JP3018798B2 - Manufacturing method of evaporation material - Google Patents

Manufacturing method of evaporation material

Info

Publication number
JP3018798B2
JP3018798B2 JP4328526A JP32852692A JP3018798B2 JP 3018798 B2 JP3018798 B2 JP 3018798B2 JP 4328526 A JP4328526 A JP 4328526A JP 32852692 A JP32852692 A JP 32852692A JP 3018798 B2 JP3018798 B2 JP 3018798B2
Authority
JP
Japan
Prior art keywords
temperature
alloy
processing
mechanical properties
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4328526A
Other languages
Japanese (ja)
Other versions
JPH06145931A (en
Inventor
幸広 大石
望 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP4328526A priority Critical patent/JP3018798B2/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to PCT/JP1993/000594 priority patent/WO1993023586A1/en
Priority to ES93911971T priority patent/ES2110094T3/en
Priority to EP93911971A priority patent/EP0603407B1/en
Priority to DE69315309T priority patent/DE69315309T2/en
Priority to US08/178,277 priority patent/US5441010A/en
Publication of JPH06145931A publication Critical patent/JPH06145931A/en
Priority to US08/861,764 priority patent/US6126760A/en
Application granted granted Critical
Publication of JP3018798B2 publication Critical patent/JP3018798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、蒸着VTRテープなど
を製造する際用いられるCo‐Ni基合金の蒸着材料の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Co-Ni-based alloy vapor deposition material used for producing a vapor deposition VTR tape or the like.

【0002】[0002]

【従来の技術】Co−Ni合金は、磁気特性、即ち保磁
力、残留磁束密度が優れているため、近年特にVTR等
の磁気記録材料として用いられている。
2. Description of the Related Art Co-Ni alloys have recently been used particularly as magnetic recording materials for VTRs and the like because of their excellent magnetic properties, that is, coercive force and residual magnetic flux density.

【0003】従来のその蒸着方法は、10-5〜10-6
orr程度に真空引きした真空チャンバー内で行われ、
るつぼ中の蒸着材料を電子ビームで2000℃程度に加
熱、溶融、蒸発させ、ベースフィルムに蒸着させてい
た。
[0003] The conventional vapor deposition method is 10 -5 to 10 -6 T.
It is performed in a vacuum chamber evacuated to about orr,
The deposition material in the crucible was heated to about 2000 ° C. with an electron beam, melted, evaporated, and deposited on a base film.

【0004】ここで、蒸着材料は、蒸発した分補給しな
ければならない。その補給には、約10mmφ×10〜
30mmのいわゆるペレット状のものを用い、るつぼの
溶湯中に落下させて行うのが一般的であった。
[0004] Here, the evaporation material must be replenished in an amount corresponding to the evaporation. About 10mmφ × 10
It was common to use a 30 mm so-called pellet-shaped material and drop it into a crucible melt.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の供給方
法によった場合、ペレットの落下に伴い、蒸着材料湯面
の乱れ、溶湯の飛散、溶湯内温度分布の不均一など、蒸
着条件が不安定となる。これらは、材料の蒸発方向や蒸
着量を不安定にするため、安定した品質のテープを製造
することができないという問題があった。
However, in the case of the above-mentioned supply method, the deposition conditions such as turbulence of the molten metal surface of the vapor deposition material, scattering of the molten metal, and non-uniform temperature distribution in the molten metal due to falling of the pellets are not sufficient. Become stable. These methods have a problem that a tape of a stable quality cannot be manufactured because the evaporation direction and the evaporation amount of the material become unstable.

【0006】このような問題の対策として、蒸発材料を
長尺の線材とし、これをるつぼ内に連続供給して、蒸着
条件を安定化し、信頼性の高いテープを製造することが
考えられる。この場合、長時間の連続蒸着作業が可能に
なるというメリットもあるため、Co−Ni合金の線材
化が要望されていた。
As a countermeasure against such a problem, it is conceivable that a long wire material is used as the evaporating material, and the long wire material is continuously supplied into a crucible to stabilize the vapor deposition conditions and produce a highly reliable tape. In this case, there is an advantage that a long-time continuous vapor deposition operation can be performed, and therefore, it has been desired to use a Co—Ni alloy as a wire rod.

【0007】しかし、Co−Ni合金は難加工性材料で
あるため、伸線加工などにより長尺化することは極めて
困難である。尚、特開昭59−64734号公報に示さ
れるように、Co−Ni合金中にFeを添加し、線材の
加工性や靱性を改善する方法がある。しかしながら、こ
のような技術では、Co−Ni合金の優れた磁気特性を
低下させるなど、別の問題が発生した。又、特開平3−
236435号公報に示されるように、合金中の不純物
限定を行い、靱性などを改善する技術もある。しかし、
合金組成の検討のみで、これだけでは線引加工などの十
分な加工性向上は図れなかった。
[0007] However, since the Co-Ni alloy is a difficult-to-work material, it is extremely difficult to lengthen it by wire drawing or the like. As disclosed in JP-A-59-64734, there is a method of improving the workability and toughness of a wire rod by adding Fe to a Co-Ni alloy. However, such a technique causes another problem such as lowering the excellent magnetic properties of the Co—Ni alloy. In addition, JP-A-3-
As disclosed in Japanese Patent Publication No. 236435, there is a technique for improving the toughness and the like by limiting impurities in an alloy. But,
Only by studying the alloy composition, it was not possible to sufficiently improve the workability such as drawing by this alone.

【0008】本発明は、このような技術的背景のものと
になされたもので、安定した蒸着条件が得られるよう、
加工性や靭性に優れたCo‐Ni基合金の蒸着材料を提供す
ることを目的とする。
The present invention has been made in view of such a technical background, and is intended to obtain stable deposition conditions.
An object of the present invention is to provide a Co-Ni-based alloy vapor deposition material having excellent workability and toughness.

【0009】上記の目的を達成するために、本発明蒸着
材料の製造方法は、昇温過程でhcp構造からfcc 構造へ
の変態温度をTu(℃)、降温過程でfcc 構造からhcp
構造への変態温度をTd(℃)とするとき、Niを10
〜30重量%含有するCo合金をTu℃以上に加熱した
後、冷却過程においてTd以上、Tu+200℃以下の
温度にて線引加工することを特徴とするものである。こ
こで、線引加工方法は、鍛造加工、圧延加工又は伸線加
工が好適で、その際の加工度は、断面減少率で、10%
以上30%未満であることが好ましい。さらに、加工後
の冷却速度は、0.1℃/sec 以上であることが好まし
い。
In order to achieve the above object, the method for producing a vapor deposition material of the present invention is characterized in that the transformation temperature from the hcp structure to the fcc structure is Tu (° C.) during the heating process, and the fcp
When the transformation temperature to the structure is Td (° C.), Ni is 10
After heating a Co alloy containing up to 30% by weight to a temperature of not less than Tu ° C., drawing is performed at a temperature of not less than Td and not more than Tu + 200 ° C. in a cooling process. Here, for the wire drawing method, forging, rolling, or wire drawing is preferable, and the working degree at that time is a cross-sectional reduction rate of 10%.
It is preferably at least 30%. Further, the cooling rate after the processing is preferably 0.1 ° C./sec or more.

【0010】[0010]

【作用】上記のように、本発明方法では、Niを10〜
30重量%(以下全て重量%をいう)含むCo合金を用
いているが、Niを10%未満若しくは30%超含有す
るCo合金は、磁気テープとしての特性を示す保磁力、
残留磁束密度が良好な値を示さないからである。
As described above, in the method of the present invention, Ni is added to 10 to 10%.
Although a Co alloy containing 30% by weight (hereinafter, all referred to by weight) is used, a Co alloy containing less than 10% or more than 30% of Ni has a coercive force exhibiting characteristics as a magnetic tape,
This is because the residual magnetic flux density does not show a good value.

【0011】ところで、このようなCo合金は、通常、
hcp 構造にあるが、昇温過程において変態温度Tu以上
に加熱すると、合金材料の結晶構造はfcc 構造に変態す
る。加熱により一旦fcc 構造になった材料は、Tu以下
に温度が低下してもその結晶構造を保ち、Td以下にな
るまでhcp 構造に変態しない。例えば、Niを20%含
有するCo合金では、Tu=380℃,Td=200℃
である。そのため、Tu付近の温度であっても安定した
fcc 構造を保ち、Td以上Tu+200℃以下の温度に
て、断面減少率で10〜30%の線引加工を施すと、fc
c 構造からhcp構造への変態を抑制し、室温でfcc リッ
チな構造をもつようになる。
Incidentally, such a Co alloy is usually
Although it has an hcp structure, if it is heated to a transformation temperature Tu or higher in a temperature rising process, the crystal structure of the alloy material is transformed into an fcc structure. The material, once in the fcc structure by heating, retains its crystal structure even if the temperature drops below Tu, and does not transform into the hcp structure until it becomes Td or less. For example, in a Co alloy containing 20% of Ni, Tu = 380 ° C. and Td = 200 ° C.
It is. Therefore, it is stable even at a temperature near Tu.
When the fcc structure is maintained and wire drawing is performed at a temperature of not less than Td and not more than Tu + 200 ° C. and a cross-sectional reduction rate of 10 to 30%, fc
Suppresses the transformation from c-structure to hcp-structure, resulting in an fcc-rich structure at room temperature.

【0012】しかし、Tu+200℃以上での断面減少
率で10%以下の加工では降温時容易にfcc 構造からhc
p 構造に変態しうるため、冷却後の加工特性は良好では
ない。又、断面減少率が30%超の加工では、冷却後も
加工歪みが残り特性は不十分である。さらに、加工後の
冷却速度が0.1℃/sec未満と遅い場合、fcc 構造
からhcp 構造への変態を促進し、優れた特性を示さな
い。
However, when the cross-sectional reduction rate is 10% or less at a temperature of Tu + 200 ° C. or more, the hc is easily changed from the fcc structure to the hc at the time of cooling.
Since it can be transformed into a p-structure, the processing characteristics after cooling are not good. On the other hand, when the cross-sectional reduction rate exceeds 30%, the processing distortion remains even after cooling, and the characteristics are insufficient. Further, when the cooling rate after processing is as slow as less than 0.1 ° C./sec, the transformation from the fcc structure to the hcp structure is promoted, and excellent characteristics are not exhibited.

【0013】以上のような理由から、本発明のようにC
oーNi合金を加工処理することで冷間での加工性に富
むfcc リッチなCo合金が得られる。このため、室温で
容易に切断、伸線等の加工ができ、好適な蒸着材料を得
ることができる。
[0013] For the above reasons, as in the present invention, C
By processing the o-Ni alloy, it is possible to obtain a fcc-rich Co alloy having excellent cold workability. Therefore, processing such as cutting and drawing can be easily performed at room temperature, and a suitable evaporation material can be obtained.

【0014】[0014]

【実施例】以下、本発明の実施例を説明する。 (実施例1)Niを20%含むCo合金線材(Tu=3
80℃,Td=200℃)を所定の温度に加熱して、そ
の後の自然冷却過程において、断面減少率で14%の伸
線加工を施した。加工後の室温での機械的特性を表1に
示す。但し、同表中の加工温度とは、加工される直前の
温度を示し、機械的特性の基準として、伸び、絞り共に
20%以上のものを良好とする(以下の各実施例におい
ても同じ)。
Embodiments of the present invention will be described below. (Example 1) Co alloy wire rod containing 20% Ni (Tu = 3
(80 ° C., Td = 200 ° C.) to a predetermined temperature, and in the subsequent natural cooling process, wire drawing was performed at a cross-sectional reduction rate of 14%. Table 1 shows the mechanical properties at room temperature after processing. However, the processing temperature in the table indicates a temperature immediately before processing, and as a standard of mechanical properties, elongation and reduction of 20% or more are good (the same applies to each of the following examples). .

【0015】[0015]

【表1】 [Table 1]

【0016】同表に示すように、一旦Tu以上に加熱し
た後、Td以上Tu+200℃以下の温度にて加工した
I-B,I-C は他の比較例に比べて機械的特性に優れている
ことが確認された。
[0016] As shown in the table, after heating once to Tu or more, processing was performed at a temperature of Td or more and Tu + 200 ° C or less.
It was confirmed that IB and IC were superior to other comparative examples in mechanical properties.

【0017】次に、同様の合金線材を1000℃まで加
熱し、その後の強制冷却過程において断面減少率14%
の伸線加工を施した場合について、機械的特性を調べて
みた。その結果を表2に示す。
Next, the same alloy wire is heated to 1000 ° C., and the sectional reduction rate is reduced by 14% in the subsequent forced cooling process.
The mechanical characteristics of the case where the wire drawing process was performed were examined. Table 2 shows the results.

【0018】[0018]

【表2】 [Table 2]

【0019】本試験では、全てのサンプルを一旦Td以
上に加熱しているが、その後の加工時における温度をそ
れぞれ異なるものとしている。ここで、加工温度がTu
+200℃を越える各比較例は実施例に比べて機械的特
性に劣っていることが確認された。
In this test, all the samples are once heated to Td or higher, but the temperatures during the subsequent processing are different. Here, the processing temperature is Tu
It was confirmed that each comparative example exceeding + 200 ° C. was inferior in mechanical properties as compared with the example.

【0020】さらに、Niを10%又は30%含む合金
についても同様に一旦1000℃まで加熱し、その後の
冷却過程において断面減少率14%の伸線加工を行っ
て、機械的特性について調べてみた。そのときの結果を
図1のグラフに示す。伸び、絞り共に20%以上のもの
を○で、同20%未満のものを×で示している。図示の
ように、Niの含有量がいずれの場合も、Td以上Tu
+200℃以下における加工により良好な機械的特性が
得られることが確認された。
Further, an alloy containing 10% or 30% of Ni was similarly heated once to 1000 ° C., and in the subsequent cooling process, wire drawing was performed to reduce the area by 14%, and mechanical properties were examined. . The results at that time are shown in the graph of FIG. When the elongation and the reduction are both 20% or more, the symbol is ○, and when it is less than 20%, the symbol is X. As shown in FIG.
It was confirmed that good mechanical properties were obtained by processing at + 200 ° C. or lower.

【0021】(実施例2)Niを15%含有するCo合
金線材を所定の温度に加熱し、その後の冷却過程で断面
減少率14%の伸線加工を施した。加工温度はどのサン
プルも全て400℃である。加工後の室温における機械
的特性を表3に示す。
(Example 2) A Co alloy wire rod containing 15% of Ni was heated to a predetermined temperature, and was subjected to wire drawing with a cross-sectional reduction rate of 14% in the subsequent cooling process. The processing temperature is 400 ° C. for all samples. Table 3 shows the mechanical properties at room temperature after processing.

【0022】[0022]

【表3】 [Table 3]

【0023】同表に示すように、加熱温度による機械的
特性の違いはみられないが、いずれも冷却過程における
加工を施したため、伸び、絞りは全て20%以上と良好
な結果を示している。
As shown in the table, there is no difference in mechanical properties depending on the heating temperature. However, since all of them were processed in the cooling process, the elongation and the reduction were all good at 20% or more. .

【0024】(実施例3)Niを20%含有するCo合
金線材を、加熱温度600℃、その後の冷却過程におい
て加工温度400℃で断面減少率の異なる伸線加工を施
した。そして、加工後における室温での機械的特性を調
べてみた。その結果を表4に示す。
Example 3 A Co alloy wire rod containing 20% of Ni was subjected to wire drawing at a heating temperature of 600.degree. C. and a cooling temperature of 400.degree. Then, mechanical properties at room temperature after processing were examined. Table 4 shows the results.

【0025】[0025]

【表4】 [Table 4]

【0026】同表に示すように、サンプルIV−A,
B,G,Hはいずれも機械的特性が不十分であったが、
断面減少率10〜30%の加工を施したものは、伸び、
絞り共に20%以上で良好な結果を示すことが確認され
た。
As shown in the table, samples IV-A,
B, G and H all had insufficient mechanical properties,
The one that has been processed with a cross-section reduction rate of 10 to 30%
It was confirmed that good results were obtained at both apertures of 20% or more.

【0027】さらに、Niを10又は30%含有するC
o合金についても同様の条件で加工を行い、機械的特性
を調べてみた。その結果を表5に示す。
Further, C containing 10 or 30% of Ni
The o-alloy was processed under the same conditions, and the mechanical properties were examined. Table 5 shows the results.

【0028】[0028]

【表5】 [Table 5]

【0029】同表に示すように、Niを10又は30%
含有するCo合金線材も、断面減少率10〜30%の伸
線加工によって優れた延性を示すことが確認された。
As shown in the same table, Ni was 10 or 30%
It was confirmed that the contained Co alloy wire also exhibited excellent ductility by wire drawing with a reduction in area of 10 to 30%.

【0030】(実施例4)さらに、Niを20%含有す
るCo合金線材に、加熱温度600℃、その後の冷却過
程における加工温度を400℃として断面減少率14%
の伸線加工を施した。そして、加工後の冷却速度を各サ
ンプルごとに変えた冷却を行い、得られた線材の室温で
の機械的特性について調査を行った。その結果を表6に
示す。
(Example 4) Further, a Co alloy wire containing 20% of Ni was heated to a temperature of 600 ° C, and the working temperature in the subsequent cooling process was set to 400 ° C to reduce the cross-sectional area by 14%.
Wire drawing process. Then, cooling was performed while changing the cooling rate after processing for each sample, and the mechanical properties of the obtained wire at room temperature were investigated. Table 6 shows the results.

【0031】[0031]

【表6】 [Table 6]

【0032】同表に示すように、加工後の冷却速度が
0.1℃/sec以上であれば良好な機械的特性が得ら
れることが確認された。
As shown in the table, it was confirmed that good mechanical properties were obtained when the cooling rate after processing was 0.1 ° C./sec or more.

【0033】[0033]

【発明の効果】以上説明したように、本発明方法により
処理されたCo−Ni合金材は、加工後の延性が優れ、
室温での切断、伸線などの加工が容易となる。従って、
一般に難加工性材料とされるCoーNi合金を容易に線
材化できるため、これを蒸着材料とすれば、VTRテー
プ製造などにおける蒸着条件の安定化、長時間連続操業
などに極めて有用である。
As described above, the Co—Ni alloy material treated by the method of the present invention has excellent ductility after processing,
Processing such as cutting and drawing at room temperature becomes easy. Therefore,
Since a Co—Ni alloy, which is generally a difficult-to-process material, can be easily formed into a wire, using this as a vapor deposition material is extremely useful for stabilizing the vapor deposition conditions in VTR tape production and the like, and for long-term continuous operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Ni含有量のことなるCo合金について、各加
工温度ごとにおける機械的特性の良否を示すグラフであ
る。
FIG. 1 is a graph showing the quality of mechanical properties at different processing temperatures for Co alloys having different Ni contents.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 660 C22F 1/00 660C 661 661D 691 691B 692 692A G11B 5/85 G11B 5/85 A H01F 10/16 H01F 10/16 (56)参考文献 特開 昭60−46355(JP,A) 特開 平5−311405(JP,A) 特開 平6−108188(JP,A) 特開 平6−299277(JP,A) 特公 昭28−4207(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C22F 1/10 B21C 1/00 B21C 9/00 G11B 5/85 H01F 10/16 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI C22F 1/00 660 C22F 1/00 660C 661 661D 691 691B 692 692A G11B 5/85 G11B 5/85 A H01F 10/16 H01F 10 / 16 (56) References JP-A-60-46355 (JP, A) JP-A-5-311405 (JP, A) JP-A-6-108188 (JP, A) JP-A-6-299277 (JP, A) JP-B-28-4207 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C22F 1/10 B21C 1/00 B21C 9/00 G11B 5/85 H01F 10/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 昇温過程でhcp構造からfcc構造への変態
温度をTu(℃)、降温過程でfcc構造からhcp構造への変
態温度をTd(℃)とするとき、Niを10〜30重量%含有
するCo合金をTu℃以上に加熱した後、冷却過程におい
てTd以上、Tu+200℃以下の温度にて線引加工し、
加工後の冷却速度が0.1℃/sec以上であることを特徴と
する蒸着材料の製造方法。
1. When the transformation temperature from the hcp structure to the fcc structure is Tu (° C.) during the temperature rise process, and the transformation temperature from the fcc structure to the hcp structure is Td (° C.) during the temperature decrease process, Ni is 10 to 30 ° C. after a Co alloy containing by weight% was heated above Tu ° C., Td or in the cooling process, and drawing processing in Tu + 200 ° C. below the temperature,
The cooling rate after processing is 0.1 ℃ / sec or more
Method of producing a vapor deposition material.
JP4328526A 1992-05-11 1992-11-13 Manufacturing method of evaporation material Expired - Fee Related JP3018798B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP4328526A JP3018798B2 (en) 1992-11-13 1992-11-13 Manufacturing method of evaporation material
ES93911971T ES2110094T3 (en) 1992-05-11 1993-05-06 DEPOSITION MATERIAL IN THE FORM OF STEAM AND METHOD FOR THE PRODUCTION OF THE SAME.
EP93911971A EP0603407B1 (en) 1992-05-11 1993-05-06 Vapor deposition material and production method thereof
DE69315309T DE69315309T2 (en) 1992-05-11 1993-05-06 GAS PHASE DEPOSITION MATERIAL AND MANUFACTURING METHOD
PCT/JP1993/000594 WO1993023586A1 (en) 1992-05-11 1993-05-06 Vapor deposition material and production method thereof
US08/178,277 US5441010A (en) 1992-05-11 1994-05-06 Evaporation material and method of preparing the same
US08/861,764 US6126760A (en) 1992-05-11 1997-05-22 Evaporation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4328526A JP3018798B2 (en) 1992-11-13 1992-11-13 Manufacturing method of evaporation material

Publications (2)

Publication Number Publication Date
JPH06145931A JPH06145931A (en) 1994-05-27
JP3018798B2 true JP3018798B2 (en) 2000-03-13

Family

ID=18211275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4328526A Expired - Fee Related JP3018798B2 (en) 1992-05-11 1992-11-13 Manufacturing method of evaporation material

Country Status (1)

Country Link
JP (1) JP3018798B2 (en)

Also Published As

Publication number Publication date
JPH06145931A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
US4668310A (en) Amorphous alloys
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
US5474624A (en) Method of manufacturing Fe-base soft magnetic alloy
US4572750A (en) Magnetic alloy for magnetic recording-reproducing head
JP2710948B2 (en) Ultrafine crystalline Fe-based alloy with excellent corrosion resistance and method for producing the same
US4440720A (en) Magnet alloy useful for a magnetic recording and reproducing head and a method of manufacturing thereof
JP2010133001A (en) METHOD FOR PRODUCING Ni ALLOY TARGET MATERIAL
DE2246427B2 (en) SOFT MAGNETIC ALLOY, THEIR USE AND METHOD OF ADJUSTING A GRADE OF 0.1 TO 0.6 IN SUCH ALLOYS
JPS625972B2 (en)
JP3018798B2 (en) Manufacturing method of evaporation material
JPH062076A (en) Fe-base soft magnetic alloy and its manufacture
JP3228356B2 (en) Material for evaporation
JPH0785452B2 (en) Magnetic film and method for manufacturing the same
JPS5964734A (en) Co-ni magnetic alloy
JP2991557B2 (en) Fe-cr-al powder alloy
JP3103458B2 (en) Material for evaporation
JPH0517819A (en) Production of soft-magnetic alloy having fine crystal
JP4750924B2 (en) Manufacturing method of sputtering target
JPH05125499A (en) Aluminum-base alloy having high strength and high toughness
JP2001181832A (en) Method for production sputtering target
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JPH0874040A (en) Material for vapor deposition and its production
JPS6218619B2 (en)
JP2903940B2 (en) Material for vapor deposition and method for producing the same
JPH11222671A (en) Target for sputtering and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees