JP2010133001A - METHOD FOR PRODUCING Ni ALLOY TARGET MATERIAL - Google Patents

METHOD FOR PRODUCING Ni ALLOY TARGET MATERIAL Download PDF

Info

Publication number
JP2010133001A
JP2010133001A JP2008312526A JP2008312526A JP2010133001A JP 2010133001 A JP2010133001 A JP 2010133001A JP 2008312526 A JP2008312526 A JP 2008312526A JP 2008312526 A JP2008312526 A JP 2008312526A JP 2010133001 A JP2010133001 A JP 2010133001A
Authority
JP
Japan
Prior art keywords
target material
alloy
alloy target
producing
microstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008312526A
Other languages
Japanese (ja)
Inventor
Tomonori Ueno
友典 上野
Atsushi Fukuoka
淳 福岡
Mitsuharu Fujimoto
光晴 藤本
Suguru Ueno
英 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008312526A priority Critical patent/JP2010133001A/en
Publication of JP2010133001A publication Critical patent/JP2010133001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an Ni alloy target material having a uniform structure for suppressing variance of a sputtered film. <P>SOLUTION: In the method for producing the Ni alloy target material comprising one or more selected from Cr, Mo and W by 10 to 30 mass%, and the balance Ni with inevitable impurities, an ingot obtained by melting and casting the Ni alloy is subjected to plastic working at 800 to 1,300&deg;C at a draft of &ge;50%, and is thereafter subjected to recrystallization heat treatment at 800 to 1,300&deg;C for 0.5 to 3 hr. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、例えば、垂直磁気記録媒体のNi合金中間層を形成するためのNi合金ターゲット材の製造方法に関するものである。   The present invention relates to a method for producing a Ni alloy target material for forming, for example, a Ni alloy intermediate layer of a perpendicular magnetic recording medium.

近年、磁気記録技術の進歩は著しく、ドライブの大容量化のために、磁気記録媒体の高記録密度化が進められている。しかしながら、現在広く世の中で使用されている面内磁気記録方式の磁気記録媒体では、高記録密度化を実現しようとすると、記録ビットが微細化し、記録ヘッドで記録できないほどの高保磁力が要求される。そこで、これらの問題を解決し、記録密度を向上させる手段として垂直磁気記録方式が検討されている。   In recent years, the progress of magnetic recording technology has been remarkable, and the recording density of magnetic recording media has been increased to increase the capacity of drives. However, in the magnetic recording medium of the in-plane magnetic recording system that is currently widely used in the world, if a high recording density is to be realized, the recording bit becomes fine and a high coercive force that cannot be recorded by the recording head is required. . Therefore, a perpendicular magnetic recording method has been studied as a means for solving these problems and improving the recording density.

垂直磁気記録方式とは、垂直磁気記録媒体の磁性膜中に媒体面に対して磁気容易軸が垂直方向に配向するように形成したものであり、記録密度を上げてもビット内の反磁界が小さく、記録再生特性の低下が少ない高記録密度に適した方法である。そして、垂直磁気記録方式においては、記録感度を高めた磁気記録膜層と軟磁性膜層とを有する記録媒体が開発されており、このような媒体構造では、軟磁性層と磁気記録層の間に中間層や下地層が成膜された記録媒体が開発されている。
そして、このような記録媒体の中間層としては、中間層上に形成される下地層や磁気記録層の配向を制御する作用が要求されており、Ni−W系などのNi合金を適用することが提案されている(例えば、特許文献1)。
US2006/0275629 A1
The perpendicular magnetic recording system is a magnetic film of a perpendicular magnetic recording medium formed so that the magnetic easy axis is oriented perpendicularly to the medium surface. Even if the recording density is increased, the demagnetizing field in the bit is not affected. This method is suitable for high recording density, which is small and has little deterioration in recording / reproducing characteristics. In the perpendicular magnetic recording system, a recording medium having a magnetic recording film layer and a soft magnetic film layer with improved recording sensitivity has been developed. In such a medium structure, a recording medium between the soft magnetic layer and the magnetic recording layer has been developed. In addition, a recording medium on which an intermediate layer and an underlayer are formed has been developed.
As an intermediate layer of such a recording medium, an action for controlling the orientation of the underlayer or magnetic recording layer formed on the intermediate layer is required, and a Ni alloy such as a Ni—W system is applied. Has been proposed (for example, Patent Document 1).
US2006 / 0275629 A1

特許文献1に記載されるNi合金の中間層は一般的にスパッタリング法により成膜される。そして、スパッタリングにおいては、希ガスイオン(典型的にはArイオン)がターゲット材表面に衝突した際、原子間に割り込み、その周囲の原子を激しく振動させる。その振動はターゲット材の結晶最密方向に最も伝播されやすく、表面原子が最密方向へ放出される。さらに、ターゲット材の結晶粒界は、結晶配列が大きく乱れているため、スパッタリング中の原子放出挙動が結晶粒内とは異なる。したがって、結晶粒径が不均一になるとスパッタ膜がバラツキ易くなるという問題がある。
また、特許文献1に記載されるNi合金膜を形成するためのスパッタリング用ターゲット材は、一般的にNi合金の溶解鋳造インゴットに圧延を施して作製されている。本願発明者らの検討によれば、溶解鋳造−圧延でNi合金ターゲット材を作製したところ不均一な金属組織となることを確認した。
本発明の目的は、上記の問題を解決し、スパッタリング膜のバラツキを抑制すべく、均一な組織を有するNi合金ターゲット材を製造する方法を提供することである。
The Ni alloy intermediate layer described in Patent Document 1 is generally formed by sputtering. In sputtering, when a rare gas ion (typically Ar + ion) collides with the surface of the target material, it interrupts between atoms and vibrates surrounding atoms violently. The vibration is most easily propagated in the crystal close-packed direction of the target material, and surface atoms are released in the close-packed direction. Furthermore, since the crystal grain boundary of the target material is greatly disturbed, the atomic emission behavior during sputtering is different from that in the crystal grains. Therefore, there is a problem that the sputtered film tends to vary when the crystal grain size becomes non-uniform.
Moreover, the sputtering target material for forming the Ni alloy film described in Patent Document 1 is generally produced by rolling a melting cast ingot of Ni alloy. According to the study by the present inventors, it was confirmed that when a Ni alloy target material was produced by melt casting-rolling, a non-uniform metal structure was obtained.
An object of the present invention is to provide a method for producing a Ni alloy target material having a uniform structure in order to solve the above-mentioned problems and suppress variations in the sputtering film.

本発明者らは、上記の問題に関して種々の検討を行った結果、Ni合金を溶解鋳造したインゴットを適度な温度範囲と圧下率で熱間塑性加工をした上で、適切な温度で再結晶化熱処理を行うことで、ターゲット材の厚さ方向における金属組織の不均一性を改善できることを見出し本発明に到達した。   As a result of various studies on the above problems, the present inventors have recrystallized an ingot obtained by melting and casting a Ni alloy at an appropriate temperature after hot plastic working in an appropriate temperature range and a reduction ratio. It has been found that the non-uniformity of the metal structure in the thickness direction of the target material can be improved by performing the heat treatment, and the present invention has been achieved.

すなわち、本発明は、(Cr、Mo、W)から選ばれる1種または2種以上を10〜30質量%含み、残部Niおよび不可避的不純物からなるNi合金ターゲット材の製造方法において、前記Ni合金を溶解鋳造したインゴットを温度800〜1300℃、圧下率50%以上で塑性加工を施した後、800〜1300℃で0.5〜3時間の再結晶化熱処理を行うNi合金ターゲット材の製造方法である。
また、本発明のNi合金ターゲット材の製造方法は、IVa族(Ti、Zr、Hf)、Va族(V、Nb、Ta)、IIIb族(B、Al、Ga、In)、IVb族(C、Si、Ge、Sn、Pb)から選択される1種または2種以上を5質量%以下含むNi合金にも適用できる。
That is, the present invention provides a method for producing a Ni alloy target material comprising 10 to 30% by mass of one or more selected from (Cr, Mo, W), the balance being Ni and unavoidable impurities. A method for producing a Ni alloy target material in which an ingot obtained by melting and casting is subjected to plastic working at a temperature of 800 to 1300 ° C. and a reduction rate of 50% or more, and then subjected to a recrystallization heat treatment at 800 to 1300 ° C. for 0.5 to 3 hours. It is.
Moreover, the manufacturing method of the Ni alloy target material of the present invention includes a group IVa (Ti, Zr, Hf), a group Va (V, Nb, Ta), a group IIIb (B, Al, Ga, In), a group IVb (C , Si, Ge, Sn, Pb) can be applied to a Ni alloy containing 5% by mass or less of one or more selected from one or more of them.

本発明により、安定したスパッタリングが行える垂直磁気記録媒体の中間層を成膜するためのNi合金ターゲット材を提供でき、垂直磁気記録媒体を製造する上で極めて有効な技術となる。   According to the present invention, a Ni alloy target material for forming an intermediate layer of a perpendicular magnetic recording medium capable of stable sputtering can be provided, which is an extremely effective technique for producing a perpendicular magnetic recording medium.

本発明の最も重要な特徴は、スパッタリングの安定化のために厚み方向に均一な金属組織を有するNi合金ターゲット材を得るべく、Ni合金を溶解鋳造したインゴットを適度な温度範囲と圧下率で熱間塑性加工をした上で、再結晶化の促進が十分に可能な適度な温度域で熱処理を行うNi合金ターゲット材の製造方法を見出した点にある。   The most important feature of the present invention is that in order to obtain a Ni alloy target material having a uniform metal structure in the thickness direction for stabilization of sputtering, an ingot in which Ni alloy is melt-cast is heated in an appropriate temperature range and a reduction rate. It is the point which discovered the manufacturing method of the Ni alloy target material which heat-processes in the moderate temperature range which can fully accelerate | stimulate recrystallization after performing an interplastic process.

まず、本発明のNi合金の合金組成について説明する。
本発明のNi合金ターゲット材は、(Cr、Mo、W)から選ばれる1種または2種以上を10〜30質量%含み残部Niおよび不可避的不純物からなる組成とする。
本発明で製造されるNi合金ターゲット材は、垂直磁気記録媒体の中間層の形成に適用され、その中間層は、上部に形成される下地層や磁気記録層の配向を制御する作用を有する必要がある。そこで、まず、Ni合金でなる中間層は、上部膜の配向を制御するため面心立方構造(fcc)を維持することが重要となる。また、特にマグネトロンスパッタリング法で効率的に成膜を行うためにターゲット材としてはNiが元来有する磁性を低下させる必要がある。そのため、スパッタリング成膜した際に、fccを維持しつつ、ターゲット材として磁性を低減するため、Niに対して(Cr、Mo、W)から選ばれる1種または2種以上を10〜30質量%含むこととした。また、スパッタリング膜の耐食性を向上させるためにも、Niに対して上記元素を10〜30質量%含むことが効果的である。
First, the alloy composition of the Ni alloy of the present invention will be described.
The Ni alloy target material of the present invention has a composition comprising 10-30% by mass of one or more selected from (Cr, Mo, W) and the balance Ni and inevitable impurities.
The Ni alloy target material manufactured in the present invention is applied to the formation of an intermediate layer of a perpendicular magnetic recording medium, and the intermediate layer needs to have an action of controlling the orientation of the underlayer and magnetic recording layer formed on the upper part. There is. Therefore, first, it is important for the intermediate layer made of Ni alloy to maintain a face-centered cubic structure (fcc) in order to control the orientation of the upper film. In addition, in order to efficiently form a film by the magnetron sputtering method in particular, it is necessary to reduce the magnetism inherent in Ni as a target material. Therefore, in order to reduce magnetism as a target material while maintaining fcc when sputtering film formation is performed, 10 to 30% by mass of one or more selected from (Cr, Mo, W) with respect to Ni Included. In order to improve the corrosion resistance of the sputtering film, it is effective to contain 10 to 30% by mass of the above element with respect to Ni.

次に、本発明のNi合金ターゲット材の製造方法を説明する。
まず、上記組成となるように溶解鋳造されたNi合金インゴットを得、続いて、そのNi合金インゴットを温度800〜1300℃に加熱し、圧下率50%以上の塑性加工を施す。
Niに対して、Cr、Mo、Wを10質量%以上含むNi合金においては、Ni合金インゴットの塑性加工性を向上させるために、800〜1300℃の熱間領域での塑性加工が必要となる。加熱温度が800℃未満の場合には、加工性が十分でないため、塑性加工時に割れ等が発生する可能性が高くなる。また、1300℃を超える場合には液相発現温度に近づきすぎるために、逆に軟化によって塑性加工性の低下が生じ、正常な塑性加工が困難な場合が生じるためである。
Next, the manufacturing method of the Ni alloy target material of this invention is demonstrated.
First, a Ni alloy ingot melt-casted to have the above composition is obtained, and then the Ni alloy ingot is heated to a temperature of 800 to 1300 ° C. and subjected to plastic working with a reduction rate of 50% or more.
In an Ni alloy containing 10 mass% or more of Cr, Mo, and W with respect to Ni, in order to improve the plastic workability of the Ni alloy ingot, plastic working in a hot region of 800 to 1300 ° C. is required. . When the heating temperature is less than 800 ° C., the workability is not sufficient, so that there is a high possibility that cracking or the like occurs during plastic working. In addition, when the temperature exceeds 1300 ° C., it is too close to the liquid phase onset temperature, and on the contrary, the plastic workability is lowered due to softening, and normal plastic working may be difficult.

また、鋳造インゴットからの塑性加工における圧下率は、トータルで50%以上とする。インゴットからの圧下率を50%以上とすることで、鋳造組織を破壊することが可能となり、次工程の再結晶化熱処理において、均一な再結晶組織を得られるためである。なお、圧下率とは、((インゴット厚さ−塑性加工後厚さ)/インゴット厚さ)×100(%)で表すものである。
また、塑性加工においては、鋳造インゴットから圧下率10〜30%の圧延を数回行いトータルで圧下率が50%以上とすることが好ましい。さらにインゴットの形状によっては、インゴットを上記温度域で熱間鍛造した後に熱間圧延を行ってもよい。その場合にもインゴットからの圧下率は50%以上とする。
In addition, the reduction ratio in the plastic working from the cast ingot is 50% or more in total. This is because by setting the reduction ratio from the ingot to 50% or more, the cast structure can be destroyed, and a uniform recrystallized structure can be obtained in the recrystallization heat treatment in the next step. The rolling reduction is represented by ((ingot thickness−thickness after plastic working) / ingot thickness) × 100 (%).
Further, in the plastic working, it is preferable that the rolling reduction is 10 to 30% several times from the casting ingot and the rolling reduction is 50% or more in total. Further, depending on the shape of the ingot, hot rolling may be performed after the ingot is hot forged in the above temperature range. Even in that case, the reduction ratio from the ingot is 50% or more.

次いで、熱間塑性加工後に、800〜1300℃で0.5〜3時間の再結晶化熱処理を行う。熱間塑性加工後に、上記の温度域で熱処理を行うことはNi合金の均一な再結晶組織を得るために重要である。熱間塑性加工において、動的再結晶が進行する場合もあるが、均一な組織を得るためには、上記の温度域での熱処理を行うことで、素材の厚さ方向に均一な再結晶組織を得ることができる。
なお、熱処理温度が800℃未満の場合には、再結晶が十分に進行しない場合があり、1300℃を超える場合には、再結晶の際の結晶成長が早くなり、均一な金属組織を得がたくなる場合があるため上記の温度範囲とする。また、熱処理時間が0.5時間に満たない場合には、塑性加工、特に圧延時の方向性が残存した金属組織のままであり、3時間を超える場合には結晶成長が進行し過ぎる場合があるため、加熱時間は0.5〜3時間に設定する。
Next, after hot plastic working, recrystallization heat treatment is performed at 800-1300 ° C. for 0.5-3 hours. It is important to perform heat treatment in the above temperature range after hot plastic working in order to obtain a uniform recrystallized structure of the Ni alloy. In hot plastic working, dynamic recrystallization may proceed, but in order to obtain a uniform structure, by performing heat treatment in the above temperature range, a uniform recrystallization structure in the thickness direction of the material Can be obtained.
When the heat treatment temperature is less than 800 ° C., recrystallization may not proceed sufficiently. When the heat treatment temperature exceeds 1300 ° C., crystal growth during recrystallization is accelerated, and a uniform metal structure can be obtained. The temperature range is set as described above because it may become dull. If the heat treatment time is less than 0.5 hours, the metal structure remains in the direction of plastic processing, particularly rolling, and if it exceeds 3 hours, crystal growth may proceed excessively. Therefore, the heating time is set to 0.5 to 3 hours.

また、本発明のNi合金ターゲト材は、IVa族(Ti、Zr、Hf)、Va族(V、Nb、Ta)、IIIb族(B、Al、Ga、In)、IVb族(C、Si、Ge、Sn、Pb)から選択される1種または2種以上の添加元素を5質量%以下含んでもよい。これらの元素を含むことで、スパッタ膜特性に大きな影響を及ぼすことなく耐食性の改善が可能となるためである。   In addition, the Ni alloy target material of the present invention includes a group IVa (Ti, Zr, Hf), a group Va (V, Nb, Ta), a group IIIb (B, Al, Ga, In), a group IVb (C, Si, One or more additive elements selected from Ge, Sn, Pb) may be contained in an amount of 5% by mass or less. This is because the inclusion of these elements makes it possible to improve the corrosion resistance without significantly affecting the sputtered film characteristics.

また、本発明のNi合金ターゲット材の酸素量は100質量ppm以下に制御することが好ましい。垂直磁気記録媒体の中間層成膜は、膜の結晶系や配向が重要であり、ターゲット材中の酸素量が100質量ppmを超えると結晶系や配向に影響を及ぼすためである。
ターゲット中の酸素量を100質量ppm以下に制御するためには、例えば、純度99.9%以上の原料を用い真空中の高周波加熱炉で加熱・溶解後鋳造をすればよい。
Further, the oxygen content of the Ni alloy target material of the present invention is preferably controlled to 100 mass ppm or less. This is because, in the formation of the intermediate layer of the perpendicular magnetic recording medium, the crystal system and orientation of the film are important, and when the amount of oxygen in the target material exceeds 100 mass ppm, the crystal system and orientation are affected.
In order to control the amount of oxygen in the target to 100 ppm by mass or less, for example, a raw material having a purity of 99.9% or more may be used and cast after heating and melting in a high-frequency heating furnace in a vacuum.

また、上記の製造方法で得られるNi合金ターゲット材は、ターゲット材の板厚方向における組織を平均結晶粒径が200μm以下の再結晶組織とすることが好ましい。平均結晶粒径が200μmを超えると金属組織のバラツキが大きく、スパッタリング時の安定性が低下する場合があるためである。より好ましくは、150μm以下である。   Moreover, it is preferable that the Ni alloy target material obtained by said manufacturing method makes the structure | tissue in the plate | board thickness direction of a target material the recrystallized structure whose average crystal grain diameter is 200 micrometers or less. This is because when the average crystal grain size exceeds 200 μm, the metal structure varies greatly, and the stability during sputtering may decrease. More preferably, it is 150 μm or less.

Ni−20Cr(質量%)のNi合金となるように原料を秤量し、溶解鋳造したインゴットを得た。なお、鋳造インゴットは、純度99.9%以上の原料を用い真空中の高周波加熱炉で加熱・溶解したのち、鉄製の鋳型に鋳造し作製した。その後、表1に示す製造条件で、塑性加工および熱処理を施したNi合金素材を得た後、機械加工によってΦ164×7(mm)の円板形状のNi−Crターゲット材を作製した。作製したターゲット材の板厚方向の中心から10×10×7(mm)の試料を作製して、ミクロ組織観察及び酸素量分析を行った。ミクロ組織観察において測定した平均結晶粒径および酸素量分析の結果を表2に示す。なお、ミクロ組織は上記の試料を鏡面研磨後に塩化第二鉄水溶液で化学腐食を行った後に光学顕微鏡で観察した。試料1〜6のそれぞれのミクロ組織を図1〜図6に示す。平均結晶粒径は、光学顕微鏡で観察した像を、JIS G551の切断法に準じて測定した1結晶粒当たりの平均線分長として示した。ただし、試料5および6は圧延組織のため測定不可であった。また、酸素量分析は、赤外線吸収法で行った。   The raw materials were weighed so as to be a Ni-20Cr (mass%) Ni alloy, and a melt-cast ingot was obtained. The cast ingot was prepared by casting a steel mold after heating and melting in a high-frequency heating furnace in a vacuum using a raw material having a purity of 99.9% or higher. Then, after obtaining a Ni alloy material subjected to plastic working and heat treatment under the manufacturing conditions shown in Table 1, a disk-shaped Ni—Cr target material of Φ164 × 7 (mm) was produced by machining. A 10 × 10 × 7 (mm) sample was produced from the center of the produced target material in the thickness direction, and microstructure observation and oxygen content analysis were performed. Table 2 shows the average crystal grain size and oxygen content analysis results measured in the microstructure observation. The microstructure was observed with an optical microscope after the sample was mirror-polished and subjected to chemical corrosion with a ferric chloride aqueous solution. The respective microstructures of Samples 1 to 6 are shown in FIGS. The average crystal grain size was shown as an average line segment length per crystal grain measured in accordance with the cutting method of JIS G551 by an image observed with an optical microscope. However, samples 5 and 6 could not be measured because of the rolling structure. The oxygen content analysis was performed by an infrared absorption method.

表1及び表2から、本発明のNi合金ターゲット材の製造方法により得られたNi合金ターゲット材では、均一な金属組織が得られていることが分かる。   From Table 1 and Table 2, it can be seen that the Ni alloy target material obtained by the method for producing the Ni alloy target material of the present invention has a uniform metal structure.

Ni−20W(質量%)のNi合金となるように原料を秤量し、溶解鋳造したインゴットを得た。なお、鋳造インゴットは、純度99.9%以上の原料を用い真空中の高周波加熱炉で加熱・溶解したのち、鉄製の鋳型に鋳造し作製した。その後、表3に示す製造条件で、塑性加工および熱処理を施したNi合金素材を得た後、機械加工によってΦ164×7(mm)の円板形状のNi−Wターゲット材を作製した。なお、圧延工程は、加熱温度を変化させた二回加熱の圧延を実施した。作製したターゲット材の板厚方向の中心から10×10×7(mm)の試料を作製して、ミクロ組織観察及び酸素量分析を行った。ミクロ組織観察において測定した平均結晶粒径および酸素量分析の結果を表4に示す。なお、ミクロ組織は上記の試料を鏡面研磨後に塩化第二鉄水溶液で化学腐食を行った後に光学顕微鏡で観察した。試料7、8のそれぞれのミクロ組織を図7、8に示す。平均結晶粒径は、光学顕微鏡で観察した像を、JIS G551の切断法に準じて測定した1結晶粒当たりの平均線分長とした。ただし、試料8は圧延組織のため測定不可であった。また、酸素量分析は、赤外線吸収法で行った。   The raw materials were weighed so as to be a Ni-20W (mass%) Ni alloy, and a melt-cast ingot was obtained. The cast ingot was prepared by casting a steel mold after heating and melting in a high-frequency heating furnace in a vacuum using a raw material having a purity of 99.9% or higher. Then, after obtaining a Ni alloy material subjected to plastic working and heat treatment under the manufacturing conditions shown in Table 3, a disk-shaped Ni—W target material having a diameter of 164 × 7 (mm) was produced by machining. In addition, the rolling process implemented rolling of twice heating which changed heating temperature. A 10 × 10 × 7 (mm) sample was produced from the center of the produced target material in the thickness direction, and microstructure observation and oxygen content analysis were performed. Table 4 shows the results of the average crystal grain size and oxygen content analysis measured in the microstructure observation. The microstructure was observed with an optical microscope after the sample was mirror-polished and subjected to chemical corrosion with a ferric chloride aqueous solution. The microstructures of Samples 7 and 8 are shown in FIGS. The average crystal grain size was defined as the average line segment length per crystal grain measured by an optical microscope according to the cutting method of JIS G551. However, Sample 8 could not be measured because of the rolled structure. The oxygen content analysis was performed by an infrared absorption method.

表3及び表4から、本発明のNi合金ターゲット材の製造方法により得られたNi合金ターゲット材では、均一な金属組織が得られていることが分かる。   From Table 3 and Table 4, it can be seen that the Ni alloy target material obtained by the method for producing the Ni alloy target material of the present invention has a uniform metal structure.

Ni−15W−5Cr(質量%)のNi合金となるように原料を秤量し、溶解鋳造したインゴットを得た。なお、鋳造インゴットは、純度99.9%以上の原料を用い真空中の高周波加熱炉で加熱・溶解したのち、鉄製の鋳型に鋳造し作製した。その後、表5に示す製造条件で、塑性加工および熱処理を施したNi合金素材を得た後、機械加工によってΦ164×7(mm)の円板形状のNi−W−Crターゲット材を作製した。作製したターゲット材の板厚方向の中心から10×10×7(mm)の試料を作製して、ミクロ組織観察及び酸素量分析を行った。ミクロ組織観察において測定した平均結晶粒径および酸素量分析の結果を表6に示す。なお、ミクロ組織は上記の試料を鏡面研磨後に塩化第二鉄水溶液で化学腐食を行った後に光学顕微鏡で観察した。試料9〜12のそれぞれのミクロ組織を図9〜12に示す。平均結晶粒径は、光学顕微鏡で観察した像を、JIS G551の切断法に準じて測定した1結晶粒当たりの平均線分長とした。ただし、試料12は圧延組織のため測定不可であった。また、酸素量分析は、赤外線吸収法で行った。   The raw materials were weighed so as to be a Ni-15W-5Cr (mass%) Ni alloy, and a melt-cast ingot was obtained. The cast ingot was prepared by casting a steel mold after heating and melting in a high-frequency heating furnace in a vacuum using a raw material having a purity of 99.9% or higher. Then, after obtaining a Ni alloy material subjected to plastic working and heat treatment under the manufacturing conditions shown in Table 5, a disk-shaped Ni—W—Cr target material of Φ164 × 7 (mm) was produced by machining. A 10 × 10 × 7 (mm) sample was produced from the center of the produced target material in the thickness direction, and microstructure observation and oxygen content analysis were performed. Table 6 shows the average crystal grain size and oxygen analysis results measured in the microstructure observation. The microstructure was observed with an optical microscope after the sample was mirror-polished and subjected to chemical corrosion with a ferric chloride aqueous solution. The respective microstructures of Samples 9 to 12 are shown in FIGS. The average crystal grain size was defined as the average line segment length per crystal grain measured by an optical microscope according to the cutting method of JIS G551. However, the measurement of sample 12 was impossible due to the rolling structure. The oxygen content analysis was performed by an infrared absorption method.

表5及び表6から、本発明のNi合金ターゲット材の製造方法により得られたNi合金ターゲット材では、均一な金属組織が得られていることが分かる。   From Tables 5 and 6, it can be seen that the Ni alloy target material obtained by the method for producing the Ni alloy target material of the present invention has a uniform metal structure.

本発明のNi合金ターゲット材は垂直磁気記録媒体のNi合金中間層を安定形成に優れているため、垂直磁気記録媒体の安定製造に不可欠な技術となる。   Since the Ni alloy target material of the present invention is excellent in stable formation of the Ni alloy intermediate layer of the perpendicular magnetic recording medium, it becomes an indispensable technique for stable production of the perpendicular magnetic recording medium.

試料1のミクロ組織例である。It is an example of the microstructure of Sample 1. 試料2のミクロ組織例である。It is an example of the microstructure of Sample 2. 試料3のミクロ組織例である。It is an example of the microstructure of Sample 3. 試料4のミクロ組織例である。It is an example of the microstructure of sample 4. 試料5のミクロ組織例である。It is an example of the microstructure of sample 5. 試料6のミクロ組織例である。It is an example of the microstructure of Sample 6. 試料7のミクロ組織例である。It is an example of the microstructure of sample 7. 試料8のミクロ組織例である。It is an example of the microstructure of Sample 8. 試料9のミクロ組織例である。It is an example of the microstructure of sample 9. 試料10のミクロ組織例である。It is an example of the microstructure of sample 10. 試料11のミクロ組織例である。It is an example of the microstructure of sample 11. 試料12のミクロ組織例である。It is an example of the microstructure of sample 12.

Claims (2)

(Cr、Mo、W)から選ばれる1種または2種以上を10〜30質量%含み、残部Niおよび不可避的不純物からなるNi合金ターゲット材の製造方法において、
前記Ni合金を溶解鋳造したインゴットを温度800〜1300℃、圧下率50%以上で塑性加工を施した後、800〜1300℃で0.5〜3時間の再結晶化熱処理を行うことを特徴とするNi合金ターゲット材の製造方法。
In the method for producing a Ni alloy target material comprising 10-30% by mass of one or more selected from (Cr, Mo, W), the balance being Ni and unavoidable impurities,
The ingot obtained by melting and casting the Ni alloy is subjected to plastic working at a temperature of 800 to 1300 ° C. and a reduction rate of 50% or more, and then subjected to a recrystallization heat treatment at 800 to 1300 ° C. for 0.5 to 3 hours. A method for producing a Ni alloy target material.
IVa族、Va族、IIIb族、IVb族から選択される1種または2種以上を5質量%以下含むことを特徴とする請求項1に記載のNi合金ターゲット材の製造方法。   2. The method for producing a Ni alloy target material according to claim 1, comprising 5% by mass or less of one or more selected from IVa group, Va group, IIIb group, and IVb group.
JP2008312526A 2008-12-08 2008-12-08 METHOD FOR PRODUCING Ni ALLOY TARGET MATERIAL Pending JP2010133001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312526A JP2010133001A (en) 2008-12-08 2008-12-08 METHOD FOR PRODUCING Ni ALLOY TARGET MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008312526A JP2010133001A (en) 2008-12-08 2008-12-08 METHOD FOR PRODUCING Ni ALLOY TARGET MATERIAL

Publications (1)

Publication Number Publication Date
JP2010133001A true JP2010133001A (en) 2010-06-17

Family

ID=42344550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312526A Pending JP2010133001A (en) 2008-12-08 2008-12-08 METHOD FOR PRODUCING Ni ALLOY TARGET MATERIAL

Country Status (1)

Country Link
JP (1) JP2010133001A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534308A (en) * 2010-12-09 2012-07-04 北京有色金属研究总院 Nickel base alloy target for perpendicular magnetic recording media interlayer and manufacturing method thereof
CN102732845A (en) * 2012-07-10 2012-10-17 福州大学 Nickel-chromium alloy target with high purity and high compositional uniformity and method for preparing same
WO2012144407A1 (en) * 2011-04-18 2012-10-26 株式会社東芝 HIGH PURITY Ni SPUTTERING TARGET AND METHOD FOR MANUFACTURING SAME
KR20140111955A (en) * 2013-03-12 2014-09-22 히타치 긴조쿠 가부시키가이샤 METAL THIN FILM FOR ELECTRONIC COMPONENT AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM
CN104646930A (en) * 2013-11-21 2015-05-27 安泰科技股份有限公司 Manufacturing method of Ni-W-Cr alloy target
JP2016117922A (en) * 2014-12-18 2016-06-30 住友金属鉱山株式会社 Sputtering target and manufacturing method of sputtering target
CN114888529A (en) * 2022-05-10 2022-08-12 安徽恒均粉末冶金科技股份有限公司 Preparation process of nickel strap for new energy power battery tab

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169922A (en) * 1998-12-04 2000-06-20 Sumitomo Metal Mining Co Ltd Molybdenum-nickel target material, electrode material, and packaging component
JP2000169923A (en) * 1998-12-04 2000-06-20 Sumitomo Metal Mining Co Ltd Tungsten-nickel target material, electrode material, and packaging component
JP2001262328A (en) * 2000-03-23 2001-09-26 Hitachi Metals Ltd Ni-Nb BASED TARGET MATERIAL AND SUBSTRATE FILM FOR BRAZING FILLER METAL
WO2006087873A1 (en) * 2005-02-17 2006-08-24 Nippon Mining & Metals Co., Ltd. Barrier film for flexible copper substrate and sputtering target for barrier film formation
JP2006322039A (en) * 2005-05-18 2006-11-30 Sumitomo Metal Mining Co Ltd Sputtering target

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169922A (en) * 1998-12-04 2000-06-20 Sumitomo Metal Mining Co Ltd Molybdenum-nickel target material, electrode material, and packaging component
JP2000169923A (en) * 1998-12-04 2000-06-20 Sumitomo Metal Mining Co Ltd Tungsten-nickel target material, electrode material, and packaging component
JP2001262328A (en) * 2000-03-23 2001-09-26 Hitachi Metals Ltd Ni-Nb BASED TARGET MATERIAL AND SUBSTRATE FILM FOR BRAZING FILLER METAL
WO2006087873A1 (en) * 2005-02-17 2006-08-24 Nippon Mining & Metals Co., Ltd. Barrier film for flexible copper substrate and sputtering target for barrier film formation
JP2006322039A (en) * 2005-05-18 2006-11-30 Sumitomo Metal Mining Co Ltd Sputtering target

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534308A (en) * 2010-12-09 2012-07-04 北京有色金属研究总院 Nickel base alloy target for perpendicular magnetic recording media interlayer and manufacturing method thereof
WO2012144407A1 (en) * 2011-04-18 2012-10-26 株式会社東芝 HIGH PURITY Ni SPUTTERING TARGET AND METHOD FOR MANUFACTURING SAME
CN103459657A (en) * 2011-04-18 2013-12-18 株式会社东芝 High purity Ni sputtering target and method for manufacturing same
JP5951599B2 (en) * 2011-04-18 2016-07-13 株式会社東芝 High purity Ni sputtering target and method for producing the same
CN102732845A (en) * 2012-07-10 2012-10-17 福州大学 Nickel-chromium alloy target with high purity and high compositional uniformity and method for preparing same
KR20140111955A (en) * 2013-03-12 2014-09-22 히타치 긴조쿠 가부시키가이샤 METAL THIN FILM FOR ELECTRONIC COMPONENT AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM
KR101600169B1 (en) 2013-03-12 2016-03-04 히타치 긴조쿠 가부시키가이샤 METAL THIN FILM FOR ELECTRONIC COMPONENT AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM
CN104646930A (en) * 2013-11-21 2015-05-27 安泰科技股份有限公司 Manufacturing method of Ni-W-Cr alloy target
CN104646930B (en) * 2013-11-21 2017-07-04 安泰科技股份有限公司 The manufacture method of Ni W Cr alloy target materials
JP2016117922A (en) * 2014-12-18 2016-06-30 住友金属鉱山株式会社 Sputtering target and manufacturing method of sputtering target
CN114888529A (en) * 2022-05-10 2022-08-12 安徽恒均粉末冶金科技股份有限公司 Preparation process of nickel strap for new energy power battery tab

Similar Documents

Publication Publication Date Title
JP2010133001A (en) METHOD FOR PRODUCING Ni ALLOY TARGET MATERIAL
KR102614644B1 (en) Aluminum alloys and products with high uniformity and element content
JP6405261B2 (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
TWI463026B (en) And an Ag alloy thermal diffusion control film and a magnetic recording medium for a magnetic recording medium for heat-assist recording
JP2007297679A (en) Sputtering target of cobalt and manufacturing method therefor
JP2010111943A (en) Method for producing sputtering target material
CN105239042A (en) Co-Cr-Pt-B alloy sputtering target and method for producing same
JP5305137B2 (en) Ni-W sintered target material for forming Ni alloy intermediate layer of perpendicular magnetic recording medium
JP2017145456A (en) Low thermal expansion cast steel article and manufacturing method therefor
JP2018188726A (en) Sputtering target and production method thereof
JP6231035B2 (en) Manufacturing method of sputtering target for magnetic recording medium
JP2009191359A (en) Fe-Co-Zr BASED ALLOY TARGET MATERIAL
JP2008121056A (en) High-temperature high-damping manganese-based alloy and its manufacturing method
JP6339726B1 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JP2002069623A (en) Co-Cr-Pt-B BASED TARGET AND MAGNETIC RECORDING MEDIUM
JP5474902B2 (en) An alloy used for a soft magnetic thin film layer in a perpendicular magnetic recording medium, a sputtering target material, and a perpendicular magnetic recording medium having a soft magnetic thin film layer.
JP2019206746A (en) Soft magnetic material and production method of the same
JP2013084322A (en) Soft magnetic film for thermally assisted magnetic recording medium and manufacturing method therefor
JP2008023545A (en) Method for manufacturing hardly workable alloy sputtering target material
JP5554420B2 (en) Fe-Al alloy sputtering target
JP2020027677A (en) Soft magnetic film of heat-assisted magnetic recording medium and sputtering target for forming soft magnetic film of heat-assisted magnetic recording medium
JP2002069626A (en) Sputtering target and its production method
JP2010189751A (en) METHOD FOR MANUFACTURING SPUTTERING TARGET MATERIAL OF Co-Cr BASED ALLOY
JP5173283B2 (en) Nickel-based alloy and manufacturing method thereof
JP2011181140A (en) Fe-Co BASED ALLOY SOFT MAGNETIC FILM FOR MAGNETIC RECORDING MEDIUM

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20111114

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20130304

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20130315

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A02 Decision of refusal

Effective date: 20130906

Free format text: JAPANESE INTERMEDIATE CODE: A02