JPH06283171A - Hydrogen storage alloy powder - Google Patents

Hydrogen storage alloy powder

Info

Publication number
JPH06283171A
JPH06283171A JP5071418A JP7141893A JPH06283171A JP H06283171 A JPH06283171 A JP H06283171A JP 5071418 A JP5071418 A JP 5071418A JP 7141893 A JP7141893 A JP 7141893A JP H06283171 A JPH06283171 A JP H06283171A
Authority
JP
Japan
Prior art keywords
powder
accumulation
storage alloy
hydrogen storage
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5071418A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP5071418A priority Critical patent/JPH06283171A/en
Publication of JPH06283171A publication Critical patent/JPH06283171A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the inner pressure at the time of charging, and to extend charging/ discharging cycle life by specifying accumulation of powder corresponding to a biaxial average diameter R when the particle diameter is expressed with R. CONSTITUTION:The particle diameter of hydrogen storage alloy powder is expressed with biaxial average diameter R. The cumulative particle. size distribution of the hydrogen storage alloy powder is as follows. Accumulation of powder when R is no more than 10mum is 0%. Accumulation of powder when R is no more than 20mum is no more than 5%, and accumulation of powder when R is no more than 30mum is 5-12%. Accumulation of powder when R is no more than 5mum is 20-30%, and accumulation of powder when R is no more than 100mum is 60-80%, while accumulation of powder when R is no more than 300mum is 95-100%. Since powder of R of no more than 10mum is not contained, no material causing oxidation or granulation of each component is not contained, thus achieving intrinsic performance. The inner pressure increase at the time of charging battery is reduced, while the charging/discharging cycle is elongated. When R falls outside the abovementioned accumulation range, rapid discharging characteristic is degraded, while the life is shortened, and the inner pressure is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水素吸蔵合金粉末に関
し、更に詳しくは、ニッケル−水素二次電池に組込む水
素吸蔵合金電極用の水素吸蔵合金粉末であって、組立て
られた電池の充電時における内圧の低減,電池の急放電
特性の向上、および電池の長寿命化を実現することにと
って有効な水素吸蔵合金粉末に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy powder, and more particularly to a hydrogen storage alloy powder for a hydrogen storage alloy electrode incorporated in a nickel-hydrogen secondary battery, which is used for charging the assembled battery. The present invention relates to a hydrogen storage alloy powder that is effective for reducing internal pressure, improving rapid discharge characteristics of batteries, and extending battery life.

【0002】[0002]

【従来の技術】各種の電気・電子機器の小型軽量化,コ
ードレス化の進展に伴い、それらの電源として用いられ
る電池には、小型化・軽量化・高容量化への要求が高ま
っている。この要請に応える高容量電池として、最近、
ニッケル−水素二次電池が注目を集めている。
2. Description of the Related Art With the progress of miniaturization, weight reduction, and cordlessness of various electric / electronic devices, there is an increasing demand for miniaturization, weight reduction, and high capacity of batteries used as power sources for the electric and electronic devices. Recently, as a high capacity battery to meet this demand,
Nickel-hydrogen secondary batteries are drawing attention.

【0003】このニッケル−水素二次電池は、水素を負
極活物質として作動するものであり、可逆的に水素を吸
蔵・放出することができる水素吸蔵合金を導電基材に担
持させて成る負極と、通常、正極活物質として動作する
ニッケル水酸化物を導電基材に担持して成る正極とをア
ルカリ電解液中に配置して構成される。ここで、上記し
た負極は通常次のようにして製造される。
This nickel-hydrogen secondary battery operates by using hydrogen as a negative electrode active material, and has a negative electrode formed by carrying a hydrogen storage alloy capable of reversibly storing and releasing hydrogen on a conductive base material. Usually, it is configured by arranging a nickel hydroxide, which operates as a positive electrode active material, on a conductive base material and a positive electrode, which are placed in an alkaline electrolyte. Here, the above-mentioned negative electrode is usually manufactured as follows.

【0004】すなわち、まず所定組成の水素吸蔵合金を
溶製したのち、そのインゴットを粉砕して所定粒径の水
素吸蔵合金粉末を製造する。ついで、この水素吸蔵合金
粉末の所定量を、例えばイオン交換水にメチルセルロー
ス,カルボキシメチルセルロース,エチレンオキシドの
ような増粘剤を溶解して成る溶液に分散させてスラリー
を調製する。このスラリーに、例えばパンチングニッケ
ルシートのような導電基材を浸漬してその導電基材を引
き上げることにより導電基材の表面に上記スラリーを付
着させたのち、その付着スラリーの乾燥,圧延を行なっ
て所望厚みの水素吸蔵合金粉末層を導電基材に担持させ
る。
That is, first, a hydrogen storage alloy having a predetermined composition is melted, and then the ingot is crushed to produce a hydrogen storage alloy powder having a predetermined particle size. Then, a predetermined amount of the hydrogen storage alloy powder is dispersed in a solution prepared by dissolving a thickening agent such as methyl cellulose, carboxymethyl cellulose or ethylene oxide in ion exchange water to prepare a slurry. A conductive base material such as a punched nickel sheet is immersed in this slurry and the conductive base material is pulled up to adhere the slurry to the surface of the conductive base material, and then the attached slurry is dried and rolled. A hydrogen storage alloy powder layer having a desired thickness is supported on a conductive base material.

【0005】[0005]

【発明が解決しようとする課題】ところで、ニッケル−
水素二次電池においては、水素吸蔵合金の充電反応が起
こる電位はアルカリ電解液を構成する水の電解電位に近
接した値である。そのため、充電操作の終期において
は、水の電解によって発生した水素ガスのガス圧が加算
されることにより電池内圧の上昇が起こる。この内圧上
昇を抑制するためには、負極の容量を大きくすればある
程度緩和することは可能であるが、しかしそのような処
置は、電池形状の大型化を招き、電池の小型化,電池の
高エネルギー密度化という点で好ましいこととはいえな
い。
By the way, nickel-
In the hydrogen secondary battery, the potential at which the charge reaction of the hydrogen storage alloy takes place is a value close to the electrolysis potential of water that constitutes the alkaline electrolyte. Therefore, at the end of the charging operation, the gas pressure of hydrogen gas generated by the electrolysis of water is added to increase the internal pressure of the battery. In order to suppress this increase in internal pressure, it is possible to reduce the capacity to a certain extent by increasing the capacity of the negative electrode, but such a measure leads to an increase in the size of the battery, a reduction in the size of the battery, and a higher battery. It is not preferable in terms of energy density.

【0006】また、ニッケル−水素二次電池は、ニッケ
ル−カドミニウム二次電池のような他の二次電池の場合
と同じように、充放電の反復の過程でその電池容量が漸
減して遂には寿命が尽きる。例えば、ニッケル−カドミ
ニウム二次電池の場合、それに関するJIS規格によれ
ば、容量が定格の60%以下になった時点で電池寿命は
尽きたものと判定され、その間、500回以上の充放電
サイクルを反復できることを必要条件としている。
Further, the nickel-hydrogen secondary battery, like other secondary batteries such as nickel-cadmium secondary battery, eventually decreases its battery capacity in the course of repeated charging / discharging, and finally becomes. Life is exhausted. For example, in the case of a nickel-cadmium secondary battery, according to the JIS standard relating to it, it is determined that the battery life is exhausted when the capacity becomes 60% or less of the rating, and during that time, 500 or more charge / discharge cycles are performed. Is required to be able to be repeated.

【0007】従来から知られているニッケル−水素二次
電池の場合、電池の容量が定格の80%程度になるまで
の充放電サイクルは300〜350回程度であり、定格
の60%程度になるまでの充放電サイクルは350〜4
00回程度である。逆にいえば、充放電を上記した回数
反復すると、電池容量は、定格の80%程度,60%程
度に低下するということであり、300〜400回の充
放電サイクルで電池の使用寿命が尽きてしまうというこ
とである。
In the case of the conventionally known nickel-hydrogen secondary battery, the charge / discharge cycle until the battery capacity reaches about 80% of the rating is about 300 to 350 times, which is about 60% of the rating. Charge-discharge cycle up to 350-4
It is about 00 times. Conversely, if the charge and discharge are repeated the number of times described above, the battery capacity will drop to about 80% and 60% of the rating, and the service life of the battery will be exhausted after 300 to 400 charge and discharge cycles. It means that it will end up.

【0008】このようなことから、更に長い使用寿命を
備えたニッケル−水素二次電池の開発が求められてい
る。本発明は、上記した要望に応えることができ、充電
時における内圧は低減し、充放電サイクル寿命は長くな
り、しかも急放電特性も優れているニッケル−水素二次
電池を製造するに適した水素吸蔵合金電極用の水素吸蔵
合金粉末の提供を目的とする。
For these reasons, there is a demand for the development of nickel-hydrogen secondary batteries having a longer service life. INDUSTRIAL APPLICABILITY The present invention can meet the above-mentioned demands, the internal pressure at the time of charging is reduced, the charge / discharge cycle life is extended, and the hydrogen suitable for producing a nickel-hydrogen secondary battery having excellent rapid discharge characteristics is also provided. An object is to provide a hydrogen storage alloy powder for a storage alloy electrode.

【0009】[0009]

【課題を解決するための手段】本発明者は、ニッケル−
水素二次電池における上記した問題を解決するに際し、
負極である水素吸蔵合金電極、とりわけそれに用いる水
素吸蔵合金粉末の粒度の影響について調査したところ、
他の電池構成要素が同じである場合には電池内圧や充放
電サイクル回数は合金粉末の粒度分布によって左右され
るとの知見を得、その知見に基づいて本発明の水素吸蔵
合金粉末が好適であるとの事実を見出した。
The present inventor has found that nickel-
In solving the above problems in the hydrogen secondary battery,
When the influence of the particle size of the hydrogen storage alloy electrode as the negative electrode, especially the hydrogen storage alloy powder used for it was investigated,
When the other battery constituents are the same, it was found that the battery internal pressure and the number of charge / discharge cycles depend on the particle size distribution of the alloy powder, and based on this finding, the hydrogen storage alloy powder of the present invention is suitable. I found the fact that there is.

【0010】すなわち、本発明の水素吸蔵合金粉末は、
ニッケル−水素二次電池用の水素吸蔵合金電極に用いる
水素吸蔵合金粉末であって、その粒子径を2軸平均径R
で表したとき、Rが10μm以下である粉末の累積は0
%,Rが20μm以下である粉末の累積は5%以下,R
が30μm以下である粉末の累積は5〜12%,Rが5
0μm以下である粉末の累積は20〜30%,Rが10
0μm以下である粉末の累積は60〜80%,Rが30
0μm以下である粉末の累積は95〜100%である累
積粒度分布を有することを特徴とする。
That is, the hydrogen storage alloy powder of the present invention is
A hydrogen storage alloy powder used for a hydrogen storage alloy electrode for a nickel-hydrogen secondary battery, the particle size of which is a biaxial average diameter R
When expressed by, the accumulation of the powder having R of 10 μm or less is 0.
%, R is 20 μm or less, the cumulative amount of powder is 5% or less, R
Of powder having a particle size of 30 μm or less is 5 to 12%, and R is 5
The accumulation of powder having a size of 0 μm or less is 20 to 30%, and R is 10
The cumulative amount of powder having a size of 0 μm or less is 60 to 80%, and R is 30.
The accumulation of powders of 0 μm or less is characterized by having a cumulative particle size distribution of 95-100%.

【0011】本発明の水素吸蔵合金粉末における最大の
特徴は、Rが10μm以下の粉末を含まないということ
である。Rが10μm以下の粉末は、水素吸蔵合金を構
成する各成分の酸化物や、目標組成からのずれが大きい
組成の合金など、微粉化しやすい物質を多量に含んでい
る。そのため、Rが10μm以下の粉末は、水素吸蔵合
金としての本来の性能を発揮しないばかりではなく、ア
ルカリ電解液に溶解して水酸化物を形成する。そして、
これら水酸化物が他の水素吸蔵合金の活性表面を覆うこ
とにより、結果として水素吸蔵合金電極としての活性が
損なわれるものと考えられる。
The most characteristic feature of the hydrogen storage alloy powder of the present invention is that it does not contain powder having R of 10 μm or less. The powder having R of 10 μm or less contains a large amount of substances that are easily pulverized, such as oxides of the respective components forming the hydrogen storage alloy and alloys having a composition that largely deviates from the target composition. Therefore, the powder having R of 10 μm or less does not exhibit the original performance as a hydrogen storage alloy, but also dissolves in an alkaline electrolyte to form a hydroxide. And
It is considered that these hydroxides cover the active surface of the other hydrogen storage alloy, and as a result, the activity of the hydrogen storage alloy electrode is impaired.

【0012】したがって、Rが10μm以下の粉末を除
去した水素吸蔵合金粉末で製造された電極においては、
上記した不都合の要因が排除されているので、水素吸蔵
合金としての本来の性能が確保されることになり、その
結果、電池の内圧上昇は低減し、サイクル寿命は長くな
るものと考えられる。また、本発明の水素吸蔵合金にお
いて、累積粒度分布が上記した値から外れる場合、とく
に、Rが30μm以下の粉末の累積が上記した値を外れ
る場合には、理由はわからないが、電池内圧の上昇,サ
イクル寿命の短縮,急放電特性の劣化などが現れてく
る。
Therefore, in the electrode made of the hydrogen storage alloy powder from which the powder having R of 10 μm or less is removed,
Since the above-mentioned inconvenience factors are eliminated, the original performance as a hydrogen storage alloy is secured, and as a result, it is considered that the internal pressure rise of the battery is reduced and the cycle life is extended. Further, in the hydrogen storage alloy of the present invention, when the cumulative particle size distribution deviates from the above value, particularly when the accumulation of the powder having R of 30 μm or less deviates from the above value, the reason is not understood, but the increase in the battery internal pressure However, the cycle life is shortened and the rapid discharge characteristics are deteriorated.

【0013】本発明の水素吸蔵合金粉末は、目的とする
組成の合金を溶製し、そのインゴットをボールミル,エ
ッジランナ,ロッドミル,円板ミルのような通常の粉砕
機で機械的に粉砕し、得られた粉末を分級したのち、そ
れら各分級の粉末を上記した累積粒度分布となるように
混合して製造することができる。
The hydrogen storage alloy powder of the present invention is obtained by smelting an alloy having a desired composition and mechanically crushing the ingot with an ordinary crusher such as a ball mill, an edge runner, a rod mill or a disc mill. After classifying the obtained powders, the powders of the respective classifications can be mixed to produce the above-mentioned cumulative particle size distribution.

【0014】[0014]

【発明の実施例】アーク溶解法で、組成:MmNi3.3
Co1.0 Mn0.4 Al0.3 (ただし、Mmはミッシュメ
タルを表す)で示される水素吸蔵合金を溶製し、そのイ
ンゴットをボールミルで粉砕した。得られた粉末を分級
したのち、図1で示すような累積粒度分布を有する3種
類の合金粉末A,B,Cを製造した。図中、粉末Aは本
発明の粉末であり、粉末BはRが10μm以下の微粉を
含むものであり、粉末CはRが30μm以下の粉末を含
まないものである。
BEST MODE FOR CARRYING OUT THE INVENTION By the arc melting method, composition: MmNi 3.3.
A hydrogen storage alloy represented by Co 1.0 Mn 0.4 Al 0.3 (where Mm represents misch metal) was melted, and the ingot was crushed by a ball mill. After classifying the obtained powder, three kinds of alloy powders A, B and C having a cumulative particle size distribution as shown in FIG. 1 were manufactured. In the figure, powder A is the powder of the present invention, powder B contains fine powder having R of 10 μm or less, and powder C does not contain powder having R of 30 μm or less.

【0015】なお、2軸平均径Rは、マイクロトラック
(日機装(株)製)を用いて測定した値である。イオン
交換水100重量部に対し、上記した各合金粉末400
重量部,カルボキシメチルセルロース1重量部から成る
スラリーを調製し、これらスラリーに、厚み0.07mm,
開孔率38%(穴径1.5mm)のパンチングニッケルシー
トを浸漬したのち引き上げ、ついで大気中で乾燥し、2
ton/cm2 の圧力で圧延して厚み0.4mmの負極シートを製
造した。
The biaxial average diameter R is a value measured using Microtrac (manufactured by Nikkiso Co., Ltd.). For each 100 parts by weight of ion-exchanged water, the above-mentioned alloy powder 400
A slurry comprising 1 part by weight of carboxymethyl cellulose and 1 part by weight of carboxymethyl cellulose was prepared.
Immerse a punching nickel sheet with a porosity of 38% (hole diameter 1.5 mm), pull it up, and then dry it in the air, and
A negative electrode sheet having a thickness of 0.4 mm was manufactured by rolling at a pressure of ton / cm 2 .

【0016】一方、厚み1.6mm,多孔度96%のスポン
ジ状ニッケルシートに、Ni(OH)2 粉93重量%,
Ni粉3重量%,CoO粉4重量%から成る混合粉に1.
2%濃度のカルボキシメチルセルロース水溶液を添加し
て調製した活物質合剤を充填し、80℃で2時間乾燥し
たのち2ton/cm2 の圧力で圧延して正極シートを製造し
た。なお、活物質合剤の充填量は4.4gである。
On the other hand, a sponge-like nickel sheet having a thickness of 1.6 mm and a porosity of 96% was coated with 93% by weight of Ni (OH) 2 powder.
To a mixed powder consisting of 3% by weight of Ni powder and 4% by weight of CoO powder 1.
A positive electrode sheet was manufactured by filling an active material mixture prepared by adding a 2% aqueous carboxymethylcellulose solution, drying the mixture at 80 ° C. for 2 hours, and rolling it at a pressure of 2 ton / cm 2 . The filling amount of the active material mixture was 4.4 g.

【0017】これら正極シートと負極シートの間にナイ
ロンセパレータを配置して全体を渦巻き状に巻回して直
径13mmの極板群にし、これを、鋼にニッケルめっきが
施されている内径13.2mmの円筒容器に収容し、比重1.
38のKOH水溶液を注入したのちふたをして3種類の
密閉型円筒電池を製造した。これらの各電池につき、下
記の仕様で充電し、電池内圧を測定した。
A nylon separator is arranged between the positive electrode sheet and the negative electrode sheet, and the whole is spirally wound to form an electrode plate group having a diameter of 13 mm, which is made of steel and has an inner diameter of 13.2 mm. Stored in a cylindrical container with a specific gravity of 1.
After injecting 38 KOH aqueous solution, the lid was closed and three types of sealed cylindrical batteries were manufactured. Each of these batteries was charged under the following specifications and the internal pressure of the battery was measured.

【0018】 充電:1C, 4.5時間、 温度:20℃。 また、下記の仕様で充放電サイクル試験を行い、定格の
80%,60%になるまでのサイクル回数を計測した。 充電:1C, −△V制御、 温度:20℃。 放電:1C, 放電終止電圧1.0V、 温度:20℃。
Charging: 1 C, 4.5 hours, temperature: 20 ° C. In addition, a charge / discharge cycle test was conducted with the following specifications, and the number of cycles until the ratings reached 80% and 60% was measured. Charge: 1C, -V control, temperature: 20 ° C. Discharge: 1C, end voltage of discharge 1.0V, temperature: 20 ° C.

【0019】更に、20℃における急放電試験を行っ
た。すなわち、20℃において、0.2Cで7.5時間充電
し、ついで、20℃において、3Cで1.0Vになるまで
放電し、3C/0.2C放電容量比を測定した。以上の結
果を一括して表1に示した。
Further, a rapid discharge test at 20 ° C. was conducted. That is, it was charged at 0.2 ° C. for 7.5 hours at 20 ° C., and then discharged at 3 ° C. to 1.0 V at 20 ° C., and the 3C / 0.2C discharge capacity ratio was measured. The above results are collectively shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上の説明で明らかなように、本発明の
水素吸蔵合金粉末を用いた負極が組み込まれているニッ
ケル−水素二次電池は、充電時における電池内圧も低
く、サイクル寿命も長く、また急放電特性も優れてい
る。
As is apparent from the above description, the nickel-hydrogen secondary battery in which the negative electrode using the hydrogen storage alloy powder of the present invention is incorporated has a low battery internal pressure during charging and a long cycle life. Also, the rapid discharge characteristics are excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】水素吸蔵合金粉末の累積粒度分布を示すグラフ
である。
FIG. 1 is a graph showing a cumulative particle size distribution of hydrogen storage alloy powder.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル−水素二次電池用の水素吸蔵合
金電極に用いる水素吸蔵合金粉末であって、その粒子径
を2軸平均径Rで表したとき、Rが10μm以下である
粉末の累積は0%,Rが20μm以下である粉末の累積
は5%以下,Rが30μm以下である粉末の累積は5〜
12%,Rが50μm以下である粉末の累積は20〜3
0%,Rが100μm以下である粉末の累積は60〜8
0%,Rが300μm以下である粉末の累積は95〜1
00%である累積粒度分布を有することを特徴とする水
素吸蔵合金粉末。
1. A hydrogen storage alloy powder for use in a hydrogen storage alloy electrode for a nickel-hydrogen secondary battery, wherein R is 10 μm or less when the particle diameter is expressed by a biaxial average diameter R. Is 0%, the accumulation of the powder having R of 20 μm or less is 5% or less, and the accumulation of the powder having R of 30 μm or less is 5%.
12%, accumulation of powder having R of 50 μm or less is 20 to 3
0%, accumulation of powder having R of 100 μm or less is 60 to 8
0%, accumulation of powder with R less than 300 μm is 95-1
Hydrogen storage alloy powder having a cumulative particle size distribution of 00%.
JP5071418A 1993-03-30 1993-03-30 Hydrogen storage alloy powder Pending JPH06283171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5071418A JPH06283171A (en) 1993-03-30 1993-03-30 Hydrogen storage alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5071418A JPH06283171A (en) 1993-03-30 1993-03-30 Hydrogen storage alloy powder

Publications (1)

Publication Number Publication Date
JPH06283171A true JPH06283171A (en) 1994-10-07

Family

ID=13459948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5071418A Pending JPH06283171A (en) 1993-03-30 1993-03-30 Hydrogen storage alloy powder

Country Status (1)

Country Link
JP (1) JPH06283171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368747B1 (en) 1996-03-05 2002-04-09 Sanyo Electric Co., Ltd. Metal hydride storage cell having excellent charge and discharge cycle characteristic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368747B1 (en) 1996-03-05 2002-04-09 Sanyo Electric Co., Ltd. Metal hydride storage cell having excellent charge and discharge cycle characteristic

Similar Documents

Publication Publication Date Title
JP2771592B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP5743780B2 (en) Cylindrical nickel-hydrogen storage battery
JP2016149299A (en) Nickel hydrogen secondary battery
JP3079303B2 (en) Activation method of alkaline secondary battery
JP5507140B2 (en) Hydrogen storage alloy for nickel-hydrogen secondary battery and nickel-hydrogen secondary battery
CN105428607A (en) Nickel-hydrogen secondary battery and manufacturing method thereof
JP2004296394A (en) Nickel-hydrogen storage battery and battery pack
JPH06283171A (en) Hydrogen storage alloy powder
JPH0580106B2 (en)
JPH1021908A (en) Active material for battery, and battery
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
CN204102994U (en) Nickel-hydrogen secondary cell
JP2001102085A (en) Formation method of airtight type nickel-hydrogen storage battery
JP5334498B2 (en) Alkaline storage battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
JP2011102433A (en) Hydrogen storage alloy powder and method for producing the same, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the same
JPH05144432A (en) Electrode with hydrogen storage alloy
JP3317099B2 (en) Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode
JP3103622B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3343413B2 (en) Alkaline secondary battery
JPH1040950A (en) Alkaline secondary battery
JP2022182856A (en) Hydrogen storage alloy negative electrode and nickel hydrogen secondary battery including the same
JP2022134586A (en) Nickel metal hydride storage battery
JP2919544B2 (en) Hydrogen storage electrode
JP2003068291A (en) Formation method for gas tight nickel - hydrogen storage battery