JP2528866B2 - Acetic acid and methyl acetate production method - Google Patents
Acetic acid and methyl acetate production methodInfo
- Publication number
- JP2528866B2 JP2528866B2 JP62068069A JP6806987A JP2528866B2 JP 2528866 B2 JP2528866 B2 JP 2528866B2 JP 62068069 A JP62068069 A JP 62068069A JP 6806987 A JP6806987 A JP 6806987A JP 2528866 B2 JP2528866 B2 JP 2528866B2
- Authority
- JP
- Japan
- Prior art keywords
- acetic acid
- reaction
- catalyst
- hydrogen
- methyl acetate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、メタノールと一酸化炭素とを原料として
酢酸および酢酸メチルを製造する方法に関する。TECHNICAL FIELD The present invention relates to a method for producing acetic acid and methyl acetate from methanol and carbon monoxide as raw materials.
アルコールのカルボニル化、即ち、アルコールと一酸
化炭素とを反応させてモノカルボン酸を合成する方法と
して、酢酸コバルトなどのコバルト化合物を触媒とし
て、また沃化カリウム、あるいは沃化メチルなどの沃素
化合物を助触媒として使用し、483〜523K、50〜70MPa、
液相状態においてアルコールと一酸化炭素とを反応させ
る高圧法が実用されてきた。Carbonylation of alcohol, that is, as a method of synthesizing a monocarboxylic acid by reacting alcohol with carbon monoxide, a cobalt compound such as cobalt acetate is used as a catalyst, and an iodine compound such as potassium iodide or methyl iodide is used. Used as a co-catalyst, 483-523K, 50-70MPa,
A high-pressure method in which an alcohol and carbon monoxide are reacted in a liquid state has been put into practical use.
近年、ロジウム錯体触媒を使用し、沃化メチル、ある
いは沃化水素を助触媒として使用する特公昭47−3334の
液相法が開発され、温度448〜518K、圧力1.0〜3.0MPaに
おいて、反応を行う低圧法が実用化された。In recent years, a liquid phase method of Japanese Patent Publication No. 47-3334 has been developed, which uses a rhodium complex catalyst and uses methyl iodide or hydrogen iodide as a cocatalyst, and the reaction is performed at a temperature of 448 to 518 K and a pressure of 1.0 to 3.0 MPa. The low-pressure method was put into practical use.
この方法は前記の高圧法に比較して著しく温和な条件
下に反応が進行し酢酸の収率も一酸化炭素基準において
90%、メタノール基準において99%であり、非常に高
い。アルコールと一酸化炭素から気相法により酢酸など
を製造する方法は種々検討されているが、現在までのと
ころ実用化された技術はまだない。In this method, the reaction proceeds under remarkably mild conditions as compared with the above high-pressure method, and the yield of acetic acid is also based on carbon monoxide.
90% and 99% based on methanol, which is very high. Various methods for producing acetic acid and the like from alcohol and carbon monoxide by a vapor phase method have been studied, but no technique has been put to practical use so far.
現在、実用化されている低圧法は、触媒として極めて
高価で、資源的にも入手困難なロジウムを使用しなけれ
ばならないという大きい不利があると同時に、沃化物な
どハロゲン化合物が助触媒として液相状態下に使用され
るため、装置の腐蝕は苛酷である。この腐食に耐えるた
めに、装置はハステロイなどの高価な材料をもって構成
されなければならない。The low-pressure method currently in practical use has the great disadvantage that rhodium, which is extremely expensive as a catalyst and is difficult to obtain in terms of resources, must be used, and at the same time, halogen compounds such as iodides are used as a promoter in a liquid phase. Corrosion of the equipment is severe because it is used under conditions. In order to withstand this corrosion, the device must be constructed of expensive materials such as Hastelloy.
更に、酢酸が触媒および助触媒の運搬体として循環さ
せられるためユーティリティ消費が大きいなど、工業的
製造方法として種々の問題点がある。Further, since acetic acid is circulated as a carrier for the catalyst and the co-catalyst, the utility consumption is large and there are various problems as an industrial manufacturing method.
一方、気相合成法においては一般に触媒活性が低く、
触媒寿命は短く、更に低選択率であるため酢酸および酢
酸メチルの収率が低く、また酢酸の選択率が酢酸メチル
の選択率よりも低いなど、種々の問題点がある。On the other hand, in the gas phase synthesis method, the catalytic activity is generally low,
Since the catalyst has a short life and a low selectivity, the yields of acetic acid and methyl acetate are low, and the selectivity of acetic acid is lower than that of methyl acetate.
この発明の目的は、酢酸収率が高い、メタノールの気
相カルボニル化による酢酸および酢酸メチルの製造法を
提供することにある。An object of the present invention is to provide a method for producing acetic acid and methyl acetate by vapor phase carbonylation of methanol, which has a high acetic acid yield.
この発明のいま一つの目的は触媒活性が向上し、かつ
製品収率が高い、メタノールの気相カルボニル化による
酢酸および酢酸メチルの製造法を提供することにある。Another object of the present invention is to provide a method for producing acetic acid and methyl acetate by vapor phase carbonylation of methanol, which has improved catalytic activity and high product yield.
この発明のその他の目的は以下の記載から明らかであ
ろう。Other objects of the present invention will be apparent from the following description.
気相合成反応による酢酸製造においてはメタンが副生
することが酢酸などの収率低下の一要因であり、原料の
一酸化炭素などと水素が反応すれば、メタンが生成す
る。したがって反応系中に水素が存在すれば酢酸収率の
低下を招くものであるとされていたが、発明者らは実験
の反復過程において偶然に、炭素質担体上に担持した金
属ニッケル触媒を用いて反応系中の水素の少量存在が意
外にも酢酸収率を増大させることを発見してこの発明に
到達した。In the production of acetic acid by a gas-phase synthesis reaction, the production of methane is a factor in the decrease in the yield of acetic acid and the like, and when the raw material carbon monoxide and the like react with hydrogen, methane is produced. Therefore, it was said that the presence of hydrogen in the reaction system would lead to a decrease in the acetic acid yield, but the inventors of the present invention accidentally used a metallic nickel catalyst supported on a carbonaceous carrier in the repeated process of the experiment. As a result, it was discovered that the presence of a small amount of hydrogen in the reaction system unexpectedly increases the acetic acid yield, and the present invention was reached.
この発明による酢酸および酢酸メチルの製造法は、メ
タノールと一酸化炭素とを、0.1〜30MPaの圧力および37
3〜673Kの温度において、炭素質担体上に担持された金
属ニッケルからなる触媒と揮発性ハロゲン化合物からな
る助触媒との存在下に気相反応せしめて酢酸および酢酸
メチルを製造するに当り、一酸化炭素の1〜40モル%の
水素の存在下に反応を行うことを特徴とするものであ
る。The method for producing acetic acid and methyl acetate according to the present invention comprises methanol and carbon monoxide at a pressure of 0.1 to 30 MPa and a pressure of 37 MPa.
At the temperature of 3 to 673 K, when acetic acid and methyl acetate are produced by gas phase reaction in the presence of a catalyst composed of metallic nickel supported on a carbonaceous support and a cocatalyst composed of a volatile halogen compound, It is characterized in that the reaction is carried out in the presence of hydrogen at 1 to 40 mol% of carbon oxide.
この発明の方法は、気相状態において行われる。原料
と生成物のいずれもが気相状態を維持する条件下に反応
が行われることが望ましいが、アルコール、モノカルボ
ン酸などの高沸点物質が液状で多少存在していても、反
応は支障なく進行する。The method of the present invention is carried out in the vapor phase. It is desirable that the reaction is carried out under the condition that both the raw material and the product remain in the gas phase, but the reaction does not hinder even if a high-boiling substance such as alcohol or monocarboxylic acid is present in a liquid state. proceed.
反応温度は、373〜673K、好ましくは423〜573Kの範囲
内とされる。The reaction temperature is in the range of 373 to 673K, preferably 423 to 573K.
反応圧力は、0.1〜30MPa、好ましくは0.1〜10MPaの範
囲内とされる。The reaction pressure is in the range of 0.1 to 30 MPa, preferably 0.1 to 10 MPa.
原料中のメタノール対一酸化炭素の含有比率は、基本
的には化学量論量であればよいが、いずれかを過剰に存
在させてもよい。The content ratio of methanol to carbon monoxide in the raw material may basically be a stoichiometric amount, but either may be present in excess.
この発明の方法において、メタノール対一酸化炭素の
モル比は、好ましくは100対1乃至1対100、特に好まし
くは10対1乃至1対10の範囲内で選定される。In the process according to the invention, the molar ratio of methanol to carbon monoxide is preferably chosen in the range of 100: 1 to 1: 100, particularly preferably 10: 1 to 1:10.
原料の一酸化炭素は純粋品でなくてもよく、多少の不
純物の含有は許容される。The raw material carbon monoxide does not have to be pure, and the inclusion of some impurities is acceptable.
この発明の方法において用いられる触媒は炭素質担体
に担持された金属ニッケルからなる。The catalyst used in the method of this invention comprises metallic nickel supported on a carbonaceous support.
炭素質担体としては活性炭、カーボンブラック、コー
クスなどが使用されるか、または炭素を沈着させたシリ
カ、アルミナ、シリカ・アルミナなどが使用されるが、
シリカ、アルミナ、シリカ・アルミナなどの無機質担体
に活性成分のニッケルを担持させた後、炭素を沈着させ
てもよい。As the carbonaceous carrier, activated carbon, carbon black, coke, etc. are used, or carbon-deposited silica, alumina, silica-alumina, etc. are used.
After the active ingredient nickel is supported on an inorganic carrier such as silica, alumina, or silica-alumina, carbon may be deposited.
金属ニッケルの担持率は特に限定されないが、好まし
くは0.1〜40wt%の範囲内、特に好ましくは、0.5〜20wt
%の範囲内で選択される。The loading rate of metallic nickel is not particularly limited, but is preferably within the range of 0.1 to 40 wt%, particularly preferably 0.5 to 20 wt%.
It is selected within the range of%.
この発明に用いられる触媒ではニッケルと炭素とが、
直接密に接触していることが重要である。In the catalyst used in this invention, nickel and carbon are
Direct, intimate contact is important.
この発明の方法においては、反応促進用に反応系中に
少量の水素が存在せしめられる。In the method of the present invention, a small amount of hydrogen is allowed to exist in the reaction system to accelerate the reaction.
工業的に製造される一酸化炭素中に、必ず含有される
水素の分離が省略あるいは簡略化されるため、この構成
要件の工業的意義は大きい。Since the separation of hydrogen contained in industrially produced carbon monoxide is omitted or simplified, the industrial significance of this constituent factor is great.
この水素量は、一酸化炭素100モルに対して、1〜40
モル、好ましくは5〜30モルの範囲内において選定され
る。The amount of hydrogen is 1 to 40 with respect to 100 mol of carbon monoxide.
It is selected in the range of 5 mol, preferably 5 to 30 mol.
この発明の方法においては、反応系中に上記の触媒と
水素と共に助触媒として、沃素、臭素など揮発性ハロゲ
ン化合物が存在せしめられる。In the method of the present invention, a volatile halogen compound such as iodine or bromine is allowed to be present as a cocatalyst in the reaction system together with the above catalyst and hydrogen.
このハロゲン化合物としては、沃化メチルなどの沃化
アルキル、臭化メチルなどの臭化アルキルが適当であ
る。As the halogen compound, alkyl iodide such as methyl iodide and alkyl bromide such as methyl bromide are suitable.
これらのハロゲン化合物は、反応中に触媒成分の金属
ニッケル表面に結合されている。These halogen compounds are bound to the metallic nickel surface of the catalyst component during the reaction.
この結合を適切にするには、原料流中に揮発性ハロゲ
ン化合物を含有させることのみによってもよいが、触媒
賦活処理として触媒のハロゲン化処理を実施することが
望ましい。In order to make this bonding appropriate, it is sufficient to include a volatile halogen compound in the raw material stream, but it is desirable to carry out a halogenation treatment of the catalyst as a catalyst activation treatment.
この発明の方法において、水素を反応系中に存在せし
めることによりハロゲン化合物の助触媒作用が増進さ
れ、反応速度と選択率が共に向上する。In the method of the present invention, the presence of hydrogen in the reaction system enhances the cocatalyst action of the halogen compound, and improves both the reaction rate and the selectivity.
これら助触媒量は、特に制限されないが、メタノール
100モルに対して好ましくは0.1〜50モルの範囲内、特に
好ましくは、1〜30モルの範囲内で選定される。The amount of these cocatalysts is not particularly limited, but methanol
It is preferably selected within the range of 0.1 to 50 mol, particularly preferably within the range of 1 to 30 mol, relative to 100 mol.
反応速度を一層増大させると共にメタン生成とニッケ
ル揮散などの抑制のため、触媒中に促進剤を存在させて
もよい。A promoter may be present in the catalyst in order to further increase the reaction rate and suppress methane generation and nickel volatilization.
好適な促進剤として、アルカリ金属、鉄、銅、銀、モ
リブデン、クロム、タングステン、錫、バナジウム、亜
鉛、アンチモン、ジルコニウム、鉛、ビスマス、マグネ
シウムなどの金属、あるいはこれら金属の化合物が有効
である。As suitable promoters, alkali metals, iron, copper, silver, molybdenum, chromium, tungsten, tin, vanadium, zinc, antimony, zirconium, lead, bismuth, magnesium and the like, or compounds of these metals are effective.
実施例1 市販の粒状活性炭、武田薬品工業製「白鷺C」(商品
名)が粉砕され、分級されて得られた20〜40メッシュの
微粒状活性炭100gが金属ニッケル2.6gを含有する硝酸ニ
ッケル水溶液と混合され、充分混和された後、水分が蒸
発除去され乾固され、更に、393Kにて24時間保持され
て、完全に乾燥させられた。Example 1 Commercially available granular activated carbon, "Shirasagi C" (trade name) manufactured by Takeda Yakuhin Kogyo Co., Ltd. was crushed and classified, and 100 g of fine granular activated carbon of 20 to 40 mesh obtained was nickel nitrate aqueous solution containing 2.6 g of metallic nickel. After being mixed with and thoroughly mixed with water, water was removed by evaporation, and the mixture was dried and kept at 393 K for 24 hours to be completely dried.
この乾燥の後、窒素雰囲気中で673Kにおいて2時間熱
処理され、次いで水素気流中にて673Kにおいて2時間還
元処理され、その後、更に、沃化メチル1vol.%が含有
される一酸化炭素雰囲気中において523Kにおいて2時間
予備処理された。After this drying, it was heat-treated in a nitrogen atmosphere at 673K for 2 hours, and then reduced in a hydrogen stream at 673K for 2 hours, and then in a carbon monoxide atmosphere containing 1 vol.% Of methyl iodide. It was pretreated for 2 hours at 523K.
この予備処理により、触媒上の沃素量に対する担持ニ
ッケル量の比率が1.2である触媒が得られた。By this pretreatment, a catalyst having a ratio of the amount of supported nickel to the amount of iodine on the catalyst of 1.2 was obtained.
この触媒の0.5gが、内径4mmの耐圧反応容器中に固定
触媒床として充填された。0.5 g of this catalyst was packed as a fixed catalyst bed in a pressure resistant reactor having an inner diameter of 4 mm.
この耐圧反応器が、次の条件をもって実験に使用され
た。This pressure resistant reactor was used for the experiment with the following conditions.
供給原料組成比率 一酸化炭素:メタノール:沃化メチル=500:95:5 接触時間 W/F 5g−catalyst・h/mol(ただし、水素は
無視。) 反応温度 523K 反応圧力 1.1MPa 反応系の状態が安定した後、反応器から流出するガス
状混合物が、ガス冷却器により276K以下に冷却され、得
られた凝縮液とガス状混合物が、それぞれガスクロマト
グラフにより分析された。Feedstock composition ratio Carbon monoxide: Methanol: Methyl iodide = 500: 95: 5 Contact time W / F 5g-catalyst · h / mol (However, hydrogen is ignored.) Reaction temperature 523K Reaction pressure 1.1MPa Reaction system state After stabilization, the gaseous mixture flowing out of the reactor was cooled to 276 K or less by a gas cooler, and the obtained condensate and gaseous mixture were analyzed by gas chromatography.
この実験中、反応系中に存在させる水素量は一酸化炭
素500モルに対し、0(比較例)、(以下、実施例)30,
60,100,140の各モル量に段階的に変化させた。In this experiment, the amount of hydrogen present in the reaction system was 0 (comparative example), (hereinafter, example) 30, relative to 500 mol of carbon monoxide.
The molar amount of each of 60, 100 and 140 was changed stepwise.
この水素量の変化に対応する反応生成組成は次の表の
通りであった。The reaction product composition corresponding to this change in the amount of hydrogen was as shown in the following table.
反応条件 実施例2 市販の粒状活性炭、呉羽化学工業製BAC MQ−50801
(商品名)が分級されて、平均粒径80ミクロンとなった
微粒状活性炭が用いられ、実施例1と同様に触媒が調製
され、同一条件下に使用された。Reaction conditions Example 2 Commercially available granular activated carbon, BAC MQ-50801 manufactured by Kureha Chemical Industry
(Trade name) was classified, and finely divided activated carbon having an average particle size of 80 microns was used. A catalyst was prepared in the same manner as in Example 1 and used under the same conditions.
ただし、供給原料組成比率は次の通りに変更された。 However, the feedstock composition ratio was changed as follows.
一酸化炭素:メタノール:沃化メチル=530:90:10 この実験の結果は次の表の通りであった。Carbon monoxide: methanol: methyl iodide = 530: 90: 10 The results of this experiment are shown in the table below.
反応条件 〔比較例〕 〔実施例〕 H2/CO(モル比) 0/530 150/530 メタノール反応率(%) 88.0 100.0 生成物組成(メタノール基準モル%) 酢酸 31.0 91.0 酢酸メチル 50.0 3.5 ジメチルエーテル 5.1 0 メタン 1.5 5.0 二酸化炭素 2.4 0 実施例3 実施例1と同様の触媒が使用され、同様の条件下に、
原料供給組成が次の通りの二種類とされた。The reaction conditions COMPARATIVE EXAMPLE EXAMPLES H 2 / CO (molar ratio) 0/530 150/530 methanol reaction ratio (%) 88.0 100.0 product composition (methanol-based mole%) acetic acid 31.0 91.0 methyl acetate 50.0 3.5 dimethyl ether 5.1 0 methane 1.5 5.0 carbon dioxide 2.40 Example 3 The same catalyst as in Example 1 was used under the same conditions,
The raw material supply composition was classified into the following two types.
(1)一酸化炭素:メタノール:沃化メチル=500:95:5 (2)一酸化炭素:メタノール:沃化メチル=500:97.
5:2.5 実施例3の結果は第1図に示される。(1) Carbon monoxide: methanol: methyl iodide = 500: 95: 5 (2) Carbon monoxide: methanol: methyl iodide = 500: 97.
5: 2.5 The results of Example 3 are shown in FIG.
第1図に示される通り、沃化メチル濃度が低い場合、
水素導入開始時に触媒活性が一時的に高くなるが、その
後、かなり急速に低下する。As shown in FIG. 1, when the methyl iodide concentration is low,
The catalytic activity increases temporarily at the start of hydrogen introduction, but then decreases fairly rapidly.
予備処理により調整された沃素/ニッケル比が維持さ
れるためには原料流の高い沃化メチル分圧が必要である
ことが、第1図から認められる。It can be seen from FIG. 1 that a high methyl iodide partial pressure of the feed stream is required to maintain the iodine / nickel ratio adjusted by the pretreatment.
第一に、上記実施例および比較例から明らかなよう
に、炭素質担体に担持した金属ニッケル触媒と、助触媒
とを用い、反応系に水素を存在させることにより、酢酸
および酢酸メチルの全収率が増大すると共に触媒活性が
向上し、酢酸の収率が向上する。First, as is clear from the above-mentioned Examples and Comparative Examples, by using a metallic nickel catalyst supported on a carbonaceous carrier and a co-catalyst, and by allowing hydrogen to be present in the reaction system, total acetic acid and methyl acetate were collected. As the rate increases, the catalytic activity improves and the yield of acetic acid improves.
第二に、反応系中に存在する凝縮性生成物、すなわち
酢酸、酢酸メチル、水分などとガスの未反応物と生成
物、すなわち、一酸化炭素、水素、メタンなどが容易に
分離されて一酸化炭素、水素などのガス状物質が高圧状
態のまま反応域へ容易に返送される。したがって容易に
一酸化炭素利用率を高くし得る。Second, the condensable products present in the reaction system, that is, acetic acid, methyl acetate, water, etc., and unreacted products of gas, such as carbon monoxide, hydrogen, and methane, are easily separated and Gaseous substances such as carbon oxide and hydrogen can be easily returned to the reaction zone under high pressure. Therefore, the utilization rate of carbon monoxide can be easily increased.
第三に、反応系に水素を存在させるため水素含有低純
度原料ガスを利用し得る。反応系中の水素分圧を高くし
得るため、反応域への返送流から、水素の直接的分離除
去が可能であり、最適水素分圧に制御することも容易で
ある。Thirdly, a hydrogen-containing low-purity source gas can be used to allow hydrogen to be present in the reaction system. Since the hydrogen partial pressure in the reaction system can be increased, it is possible to directly separate and remove hydrogen from the return flow to the reaction zone, and it is also easy to control to the optimum hydrogen partial pressure.
第四に、メタノール転化率は容易に、実質的に100%
にされるためメタノール、酢酸メチルなどの反応系内循
環流が減少し、製品の精製工程を簡素化し得る。Fourth, the methanol conversion rate is easily 100%
Therefore, the circulating flow of methanol, methyl acetate, etc. in the reaction system is reduced, and the purification process of the product can be simplified.
第五に、この発明の方法の反応条件では、反応系内水
分存在量が小さく粗製品中の水分が非常に少ないので、
精製工程における脱水装置が小容量化され、ユーティリ
ティも減少する。Fifth, under the reaction conditions of the method of the present invention, since the amount of water present in the reaction system is small and the water content in the crude product is very small,
The capacity of the dehydrator in the refining process is reduced and the utility is also reduced.
第六に、この発明の方法は気相反応によるため、副生
物が生成しても、その分離は容易であり、分離後の処理
も容易である。また、装置の腐食の問題も生じない。Sixth, since the method of the present invention is based on a gas phase reaction, even if a by-product is produced, its separation is easy and the treatment after separation is also easy. Further, the problem of corrosion of the device does not occur.
第1図は実施例3の結果を示すグラフである。 FIG. 1 is a graph showing the results of Example 3.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B01J 23/755 C07B 61/00 300 C07B 61/00 300 B01J 23/74 321X (56)参考文献 特開 昭59−20236(JP,A) 特開 昭59−139330(JP,A) 特開 昭60−36438(JP,A) 特開 昭56−104839(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location // B01J 23/755 C07B 61/00 300 C07B 61/00 300 B01J 23/74 321X (56) Reference References JP-A-59-20236 (JP, A) JP-A-59-139330 (JP, A) JP-A-60-36438 (JP, A) JP-A-56-104839 (JP, A)
Claims (1)
の圧力および373〜673Kの温度において、炭素質担体上
に担持された金属ニッケルからなる触媒と揮発性ハロゲ
ン化合物からなる助触媒との存在下に気相反応せしめて
酢酸および酢酸メチルを製造するに当り、一酸化炭素の
1〜40モル%の水素の存在下に反応を行うことを特徴と
する酢酸および酢酸メチル製造法。1. Methanol and carbon monoxide are mixed at 0.1 to 30 MPa.
To produce acetic acid and methyl acetate by gas phase reaction in the presence of a catalyst composed of metallic nickel supported on a carbonaceous support and a cocatalyst composed of a volatile halogen compound at a pressure of 373 to 673 K and a temperature of 373 to 673 K. The method for producing acetic acid and methyl acetate is characterized in that the reaction is carried out in the presence of hydrogen at 1 to 40 mol% of carbon monoxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62068069A JP2528866B2 (en) | 1987-03-24 | 1987-03-24 | Acetic acid and methyl acetate production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62068069A JP2528866B2 (en) | 1987-03-24 | 1987-03-24 | Acetic acid and methyl acetate production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63233936A JPS63233936A (en) | 1988-09-29 |
JP2528866B2 true JP2528866B2 (en) | 1996-08-28 |
Family
ID=13363116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62068069A Expired - Lifetime JP2528866B2 (en) | 1987-03-24 | 1987-03-24 | Acetic acid and methyl acetate production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2528866B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960007736B1 (en) * | 1993-07-27 | 1996-06-11 | 한국과학기술연구원 | Method of removing carbonyl compound in inlet gas |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56104839A (en) * | 1980-01-23 | 1981-08-20 | Kuraray Co Ltd | Preparation of acetic acid and/or methyl acetate |
US4625049A (en) * | 1982-06-30 | 1986-11-25 | Chevron Research Company | Alcohol carbonylation process using a bimetallic nickel catalyst |
JPS59139330A (en) * | 1983-01-31 | 1984-08-10 | Toyo Eng Corp | Synthesis of methyl acetate or acetic acid |
DE3323564A1 (en) * | 1983-06-30 | 1985-01-10 | Freimuth Gmbh, 5948 Schmallenberg | Re-usable plastic pallet with side-wall frame |
-
1987
- 1987-03-24 JP JP62068069A patent/JP2528866B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63233936A (en) | 1988-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1296925B1 (en) | Process for the production of vinyl acetate | |
JP4084044B2 (en) | Integrated process for producing vinyl acetate | |
AU2000249242A1 (en) | Integrated process for the production of vinyl acetate | |
US3917676A (en) | Process for producing allylacetate | |
EP0069514A2 (en) | Alcohol carbonylation catalysts | |
JP2003507445A (en) | Gas phase carbonylation method using promoted iridium catalyst | |
JP2528866B2 (en) | Acetic acid and methyl acetate production method | |
JP2660880B2 (en) | Acetic acid production method | |
JP2003507178A (en) | Group 5 metal promoted iridium carbonylation catalyst | |
KR960003797B1 (en) | Process for preparing aceticacid by methanol carbonylation | |
JPH04297445A (en) | Production of carbonic acid diester | |
GB2086889A (en) | Process for preparing acetaldehyde | |
JPH0489458A (en) | Production of carbonic acid diester | |
JP3058512B2 (en) | Acetic acid production method | |
JP2756736B2 (en) | Method for purifying hydrogen-containing CO gas | |
JPH03141243A (en) | Production of carbonic acid diester | |
KR100689647B1 (en) | Integrated process for the production of vinyl acetate | |
JPH04139152A (en) | Production of carbonate diester | |
RU2247709C2 (en) | Integrated method for vinyl acetate production | |
JPH1072403A (en) | Production of vinyl acetate | |
JPH04297443A (en) | Production of carbonic acid diester | |
JPH0321012B2 (en) | ||
JPS5932456B2 (en) | Method for producing ethylidene diacetate and/or acetaldehyde | |
JPH04297444A (en) | Production of carbonic acid diester | |
JPH10130206A (en) | Production of carbonate diester |