(保磁力,残留磁束密度)を測定した。添加量と各
特性との関係を図5及び図6に示す。図5において、丸
はZrを、三角はCrを示し、そのうち白抜きは引張強
度を、黒塗りは絞りを示す。又、図6において、丸はZ
rを、三角はCrを示し、そのうち白抜きは保磁力を、
黒塗りは残留磁束密度を示す。
(Example 3) In each sample similar to Example 1, Zr or Cr was added instead of Mn,
The workability (tensile strength, drawing) and magnetic properties (coercive force, residual magnetic flux density) of the obtained sample were measured. The relationship between the added amount and each characteristic is shown in FIGS. In FIG. 5, circles indicate Zr, triangles indicate Cr, of which white indicates tensile strength and black indicates squeezing. Also, in FIG. 6, the circle indicates Z.
r, the triangle indicates Cr, and the white one indicates the coercive force,
Black coating indicates the residual magnetic flux density.

【0018】本例の場合も、実施例1と同様に、図5に
示すように、0.01wt%以上のZr又はCrを含む
Co−Ni基合金には絞りの向上が見られ、加工性の向
上が確認された。逆に、0.1%を越えるとZr又はC
rの添加量に関わらず、加工性向上の効果は殆ど変わら
ない。又、図6に示すように、Zr又はCrの添加量に
関わらず、磁気特性の劣化は殆ど見られない。
Also in the case of this example, as in Example 1, as shown in FIG. 5, the Co—Ni based alloy containing 0.01 wt% or more of Zr or Cr showed an improvement in drawing and workability. It was confirmed that On the contrary, if it exceeds 0.1%, Zr or C
The effect of improving the workability is almost the same regardless of the addition amount of r. Further, as shown in FIG. 6, there is almost no deterioration in magnetic characteristics regardless of the amount of Zr or Cr added.

【0019】(実施例4)さらに、Niを含有量の異な
るCo合金(Ni量:1,20,30wt%の3種)に
おいて、実施例1,2と同様の試験で絞りを測定した。
その結果を図7に示す。同図において、丸はMnを、三
角はCaを、四角はMgを示し、そのうち白抜きは絞り
10%以上を、黒塗りは同10%未満を示す。図示のよ
うに、0.01wt%以上の所定元素の添加により絞り
が向上し、加工性が改善されることが確認された。
(Example 4) Furthermore, in Co alloys having different Ni contents (3 types of Ni content: 1, 20, 30 wt%), the aperture was measured by the same test as in Examples 1 and 2.
The result is shown in FIG. 7. In the figure, circles represent Mn, triangles represent Ca, and squares represent Mg, of which the open areas represent 10% or more of the aperture and the black areas represent less than 10%. As shown in the figure, it was confirmed that the addition of 0.01 wt% or more of the predetermined element improves the drawing and improves the workability.

【0020】(実施例5)次に、Niを含有せず、他の
構成元素が実施例1と同様のCoにMn,Cr,Mgを
添加し、得られたサンプルの加工性(引張強度,絞り)
及び磁気特性(保磁力,残留磁束密度)を測定した。添
加量と各特性との関係を図8及び図9に示す。図8にお
いて、丸はMnを、三角はCrを、四角はMgを示し、
そのうち白抜きは引張強度を、黒塗りは絞りを示す。
又、図9において、丸はZrを、三角はCrを、四角は
Mgを示し、そのうち白抜きは保磁力を、黒塗りは残留
磁束密度を示す。
(Example 5) Next, Mn, Cr, and Mg were added to Co containing no Ni but other constituent elements as in Example 1 to obtain workability (tensile strength, Aperture)
And magnetic properties (coercive force, residual magnetic flux density) were measured. The relationship between the added amount and each characteristic is shown in FIGS. 8 and 9. In FIG. 8, circles represent Mn, triangles represent Cr, squares represent Mg,
Among them, the outline is the tensile strength and the black is the squeeze.
Further, in FIG. 9, circles indicate Zr, triangles indicate Cr, squares indicate Mg, of which white outlines indicate coercive force and black indicates residual magnetic flux density.

【0021】さらに、同様のCoにZr又はCaを添加
した場合の加工性と磁気特性も調べた。その結果を図1
0及び図11に示す。図10において、丸はZrを、三
角はCaを示し、そのうち白抜きは引張強度を、黒塗り
は絞りを示す。又、図11において、丸はZrを、三角
はCaを示し、そのうち白抜きは保磁力を、黒塗りは残
留磁束密度を示す。
Further, the workability and magnetic characteristics when Zr or Ca was added to the same Co were also examined. The result is shown in Figure 1.
0 and FIG. In FIG. 10, the circles indicate Zr, the triangles indicate Ca, the white outline indicates tensile strength, and the black coating indicates diaphragm. Further, in FIG. 11, circles represent Zr, triangles represent Ca, of which white outlines indicate coercive force and black indicates residual magnetic flux density.

【0022】本例の場合も、図8及び図10に示すよう
に、0.01wt%以上のMn,Cr,Mg,Zr又は
Caを含むCoには絞りの向上が見られ、加工性の向上
が確認された。逆に、0.1%を越えると添加元素量に
関わらず、加工性向上の効果は殆ど変わらない。又、図
9及び図11に示すように、添加元素量に関わらず、磁
気特性の劣化は殆ど見られない。
Also in the case of this example, as shown in FIGS. 8 and 10, improvement in drawing was observed for Co containing 0.01 wt% or more of Mn, Cr, Mg, Zr or Ca, and the workability was improved. Was confirmed. On the contrary, if it exceeds 0.1%, the effect of improving the workability is almost the same regardless of the amount of the added element. Further, as shown in FIGS. 9 and 11, almost no deterioration of the magnetic characteristics is observed regardless of the amount of the added element.

【0023】[0023]

【発明の効果】以上説明したように、本発明蒸着材料は
Mn,Cr,Mg,Zr,Caから選択された元素を
0.01〜0.1wt%含有し、非常に優れた冷間加工
性を具えている。そのため、伸線,切断などの加工が容
易で、特に線材とすれば蒸着材料の連続補給が可能とな
る。従って、蒸着条件を安定させ、高品質の蒸着膜形成
ができると共に、長時間の連続操業が行え、VTR用テ
ープなどの製造分野における有効利用が期待される。
As described above, the vapor deposition material of the present invention contains 0.01 to 0.1 wt% of an element selected from Mn, Cr, Mg, Zr and Ca, and has an extremely excellent cold workability. It is equipped with Therefore, processing such as wire drawing and cutting is easy, and particularly when a wire is used, the vapor deposition material can be continuously replenished. Therefore, the vapor deposition conditions can be stabilized, a high quality vapor deposition film can be formed, continuous operation can be performed for a long time, and effective utilization in the manufacturing field of VTR tapes and the like is expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】Co−Ni基合金におけるMn添加量と加工性
の関係を示すグラフ。
FIG. 1 is a graph showing the relationship between the amount of Mn added and workability in a Co—Ni based alloy.

【図2】Co−Ni基合金におけるMn添加量と磁気特
性の関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the amount of Mn added and magnetic properties in a Co—Ni based alloy.

【図3】Co−Ni基合金におけるMg又はCa添加量
と加工性の関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the amount of Mg or Ca added and workability in a Co—Ni based alloy.

【図4】Co−Ni基合金におけるMg又はCa添加量
と磁気特性の関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the amount of Mg or Ca added and the magnetic properties in a Co—Ni based alloy.

【図5】Co−Ni基合金におけるZr又はCr添加量
と加工性の関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the amount of Zr or Cr added and workability in a Co—Ni based alloy.

【図6】Co−Ni基合金におけるZr又はCr添加量
と磁気特性の関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the amount of Zr or Cr added and the magnetic properties in a Co—Ni based alloy.

【図7】Ni含有量の異なるCo合金における添加元素
量と絞りの関係を示すグラフ。
FIG. 7 is a graph showing the relationship between the amount of added elements and the reduction in Co alloys having different Ni contents.

【図8】Niを含有せず、Mn,Cr又はMgが添加さ
れたCoにおける添加元素量と加工性の関係を示すグラ
フ。
FIG. 8 is a graph showing the relationship between the additive element amount and processability in Co containing no Mn, Cr or Mg.

【図9】Niを含有せず、Mn,Cr又はMgが添加さ
れたCoにおける添加元素量と磁気特性の関係を示すグ
ラフ。
FIG. 9 is a graph showing the relationship between the amount of added elements and magnetic properties in Co containing no Mn, Cr, or Mg added thereto.

【図10】Niを含有せず、Zr又はCaが添加された
Coにおける添加元素量と加工性の関係を示すグラフ。
FIG. 10 is a graph showing the relationship between the additive element amount and processability in Co containing no Ni and containing Zr or Ca.

【図11】Niを含有せず、Zr又はCaが添加された
Coにおける添加元素量と磁気特性の関係を示すグラ
フ。
FIG. 11 is a graph showing the relationship between the additive element amount and magnetic properties of Co containing no Ni and containing Zr or Ca.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 30wt%以下のNiを含有するCo−
Ni基合金であって、Mn,Cr,Mg,Zr,Caか
ら選択された元素を0.01〜0.1wt%含有するこ
とを特徴とする蒸着用材料。
1. A Co-containing Ni of 30 wt% or less.
A vapor deposition material, which is a Ni-based alloy and contains 0.01 to 0.1 wt% of an element selected from Mn, Cr, Mg, Zr, and Ca.
【請求項2】 Mn,Cr,Mg,Zr,Caから選択
された元素が0.01〜0.1wt%含有されたCoよ
りなることを特徴とする蒸着用材料。
2. A vapor deposition material comprising Co containing 0.01 to 0.1 wt% of an element selected from Mn, Cr, Mg, Zr and Ca.
JP05100277A 1992-05-11 1993-04-02 Material for evaporation Expired - Fee Related JP3103458B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP05100277A JP3103458B2 (en) 1993-04-02 1993-04-02 Material for evaporation
ES93911971T ES2110094T3 (en) 1992-05-11 1993-05-06 DEPOSITION MATERIAL IN THE FORM OF STEAM AND METHOD FOR THE PRODUCTION OF THE SAME.
EP93911971A EP0603407B1 (en) 1992-05-11 1993-05-06 Vapor deposition material and production method thereof
DE69315309T DE69315309T2 (en) 1992-05-11 1993-05-06 GAS PHASE DEPOSITION MATERIAL AND MANUFACTURING METHOD
PCT/JP1993/000594 WO1993023586A1 (en) 1992-05-11 1993-05-06 Vapor deposition material and production method thereof
US08/178,277 US5441010A (en) 1992-05-11 1994-05-06 Evaporation material and method of preparing the same
US08/861,764 US6126760A (en) 1992-05-11 1997-05-22 Evaporation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05100277A JP3103458B2 (en) 1993-04-02 1993-04-02 Material for evaporation

Publications (2)

Publication Number Publication Date
JPH06287668A true JPH06287668A (en) 1994-10-11
JP3103458B2 JP3103458B2 (en) 2000-10-30

Family

ID=14269713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05100277A Expired - Fee Related JP3103458B2 (en) 1992-05-11 1993-04-02 Material for evaporation

Country Status (1)

Country Link
JP (1) JP3103458B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074175A (en) * 2008-09-29 2009-04-09 Mitsubishi Materials Corp Stock for vapor deposition, and information recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074175A (en) * 2008-09-29 2009-04-09 Mitsubishi Materials Corp Stock for vapor deposition, and information recording medium

Also Published As

Publication number Publication date
JP3103458B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
US4668310A (en) Amorphous alloys
US4306908A (en) Ferromagnetic amorphous alloy
US4683012A (en) Magnetic thin film
US6458182B2 (en) Process for producing high-purity Mn materials
JPH0681086A (en) Alloy having ultrafine crystalline-grained structure excellent in corrosion resistance
JPH01205062A (en) Ni-base alloy powder for forming amorphous sprayed deposit excellent in corrosion resistance
JP2710948B2 (en) Ultrafine crystalline Fe-based alloy with excellent corrosion resistance and method for producing the same
JPS60220914A (en) Magnetic thin film
JPH06287668A (en) Vapor deposition material
US5338331A (en) Low-permeability high-strength target material for the formation of thin magnetooptical recording films
JPS5964734A (en) Co-ni magnetic alloy
JPH043905A (en) Magnetic material film
KR940007048B1 (en) Soft-magnetic materials
JP3235127B2 (en) Soft magnetic thin film
JP3228356B2 (en) Material for evaporation
JP3233289B2 (en) Ultra-microcrystalline alloy ribbon and powder and magnetic core using the same
JP3018798B2 (en) Manufacturing method of evaporation material
JPH0790515A (en) Iron-base amorphous alloy increased in magnetic flux density and reduced in iron loss
JPH07252565A (en) Cobalt-based alloy for magnetic recording medium and its production
JPS6289312A (en) Magnetically soft thin film
JPH04314855A (en) Sputtering target made of co-cr-pt alloy and its manufacture
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JPS6289310A (en) Magnetically soft thin film
JP3495741B2 (en) Soft magnetic thin film
JPH0754069A (en) Production of cobalt-based alloy for magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees