JPH06279337A - Production of 2,2,3,3,3-pentafluoro-1-propanol - Google Patents

Production of 2,2,3,3,3-pentafluoro-1-propanol

Info

Publication number
JPH06279337A
JPH06279337A JP5092290A JP9229093A JPH06279337A JP H06279337 A JPH06279337 A JP H06279337A JP 5092290 A JP5092290 A JP 5092290A JP 9229093 A JP9229093 A JP 9229093A JP H06279337 A JPH06279337 A JP H06279337A
Authority
JP
Japan
Prior art keywords
reaction
propanol
hydrogen
pentafluoro
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5092290A
Other languages
Japanese (ja)
Inventor
Shinsuke Morikawa
真介 森川
Keiichi Onishi
啓一 大西
Shuichi Okamoto
秀一 岡本
Toshihiro Tanuma
敏弘 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AG Technology Co Ltd
Original Assignee
AG Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AG Technology Co Ltd filed Critical AG Technology Co Ltd
Priority to JP5092290A priority Critical patent/JPH06279337A/en
Publication of JPH06279337A publication Critical patent/JPH06279337A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain 2,2,3,3,3-pentafluoro-1-propanol in industrial advantage and in a high yield without using highly corrosive gasses and high pressure. CONSTITUTION:3,3-dichloro-1,1,1,2,2-pentafluoropropane is oxidized to obtain pentafluoropropionyl chloride which is reduced with hydrogen in the presence of a palladium catalyst to obtain the 2,2,3,3,3-pentafluoro-1-propanol.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は2,2,3,3,3−ペ
ンタフルオロ−1−プロパノール(以下、5FPと略
す)の製造法に関する。5FPはパーフルオロアルキル
基を導入するのに有効な化合物として医薬、農薬等の中
間体としての用途が期待される。
FIELD OF THE INVENTION The present invention relates to a method for producing 2,2,3,3,3-pentafluoro-1-propanol (hereinafter abbreviated as 5FP). 5FP is expected to be used as an intermediate for medicines, agricultural chemicals, etc. as a compound effective for introducing a perfluoroalkyl group.

【0002】[0002]

【従来の技術】5FPの合成法としては、テトラフルオ
ロエチレンにパラホルムアルデヒドをフッ化水素存在下
に付加させて合成する方法(V.Weinmayr,J.Org.Chem.,2
8,492(1963) )や、パーフルオロプロピオン酸をエーテ
ル中でリチウムアルミニウムヒドリドで還元する方法
(D.R.Husted;et.al.,J.Am.Chem.Soc.,75,1605(1953))
が知られている。
2. Description of the Related Art As a method of synthesizing 5FP, a method of synthesizing tetrafluoroethylene by adding paraformaldehyde in the presence of hydrogen fluoride (V. Weinmayr, J. Org. Chem., 2
8,492 (1963)) or a method of reducing perfluoropropionic acid with lithium aluminum hydride in ether
(DRHusted; et.al., J.Am.Chem.Soc., 75,1605 (1953))
It has been known.

【0003】[0003]

【発明が解決しようとする課題】前記の方法において、
前者はフッ化水素という腐食性の高いガスを使う高圧の
反応であり、後者はリチウムアルミニウムヒドリドとい
う工業的に利用困難な試薬を使う反応であるという欠点
がある。
SUMMARY OF THE INVENTION In the above method,
The former is a high-pressure reaction that uses a highly corrosive gas called hydrogen fluoride, and the latter is a reaction that uses a reagent that is industrially difficult to use, such as lithium aluminum hydride.

【0004】[0004]

【課題を解決するための手段】本発明者は5FPの効率
的製造法について鋭意検討を行った結果、3,3−ジク
ロロ−1,1,1,2,2−ペンタフルオロプロパン
(以下、R−225caと略す) を酸化反応させること
により、ペンタフルオロプロピオニルクロリドを得た
後、これをパラジウム(Pd)、または、Pdを主成分
とする8族元素、を担持した活性炭触媒存在下に水素と
反応させることにより、5FPを高収率で合成できるこ
とを見いだした。
Means for Solving the Problems As a result of extensive studies on an efficient method for producing 5FP, the present inventor has found that 3,3-dichloro-1,1,1,2,2-pentafluoropropane (hereinafter, R -225ca) to give pentafluoropropionyl chloride, followed by hydrogenation in the presence of an activated carbon catalyst carrying palladium (Pd) or a Group 8 element containing Pd as a main component. It was found that 5FP can be synthesized in high yield by reacting.

【0005】まず前段の酸化反応は、少量の水の存在下
に酸素酸化する方法が好ましい。五塩化リン等のハロゲ
ン化リンの存在下、三酸化硫黄や発煙硫酸で酸化する方
法も採用でき、ハロゲン化リンの存在量は1モルのR−
225ca1モルに対して0.01〜1モルの範囲から
選ばれる。また、反応温度は0〜400℃の範囲から選
ばれる。
First, the oxidation reaction in the first stage is preferably a method in which oxygen is oxidized in the presence of a small amount of water. A method of oxidizing with sulfur trioxide or fuming sulfuric acid in the presence of phosphorus halide such as phosphorus pentachloride can also be adopted, and the amount of phosphorus halide present is 1 mol of R-.
It is selected from the range of 0.01 to 1 mol with respect to 1 mol of 225ca. The reaction temperature is selected from the range of 0 to 400 ° C.

【0006】水の存在下での酸化反応では、ペンタフル
オロプロピオニルクロリドとともにペンタフルオロプロ
ピオン酸が副生してくる。本反応の反応率、選択率は水
の量が微妙に影響を与える。通常、反応は液相ないし加
圧の気相状態において行われる。液相反応でほとんど水
が存在しない場合には酸化反応の進行が著しく遅く、ま
たペンタフルオロプロピオニルクロリドの選択率が低く
なる。
In the oxidation reaction in the presence of water, pentafluoropropionic acid is produced as a by-product together with pentafluoropropionyl chloride. The reaction rate and selectivity of this reaction are slightly affected by the amount of water. Usually, the reaction is carried out in a liquid phase or a pressurized gas phase. When almost no water is present in the liquid phase reaction, the progress of the oxidation reaction is remarkably slow, and the selectivity of pentafluoropropionyl chloride becomes low.

【0007】本発明においては、1モルのR−225c
aに対して約0.5モル以上の水が存在する場合にはペ
ンタフルオロプロピオン酸の生成率がペンタフルオロプ
ロピオニルクロリドよりも多くなるため、通常は0.0
1〜0.5モルの範囲から選ばれる水の存在下に反応を
行うことが好ましい。かかる水の量は、温度、圧力、、
反応溶媒など数々の反応条件により多少変化することは
勿論である。例えば、ペンタフルオロプロピオン酸とペ
ンタフルオロプロピオニルクロリドの生成比率は、水の
量が一定の場合にはR−225caの転化率が小さくな
るにつれ、ポリフルオロプロピオン酸の生成率が増加す
ること等である。
In the present invention, 1 mol of R-225c is used.
When about 0.5 mol or more of water is present with respect to a, the production rate of pentafluoropropionic acid is higher than that of pentafluoropropionyl chloride, and therefore it is usually 0.0
It is preferable to carry out the reaction in the presence of water selected from the range of 1 to 0.5 mol. The amount of such water depends on temperature, pressure,
As a matter of course, it may be slightly changed depending on various reaction conditions such as a reaction solvent. For example, the production ratio of pentafluoropropionic acid and pentafluoropropionyl chloride is such that the production rate of polyfluoropropionic acid increases as the conversion rate of R-225ca decreases when the amount of water is constant. .

【0008】反応溶媒を用いる場合には通常、パーフル
オロヘキサン等のハロゲン化炭化水素系溶媒が好まし
い。反応温度は、当然反応圧力に左右されるが、通常は
150〜500℃の範囲で実施され、好ましくは180
〜400℃の範囲である。
When a reaction solvent is used, a halogenated hydrocarbon solvent such as perfluorohexane is usually preferable. The reaction temperature depends of course on the reaction pressure, but it is usually carried out in the range of 150 to 500 ° C., preferably 180
It is in the range of to 400 ° C.

【0009】本発明の酸化反応は、通常酸素による加圧
下に実施される。圧力を上げることにより、すなわち酸
素量を増やすことにより、R−225caの転化率は一
般に上昇する。かかる反応圧力は5〜100kg/cm
2 が採用され、20〜60kg/cm2 が好ましい。酸
素をはじめ反応中間体あるいは反応生成物に対して不活
性な物質、例えば窒素、ヘリウム、アルゴンあるいは炭
酸ガス等で希釈された酸素を用いてもよい。水の存在下
に酸素酸化する方法は従来のように光を照射したり、塩
素のような腐食性ガスを加える必要はなく、再現性のよ
い結果が得られるため好ましい。
The oxidation reaction of the present invention is usually carried out under pressure with oxygen. By increasing the pressure, that is, increasing the amount of oxygen, the conversion rate of R-225ca generally increases. The reaction pressure is 5 to 100 kg / cm
2 is adopted, and 20-60 kg / cm 2 is preferable. It is also possible to use a substance that is inert to oxygen, a reaction intermediate or a reaction product, such as oxygen diluted with nitrogen, helium, argon or carbon dioxide. The method of oxygen oxidation in the presence of water is preferable because it does not require irradiation with light or addition of a corrosive gas such as chlorine as in the conventional method, and reproducible results can be obtained.

【0010】R−225caの転化率は、水の量がある
値以上になった後は、水の量に左右されず主に反応温度
や酸素量などにより変化する。また前述のように水の量
を増やすとペンタフルオロプロピオン酸の選択率が上が
ることにつながる。したがって生成するペンタフルオロ
プロピオン酸とペンタフルオロプロピオニルクロリドの
うち、ペンタフルオロプロピオニルクロリドの収率を上
げるためには最小限度の水量に抑えながらR−225c
aの転化率を確保し、酸化反応を行うことが有利であ
る。副生したペンタフルオロプロピオン酸は、チオニル
クロリドやクロロホスフィンとの反応によって容易にペ
ンタフルオロプロピオニルクロリドに誘導できる。
After the amount of water exceeds a certain value, the conversion rate of R-225ca does not depend on the amount of water and mainly changes depending on the reaction temperature and the amount of oxygen. Further, as described above, increasing the amount of water leads to an increase in the selectivity of pentafluoropropionic acid. Therefore, in order to increase the yield of pentafluoropropionyl chloride among the pentafluoropropionic acid and pentafluoropropionyl chloride produced, R-225c is used while suppressing the amount of water to the minimum.
It is advantageous to ensure the conversion of a and carry out the oxidation reaction. The by-produced pentafluoropropionic acid can be easily converted to pentafluoropropionyl chloride by reaction with thionyl chloride or chlorophosphine.

【0011】後段の反応であるペンタフルオロプロピオ
ニルクロリドの還元は、酸化反応の粗生成物を蒸留によ
り精製したものを、Pd、または、Pdを主成分とする
8族元素、を担持した活性炭触媒存在下に水素と反応さ
せて行う。
The reduction of pentafluoropropionyl chloride, which is a reaction in the latter stage, is carried out in the presence of an activated carbon catalyst carrying Pd or a Group 8 element containing Pd as a main component, which is obtained by purifying a crude product of the oxidation reaction by distillation. It is carried out by reacting with hydrogen below.

【0012】本発明に用いられる触媒の調製法は特に限
定はなく、通常の方法、例えば塩化パラジウムを単独、
もしくは、他の8族元素の金属塩化物とともに担体に担
持させた後乾燥し、さらにこれを水素で還元する方法な
どが採用される。Pd以外の8族元素としては、Fe、
Co、Ni、Ru、Rh、Ir、Ptがあり、Pdに添
加する場合の添加量としてはPd100重量部に対して
0.01〜50重量部が好ましい。Pdに他の8族元素
を添加した複合触媒は、Pd単独のものよりも触媒の耐
熱性が高いという利点がある。
The method for preparing the catalyst used in the present invention is not particularly limited, and a conventional method such as palladium chloride alone,
Alternatively, a method may be employed in which it is supported on a carrier together with another metal chloride of Group 8 element, dried, and further reduced with hydrogen. As the Group 8 elements other than Pd, Fe,
There are Co, Ni, Ru, Rh, Ir and Pt, and when added to Pd, the addition amount is preferably 0.01 to 50 parts by weight with respect to 100 parts by weight of Pd. The composite catalyst obtained by adding another group 8 element to Pd has an advantage that the heat resistance of the catalyst is higher than that of Pd alone.

【0013】PdまたはPdを主成分とする8族元素の
担持量は、活性炭100重量部に対して0.5重量部以
上であれば工業触媒として使用でき、5重量部以上では
触媒コストが高くなるので、0.5〜5重量部、特には
1〜3重量部が好ましい。
If the amount of Pd or the Group 8 element containing Pd as a main component is 0.5 parts by weight or more based on 100 parts by weight of activated carbon, it can be used as an industrial catalyst, and if it is 5 parts by weight or more, the catalyst cost is high. Therefore, 0.5 to 5 parts by weight, particularly 1 to 3 parts by weight is preferable.

【0014】担体に用いる活性炭は木材、木炭、果実ガ
ラ、ヤシガラ、泥炭、亜炭、石炭などの原料から調製し
たものをいずれも使用し得るが、鉱物質原料よりも植物
質原料が好ましく、特にヤシガラ活性炭が最適である。
ヤシガラ活性炭は、他の活性炭に比べて表面積が大き
く、シリカ等の不純物が少なく、さらに耐酸性に優れる
ため、活性が高く、耐久性に優れると考えられる。担体
の形状は、長さ約2〜5mm程度の成形炭、約4〜50
メッシュ程度の破砕炭、粒状炭等各種の形状を採用し得
るが4〜20メッシュ前後の破砕炭、成形炭が好まし
い。
The activated carbon used as the carrier may be any of those prepared from raw materials such as wood, charcoal, fruit husks, coconut husks, peat, lignite and coal, but vegetable raw materials are preferable to mineral raw materials, and coconut husks are particularly preferable. Activated carbon is the best choice.
It is considered that coconut husk activated carbon has a larger surface area than other activated carbons, less impurities such as silica, and excellent acid resistance, and thus has high activity and excellent durability. The shape of the carrier is about 2 to 5 mm long charcoal, about 4 to 50 mm.
Various shapes such as crushed coal of about mesh and granular coal can be adopted, but crushed coal of about 4 to 20 mesh and formed coal are preferable.

【0015】本反応における、ペンタフルオロプロピオ
ニルクロリドと水素との反応モル比は特に重要であり、
ペンタフルオロプロピオニルクロリドに対する水素の反
応モル数を反応理論量の2倍以上、好ましくは3〜8倍
とすることにより、高収率で5FPが得られる。
The reaction molar ratio of pentafluoropropionyl chloride and hydrogen in this reaction is particularly important,
By setting the reaction mole number of hydrogen to pentafluoropropionyl chloride to 2 times or more, preferably 3 to 8 times, the theoretical amount of reaction, 5FP can be obtained in high yield.

【0016】反応温度は常圧において130〜250
℃、好ましくは150〜200℃である。これ未満の温
度では5FPの収率が低く、これを超える温度では触媒
への熱負荷が大きくなり、性能低下をまねいたり、熱分
解等の副反応が起こりやすくなるので好ましくない。反
応圧力は特に限定されずに実施可能であり、通常常圧ま
たは自圧で充分進行する。触媒に対する接触時間は通常
4〜60秒、好ましくは8〜40秒の範囲から選定すれ
ばよい。過剰の温度上昇を制御するために、反応を窒素
等の不活性ガスで稀釈して実施してもよい。本発明にお
ける触媒は、耐久性が高く、長時間活性化を必要としな
いが、活性化を実施する場合は100〜300℃、好ま
しくは200〜300℃で水素還元するとよい。
The reaction temperature is 130 to 250 at atmospheric pressure.
C., preferably 150 to 200.degree. If the temperature is lower than this, the yield of 5FP is low, and if the temperature is higher than this, the heat load on the catalyst becomes large, which may lead to deterioration of the performance or cause side reactions such as thermal decomposition. The reaction pressure is not particularly limited, and it can be carried out, and normally the reaction pressure is normal pressure or self-pressure. The contact time with the catalyst may be selected from the range of usually 4 to 60 seconds, preferably 8 to 40 seconds. The reaction may be carried out by diluting it with an inert gas such as nitrogen in order to control an excessive temperature rise. The catalyst of the present invention has high durability and does not require long-term activation, but when activation is carried out, hydrogen reduction may be performed at 100 to 300 ° C, preferably 200 to 300 ° C.

【0017】[0017]

【実施例】【Example】

実施例1 200mlのハステロイC製のオートクレーブに14g
(0.068モル)のR−225caと0.12g
(0.067モル)の水を仕込み、260℃まで昇温し
た。そこに酸素を加えて40kg/cm2 まで加圧し、
30分間保持した。その後内容物を液体窒素で冷却され
たトラップに捕集し、さらにそのトラップをドライアイ
スエタノール浴に浸し未反応の酸素と生成塩酸を除去し
た後、反応粗液を19F−NMRおよびガスクロマトグラ
フにより分析した。その結果R−225caの転化率7
5%、ペンタフルオロプロピオン酸の選択率10%、ペ
ンタフルオロプロピオニルクロリドの選択率85%であ
った。
Example 1 14 g in a 200 ml Hastelloy C autoclave
(0.068 mol) of R-225ca and 0.12 g
(0.067 mol) of water was charged and the temperature was raised to 260 ° C. Oxygen is added there and the pressure is increased to 40 kg / cm 2 ,
Hold for 30 minutes. After that, the contents were collected in a trap cooled with liquid nitrogen, and the trap was immersed in a dry ice ethanol bath to remove unreacted oxygen and generated hydrochloric acid, and then the reaction crude liquid was analyzed by 19 F-NMR and gas chromatography. analyzed. As a result, the conversion rate of R-225ca is 7
The selectivity was 5%, pentafluoropropionic acid selectivity was 10%, and pentafluoropropionyl chloride selectivity was 85%.

【0018】同様の方法で数回反応した反応粗液を蒸留
によって精製して得たペンタフルオロプロピオニルクロ
リドを、0.5重量部のPdを4〜8メッシュ破砕ヤシ
ガラ活性炭100重量部に担持した触媒100ccを内
径1/2インチ、長さ1mのインコネル600製の反応
管に充填し、これを外部より加熱して170℃に保った
ものの中に0.2mol/hの流速で導入し、同時に水
素を1.6mol/hの流速で導入して反応を行った。
反応器の出口ガスをガスクロマトグラフで分析したとこ
ろ、ペンタフルオロプロピオニルクロリドの反応率10
0%、5FPの選択率99.5%であった。
A catalyst in which 0.5 parts by weight of Pd was supported on 100 parts by weight of crushed coconut husk activated carbon of 0.5 parts by weight of pentafluoropropionyl chloride obtained by purifying by distillation a reaction crude liquid which was reacted several times in the same manner. 100 cc was filled in a reaction tube made of Inconel 600 having an inner diameter of ½ inch and a length of 1 m, which was heated from the outside and kept at 170 ° C. and introduced at a flow rate of 0.2 mol / h, and at the same time hydrogen was introduced. Was introduced at a flow rate of 1.6 mol / h to carry out the reaction.
When the outlet gas of the reactor was analyzed by gas chromatography, the reaction rate of pentafluoropropionyl chloride was 10
The selectivity of 0% and 5FP was 99.5%.

【0019】実施例2 水の添加量を0.25g(0.014モル)とし、新た
にパーフルオロヘキサンを15g添加する以外は実施例
1の酸素酸化反応と同様に反応を行い、同様に反応粗液
を同様に分析した。その結果R−225caの転化率8
5%、ペンタフルオロプロピオン酸の選択率20%、ペ
ンタフルオロプロピオニルクロリドの選択率75%であ
った。反応粗液を蒸留によって精製して得たペンタフル
オロプロピオニルクロリドを、実施例1の水素還元反応
と同様に反応を行い、反応器の出口ガスを同様に分析し
たところ、ペンタフルオロプロピオニルクロリドの反応
率100%、5FPの選択率99.5%であった。
Example 2 The reaction was carried out in the same manner as in the oxygen oxidation reaction of Example 1 except that the amount of water added was 0.25 g (0.014 mol) and 15 g of perfluorohexane was newly added. The crude liquid was similarly analyzed. As a result, the conversion rate of R-225ca was 8
The selectivity was 5%, pentafluoropropionic acid selectivity was 20%, and pentafluoropropionyl chloride selectivity was 75%. Pentafluoropropionyl chloride obtained by purifying the reaction crude liquid by distillation was reacted in the same manner as in the hydrogen reduction reaction of Example 1, and the outlet gas of the reactor was analyzed in the same manner. The reaction rate of pentafluoropropionyl chloride was shown. The selectivity of 100% and 5FP was 99.5%.

【0020】実施例3 実施例1の酸素酸化反応と全く同様にして得たペンタフ
ルオロプロピオニルクロリドを用いて、2重量部のPd
を4〜8メッシュ破砕ヤシガラ活性炭100重量部に担
持した触媒を用いる以外は、実施例1の水素還元と全く
同様の条件のもとで30日間継続して反応を行った後
に、反応器の出口ガスを同様に分析したところ、ペンタ
フルオロプロピオニルクロリドの反応率100%、5F
Pの選択率99.3%であった。
Example 3 Using pentafluoropropionyl chloride obtained in exactly the same manner as in the oxygen oxidation reaction of Example 1, 2 parts by weight of Pd was used.
After carrying out the reaction continuously for 30 days under exactly the same conditions as the hydrogen reduction of Example 1, except that the catalyst supported on 100 parts by weight of crushed 4-8 mesh coconut husk activated carbon was used, the outlet of the reactor When the gas was similarly analyzed, the reaction rate of pentafluoropropionyl chloride was 100%, 5F
The P selectivity was 99.3%.

【0021】実施例4〜6 表1に示した複合触媒(担体はいずれもヤシガラ破砕
炭、担持量はいずれも担体100重量部に対して2重量
部)100ccを内径1/2インチ、長さ1mのインコ
ネル600製の反応管に充填し、これを外部より加熱し
て200℃に保ったものの中に、実施例1の酸素酸化反
応と全く同様にして得たペンタフルオロプロピオニルク
ロリドを0.2mol/hの流速で導入し、同時に水素
を1.6mol/hの流速で導入して30日間継続して
反応を行った後に、反応器の出口ガスを同様に分析し
た。結果を表1に示す。
Examples 4 to 6 The composite catalysts shown in Table 1 (all carriers are crushed coconut husks, the supported amount is 2 parts by weight with respect to 100 parts by weight of the carrier), 100 cc of inner diameter is 1/2 inch, length is 0.2 mol of pentafluoropropionyl chloride obtained in exactly the same manner as in the oxygen oxidation reaction of Example 1 was charged in a 1 m reaction tube made of Inconel 600, which was externally heated and kept at 200 ° C. / H was introduced at the same time, hydrogen was introduced at a flow rate of 1.6 mol / h at the same time, the reaction was continued for 30 days, and then the outlet gas of the reactor was similarly analyzed. The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】R−225caを原料として腐食性の高
いガスや高圧を用いることなく工業的に有利に5FPを
高収率で製造し得るという効果を有する。
The present invention has the effect that 5FP can be industrially produced in high yield from R-225ca as a raw material without using highly corrosive gas or high pressure.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 秀一 神奈川県横浜市神奈川区羽沢町松原1160番 地 エイ・ジー・テクノロジー株式会社内 (72)発明者 田沼 敏弘 神奈川県横浜市神奈川区羽沢町松原1160番 地 エイ・ジー・テクノロジー株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuichi Okamoto 1160 Matsubara, Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Prefecture A-G Technology Co., Ltd. (72) Toshihiro Tanuma Matsubara Hazawa-machi, Kanagawa-ku, Yokohama Address 1160, within AG Technology Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】3,3−ジクロロ−1,1,1,2,2−
ペンタフルオロプロパンを酸化反応させることにより、
ペンタフルオロプロピオニルクロリドを得た後、これを
パラジウム、または、パラジウムを主成分とする8族元
素、を担持した活性炭触媒存在下に水素と反応させるこ
とによる2,2,3,3,3−ペンタフルオロ−1−プ
ロパノールの製造法。
1. 3,3-Dichloro-1,1,1,2,2-
By oxidizing pentafluoropropane,
After obtaining pentafluoropropionyl chloride, 2,2,3,3,3-penta by reacting this with hydrogen in the presence of an activated carbon catalyst supporting palladium or a Group 8 element containing palladium as a main component. Method for producing fluoro-1-propanol.
【請求項2】酸化反応が、少量の水の存在下に酸素酸化
することからなる請求項1の2,2,3,3,3−ペン
タフルオロ−1−プロパノールの製造法。
2. The method for producing 2,2,3,3,3-pentafluoro-1-propanol according to claim 1, wherein the oxidation reaction comprises oxygen oxidation in the presence of a small amount of water.
【請求項3】水素との反応において水素の反応モル数を
反応理論量の2倍以上とする請求項1の2,2,3,
3,3−ペンタフルオロ−1−プロパノールの製造法。
3. In the reaction with hydrogen, the number of reaction moles of hydrogen is set to twice or more the theoretical amount of reaction, 2, 2, 3,
A method for producing 3,3-pentafluoro-1-propanol.
JP5092290A 1993-03-26 1993-03-26 Production of 2,2,3,3,3-pentafluoro-1-propanol Pending JPH06279337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5092290A JPH06279337A (en) 1993-03-26 1993-03-26 Production of 2,2,3,3,3-pentafluoro-1-propanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5092290A JPH06279337A (en) 1993-03-26 1993-03-26 Production of 2,2,3,3,3-pentafluoro-1-propanol

Publications (1)

Publication Number Publication Date
JPH06279337A true JPH06279337A (en) 1994-10-04

Family

ID=14050287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5092290A Pending JPH06279337A (en) 1993-03-26 1993-03-26 Production of 2,2,3,3,3-pentafluoro-1-propanol

Country Status (1)

Country Link
JP (1) JPH06279337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056132A (en) * 2014-09-10 2016-04-21 旭硝子株式会社 Method for producing 1,2-difluoroethylene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056132A (en) * 2014-09-10 2016-04-21 旭硝子株式会社 Method for producing 1,2-difluoroethylene

Similar Documents

Publication Publication Date Title
US11884607B2 (en) Processes for producing trifluoroiodomethane and trifluoroacetyl iodide
US8044250B2 (en) Manufacture of 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2-tetrafluoropropane via catalytic hydrogenation
EP0449977A1 (en) Improved hydrogenolysis/dehydrohalogenation process.
US10752565B2 (en) Processes for producing trifluoroiodomethane
JPH05221894A (en) Preparation of 1,1,1,2,3,3,3-heptafluoro- propane (r227)
EP0328127A1 (en) Gas-phase fluorination process
CA2054828C (en) Preparation of fluoroethylenes and chlorofluoroethylenes
US6291729B1 (en) Halofluorocarbon hydrogenolysis
US11370734B2 (en) One step process for manufacturing trifluoroiodomethane from trifluoroacetyl halide, hydrogen, and iodine
US6063969A (en) Preparation of 142
JP2523753B2 (en) Method for producing 2,3-dichloropyridine
JPH06279337A (en) Production of 2,2,3,3,3-pentafluoro-1-propanol
WO1993010067A1 (en) Process for producing 1,1,1,4,4,4-hexafluorobutane
US5241113A (en) Process for producing trifluoroacetyl chloride
US5315048A (en) Preparation of 1,1,1,2,3-pentafluoropropane by reduction of 1,2,3-trichloropentafluropropane
JPH0687771A (en) Production of 1,1,1,2,3-pentafluoropropane
JP2537638B2 (en) Bromperfluoroethyl hypofluorite and its production method
JP5028731B2 (en) Method for producing halogenated alcohol
JPH0125729B2 (en)
EP3950653A1 (en) Method for producing halogenated cycloalkane compound
JP2021014410A (en) Production method of vinyl compound
US5856594A (en) Process for the preparation of 1,1,2,2,3-pentafluoropropane
JPS62252736A (en) Production of trifluoroethylene
EP0632001B1 (en) Method for producing a hydrofluorocarbon
JP2528866B2 (en) Acetic acid and methyl acetate production method