JPH0627761B2 - Electric power cable fault detection method - Google Patents
Electric power cable fault detection methodInfo
- Publication number
- JPH0627761B2 JPH0627761B2 JP11012686A JP11012686A JPH0627761B2 JP H0627761 B2 JPH0627761 B2 JP H0627761B2 JP 11012686 A JP11012686 A JP 11012686A JP 11012686 A JP11012686 A JP 11012686A JP H0627761 B2 JPH0627761 B2 JP H0627761B2
- Authority
- JP
- Japan
- Prior art keywords
- ground
- phase
- fault
- joint
- accident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Locating Faults (AREA)
Description
【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、クロスボンド接続を有する長距離電力送電
システムの地絡事故区間を検出するための電力ケーブル
の事故区間検出方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power cable fault section detection method for detecting a ground fault section in a long-distance power transmission system having a cross-bond connection.
〈従来の技術と問題点〉 並列する3相電力ケーブルにおいて、絶縁ジョイントで
区切られた金属シースを隣接する電力ケーブルの金属シ
ースとクロスボンド線によって接続することが行なわれ
ており、このようなクロスボンド線を有する長距離電力
送電システムにおいては、各ジョイント間において生じ
るケーブルの地絡事故を検出することが行なわれてい
る。<Prior Art and Problems> In parallel three-phase power cables, a metal sheath separated by an insulation joint is connected to a metal sheath of an adjacent power cable by a cross bond wire. In a long-distance power transmission system having a bond wire, a ground fault of a cable occurring between joints is detected.
従来の事故区間検出方法としては例えばクロスボンド線
に電流トランスを設置し、この電流トランスの2次側に
発光素子を相隣合う区間の電流トランス間で逆極性にな
るように接続し、光ファイバーによって導かれた発光素
子の出力を光電変換し、隣合う区間の発光素子からもた
らされた2つの電気信号の論理積をAND回路で得るよ
うにしたものが提案されている。As a conventional method of detecting an accident section, for example, a current transformer is installed on a cross bond wire, and a light emitting element is connected to the secondary side of this current transformer so as to have opposite polarities between the current transformers in the sections adjacent to each other. It is proposed that the output of the led light emitting element is photoelectrically converted, and a logical product of two electric signals provided from the light emitting elements in adjacent sections is obtained by an AND circuit.
上記のような検出方法は、絶縁ジョイントに施されるク
ロスボンド線の電流を比較する方法であるため、絶縁ジ
ョイント−絶縁ジョイント間の区間しか特定することが
できず、絶縁ジョイント−接地ジョイント(普通ジョイ
ント)−絶縁ジョイント間の事故は、この間のどこに生
じているか判別特定するのが不可能であるという欠点が
ある。The detection method as described above is a method of comparing the currents of the cross bond wires applied to the insulation joint, and therefore only the section between the insulation joint and the insulation joint can be specified, and the insulation joint-ground joint (normally There is a drawback in that it is impossible to identify and identify where the accident between the joint) and the insulation joint has occurred during this time.
このような欠点をなくすため、絶縁ジョイントのクロス
ボンド線以外に接地ジョイントの接地線にも電流センサ
ーを取付け、接地ジョイントの部分でも地絡電流の測定
を行なうことにより、絶縁ジョイント−接地ジョイント
−絶縁ジョイント間においても事故区間を判別できるよ
うにした検出方法を本出願人が既に提案した。In order to eliminate such drawbacks, a current sensor is attached to the grounding wire of the grounding joint in addition to the cross bond wire of the insulating joint, and the ground fault current is measured at the grounding joint as well. The present applicant has already proposed a detection method that enables discrimination of an accident section even between joints.
このような検出方法は、クロスボンド線及び接地線に電
流センサを取付ければ良いから既設線路、新設線路の何
れにも応用することができると共に、線路本体に加工を
必要としないから安価で容易に実施できるという利点が
ある反面、全てのクロスボンド線及び接地線に電流セン
サーを取付けなければならず、このため非常に沢山の電
流センサーと判別機が必要になり、実施に多額の費用が
かかるという問題がある。Such a detection method can be applied to both an existing line and a new line because it is sufficient to attach a current sensor to the cross bond line and the ground line. In addition, since the line body does not need to be processed, it is cheap and easy. Although it has the advantage that it can be implemented on all cross-bond wires and ground wires, it requires a large number of current sensors and discriminators, which is very expensive to implement. There is a problem.
この発明は上記のような問題点を解決するためになされ
たものであり、電流センサー及び判別機の使用を少なく
して絶縁ジョイント−接地ジョイント−絶縁ジョイント
間のどの区間の事故でも判別特定することができ、しか
も既設、新設を問わず線路本体に加工を必要とすること
なく事故区間を判別できる電力ケーブルの事故区間検出
方法を提供することを目的とする。The present invention has been made to solve the above problems, and it is possible to identify and identify an accident in any section between an insulation joint, a ground joint, and an insulation joint by reducing the use of a current sensor and a discriminator. It is an object of the present invention to provide a method for detecting a faulty section of a power cable, which can identify the faulty section without needing to process the main body of the line regardless of existing or new installation.
〈問題点を解決するための手段〉 上記のような問題点を解決するため、この発明は、各相
が各々接地ジョイント−絶縁ジョイント−絶縁ジョイン
トの組合せの繰返しからなり、絶縁ジョイントに於いて
各相の金属シース間が、クロスボンド線で接続されて成
るいわゆるクロスボンド接地を含む、電力伝送路線であ
って、接地ジョイントの接地線に、接地線に流れる事故
電流の大小および/あるいは事故電流の位相の差を検出
するセンサーを取付け、事故点を中に含む、相隣合う2
組の接地点の各々3本の接地線を流れる電流の事故電流
の大きさおよび/あるいは事故電流の位相の差を比較
し、殆んど同じで小さい接地点はすべてカットし、2本
の接地線と他の1本の位相が略 180゜異なり、また1本
の方が他の2本より略2倍電流の大きい接地線を見つけ
出し、この接地線につながれている相隣り合う2組の接
地ジョイントの相を各々あきらかにし、これに別途施さ
れる事故相の検出を組合わせることによって事故区間を
判別するようにしたものである。<Means for Solving the Problems> In order to solve the above-mentioned problems, the present invention comprises repeating combinations of a ground joint, an insulation joint, and an insulation joint for each phase. A power transmission line including a so-called cross-bonded ground, in which metal sheaths of phases are connected by a cross-bond line, and the ground wire of the ground joint has a large and / or small fault current flowing in the ground line. Attaching a sensor that detects the phase difference, including the accident point inside, adjacent to each other 2
Comparing the magnitude of the fault current and / or the phase difference of the fault current of the current flowing through each of the three ground lines of the pair of ground points, cut all ground points that are almost the same and cut two ground lines. Find the ground wire whose phase is different from that of the other wire by about 180 °, and that the current of one wire is about twice the current of the other two wires, and connect two pairs of ground wires connected to this ground wire that are adjacent to each other. The phases of the joints are made clear, and the accident phase is discriminated by combining with the detection of the accident phases separately performed.
〈作用〉 並列する電力ケーブルの金属シースを各絶縁ジョイント
の絶縁部分の両端でクロスボンド線により接続したいわ
ゆるクロスボンドを施した電力ケーブル線路で、事故点
を中に含む同相の相隣り合う2組の接地ジョイント(普
通ジョイント)よりなる接地点の各々3本の接地線を流
れる電流の事故電流の大きさおよび/あるいは事故電流
の位相の差をセンサーで検出し、3本の接地線の内、他
の2本の接地線に対して大きさで略2倍、位相で略 180
゜異なる一本の接地線を見つけ出すことにより、両接地
点の事故電流流出接地ジョイントを見つけ、これに別途
電流センサー等を用いて検出した事故相を組合わせるこ
とにより、事故区間が接地ジョイント−絶縁ジョイント
間及び絶縁ジョイント−絶縁ジョイント間であっても明
確に特定できる。<Operation> A so-called cross-bonded power cable line in which metal sheaths of parallel power cables are connected by cross-bond wires at both ends of the insulation part of each insulation joint. Of the ground fault consisting of the ground joints (normal joints) of each of the three ground lines, the magnitude of the fault current of the current flowing through each of the three ground lines and / or the phase difference of the fault currents is detected by the sensor, Approximately twice the size of the other two ground lines, approximately 180 in phase
゜ By finding one different grounding wire, find the fault current outflow grounding joint at both grounding points, and combine it with the fault phase detected by using a separate current sensor, etc. It can be clearly specified even between joints and between insulated joints.
〈実施例〉 以下、この発明の実施例を添附図面に基づいて説明す
る。<Example> An example of the present invention will be described below with reference to the accompanying drawings.
先ず、クロスボンド接続を含む電力伝送路を説明する。First, a power transmission line including a cross bond connection will be described.
第1図のように、長距離電力線路において、並列する3
相の電力ケーブルA、B、Cは絶縁ジョイントIJで区
切られた金属シースが隣接する電力ケーブルの金属シー
スと3本のクロスボンド線11、12、13によって接続さ
れ、各金属シースを流れるシース電流は、これらのクロ
スボンド線により1つづつ隣りの相へ移送される。また
接地ジョイントNJには各々接地線14が接続されてお
り、これに於いて金属シースは全相接地されると共に、
各相の金属シース電流が接地を通じて共通化される。As shown in Fig. 1, in a long-distance power line, three parallel lines are used.
The power cables A, B and C of the phases are connected to the metal sheath of the adjacent power cable by the metal sheath separated by the insulating joint IJ by three cross bond wires 11, 12 and 13, and the sheath current flowing through each metal sheath. Are transferred one by one to the adjacent phase by these cross bond lines. A grounding wire 14 is connected to each grounding joint NJ, in which the metal sheath is grounded in all phases, and
The metal sheath current of each phase is shared through the ground.
前記接地ジョイントNJの各接地線14に地絡事故電流を
検出するセンサー15が、第3図に示すように取付けら
れ、このセンサー15により事故電流の大小および/また
は位相の差が検出されて事故電流の流出する接地ジョイ
ントNJの相があきらかにされると共に、別途検出した
事故相との組合わせにより、事故区間を検出判別できる
ようになっている。A sensor 15 for detecting a ground fault accident current is attached to each ground wire 14 of the ground joint NJ as shown in FIG. 3, and the sensor 15 detects the magnitude and / or the phase difference of the fault current to detect an accident. The phase of the ground joint NJ from which the current flows is clarified, and the accident section can be detected and discriminated by the combination with the separately detected accident phase.
上記接地線14に取付ける事故電流検出用のセンサー15
は、接地線14に流れる事故電流の大小および/あるいは
事故電流の位相の差を検出するものであればよく、例え
ば温度センサーを用いたり、各接地線14の各々にCT、
光センサー、磁界センサー(ホール素子、SMD素子
等)をかませるか、あるいは接地線14を2本、3本いっ
しょにして、例えば零相電流を見つけ出すような方法で
検出してもよい。Sensor 15 for detecting fault current attached to the above ground wire 14
May be any as long as it detects the magnitude of the fault current flowing through the ground line 14 and / or the phase difference of the fault current. For example, a temperature sensor may be used, or CT for each ground line 14,
An optical sensor, a magnetic field sensor (Hall element, SMD element, etc.) may be attached, or two or three ground lines 14 may be combined together for detection by, for example, finding a zero-phase current.
ただし、第4図に示すように、接地線14はできるだけ短
く、かつ平等に3相A、B、Cの接地ジョイントNJを
連結するように接続するのが好ましい。However, as shown in FIG. 4, it is preferable that the ground wire 14 is as short as possible and connected so that the ground joints NJ of the three phases A, B and C are evenly connected.
また、接地線14を2本、3本いっしょにするには、第5
図に示すように(イ)〜(ハ)の相を組合せる方法、場
合によっては更に(ニ)を組合せる方法があり、(イ)
〜(ハ)で位相の異なる接地ジョイントNJを見つけ、
(ニ)で各NJ点の事故の両隣りであるかないかの検知
が行なえて有効である。Also, to connect two or three ground wires 14 together,
As shown in the figure, there is a method of combining the phases (a) to (c), and in some cases, a method of further combining (d).
~ Find the ground joint NJ with different phase in (c),
In (d), it is effective to detect whether or not the accident at each NJ point is on both sides.
上記接地線14に取付けたセンサー15′(例えばCT)に
よるNJ点の検出に組合せる事故相の判別には、一般に
線路の両端に導体電流測定用のCT又は光磁界センサー
等を取付けて各相毎に導体電流を測定するのが通例であ
るから、事故相の導体電流が異常に増えることによって
容易に判別できる。In order to discriminate the accident phase to be combined with the detection of the NJ point by the sensor 15 '(for example, CT) attached to the ground wire 14, generally, a CT or an optical magnetic field sensor for conductor current measurement is attached to both ends of the line and each phase is attached. Since it is customary to measure the conductor current every time, it can be easily discriminated by an abnormal increase in the conductor current in the fault phase.
あるいは3相交流の事故相を除く健全2相は送電端で常
時電圧に比して異常に高い事故電圧を生じ、逆に事故相
は異常に低い電圧を示すから容易に事故相の判別は可能
である。Alternatively, the sound 2 phase excluding the 3 phase AC fault phase produces an abnormally high fault voltage at the power transmission end compared to the normal voltage, and the fault phase shows an abnormally low voltage, so that the fault phase can be easily identified. Is.
この発明の事故区間検出方法は上記のようなものであ
り、並列する電力ケーブルA〜Cのある区間に地絡事故
が発生すると、相隣り合う2つの接地点に接地線14に流
れる地絡電流をセンサー15′によってチエックし、3本
の接地線を流れる電流の事故電流の大きさおよび/ある
いは事故電流の位相の差を比較し、殆んど同じで小さい
接地点はすべてカットし、第1図に一点鎖線で示すよう
に、異相の接地ジョイントNJの2本の接地線と他の1
本で位相が略 180゜異なり、かつ1本の方が他の2本よ
り略2倍電流の大きい接地線を見つけ出す。The fault section detection method of the present invention is as described above, and when a ground fault occurs in a section where the power cables A to C are arranged in parallel, a ground fault current flowing through the ground line 14 at two adjacent ground points. Sensor 15 'to compare the magnitude of the fault current of the currents flowing through the three ground lines and / or the phase difference of the fault currents, and cut all ground points that are almost the same, As shown by the one-dot chain line in the figure, the two ground wires of the ground joint NJ of different phase and the other one
Find a grounding wire that has a phase difference of about 180 ° in one book, and one that has about twice the current as the other two.
これは事故点を中に含む相隣り合う2つの接地点に生
じ、全事故電流(導体から金属シースに流出する電流)
を2Ioとすると、例えばIJ−IJ間で事故が生じた
第1図の場合、長距離線路では事故点から見た両方向の
金属シース帰路インピーダンスはほぼ等しいから、Io
づつか両方向に分流し、一点鎖線の如く金属シースを通
過した後に接地ジョイント(NJ−1−C)と(NJ+
1−B)の接地線に略2/3 Ioの事故電流が流出し、第
2図のNJ−IJ間で事故が生じた場合は、同じく事故
電流は一点鎖線の如く流れそののちに(NJ−1−A)
と(NJ+2−C)の接地線に略2/3 Ioの事故電流が
流出し、その他の各接地点の接地線は略1/3 Ioの事故
電流が流入し、従って大きさで2倍、位相で略 180゜異
なる事故電流が生れる接地線が各々1本づつ生じること
になる。This occurs at two adjacent ground points including the fault point inside, and the total fault current (current flowing from the conductor to the metal sheath)
Is 2 Io, for example, in the case of FIG. 1 in which an accident occurs between IJ and IJ, the metal sheath return impedance in both directions seen from the accident point is almost equal in the long distance line.
One by one in both directions, and after passing through the metal sheath as indicated by the alternate long and short dash line, the ground joint (NJ-1-C) and (NJ +
If an accident current of about 2/3 Io flows out to the ground wire of 1-B) and an accident occurs between NJ and IJ in Fig. 2, the accident current also flows as the one-dot chain line and then (NJ -1-A)
A fault current of about 2/3 Io flows out to the ground line of (NJ + 2-C), and a fault current of about 1/3 Io flows into the ground line of each of the other ground points. There will be one ground wire that produces fault currents that differ in phase by approximately 180 °.
この事故電流の流出する接地線の2本を見つけると、そ
の組合せにより、NJ−IJ−IJ−NJ間のケーブル
シースには各相1区間のみを事故電流が流れているか
ら、A〜Cの各相の1つの区間が特定されることにな
る。When two ground wires from which this fault current flows are found, the fault current flows in the cable sheath between NJ-IJ-IJ-NJ only in each phase 1 section due to the combination, so One section of each phase will be specified.
従ってこれとは別に線路の両端で事故相を別途特定すれ
ば、その両方に含まれる事故電流の通過区間が事故区間
と特定されうることになる。Therefore, separately from this, if the fault phases are separately specified at both ends of the line, the passing section of the fault current included in both of them can be specified as the fault section.
なお、事故時の帰路電流は電力ケーブルの金属シース
(通常アルミニウムシーシ)及び大地を通って流れるが
正常ケーブルの金属シースの断面積は非常に大きいた
め、又、事故点を中に含むNJから外では3相の金属シ
ースがすべて帰路導体になるから事故電流に対する帰路
インピーダンスは、ケーブルの金属シースの方が、想定
される大地帰路回路よりはるかに小さいので、大部分の
事故時の帰路電流はアルミニウムシースを通って帰って
ゆく。Note that the return current at the time of an accident flows through the metal sheath (usually an aluminum sheath) of the power cable and the ground, but the cross section of the metal sheath of the normal cable is very large. Since the three-phase metal sheaths are all return conductors, the return impedance to the fault current is much smaller with the metal sheath of the cable than with the assumed earth return circuit, so the return current during most faults is aluminum. Return through the sheath.
従って、事故点を中に含む相隣り合う2組の接地点より
外側の相A、B、Cの事故電流帰路インピーダンスは略
等しいから、この地点より外側には、ほぼ等しい事故電
流1/3 Ioが帰って行く。Therefore, since the fault current return path impedances of the phases A, B, and C outside the two ground points adjacent to each other including the fault point are substantially equal, outside of this point, the fault current 1/3 Io is almost equal. Will return.
これは、撚架されるケーブル線路ほど顕著となり、又長
距離線路では撚架されるのが普通である。This is more noticeable in cable lines that are twisted, and is usually twisted in long-distance lines.
更に、図に従って説明することにする。Further, it will be described with reference to the drawings.
相隣り合う2つの接地点の接地点に流れる地絡電流をチ
エックして、事故電流の流出するNJを見つけると、地
絡事故は第1図一点鎖線のうちのどこかで生じているこ
とになる。By checking the ground fault current flowing between the ground points of two adjacent ground points and finding the NJ where the fault current flows out, it is found that the ground fault has occurred somewhere in the dashed line in Fig. 1. Become.
図示では、A相の絶縁ジョイントIJ−1〜IJ+1間
である。In the figure, it is between the A-phase insulating joints IJ-1 to IJ + 1.
但し、第1図一点鎖線の部分であればどの個所に地絡事
故が生じていても、相隣り合う接地点の接地線に異なる
地絡電流が流れる、全く同じ現象が現われる。However, in the portion indicated by the alternate long and short dash line in FIG. 1, no matter where the ground fault occurs, different ground fault currents flow in the ground lines of adjacent ground points, and the same phenomenon appears.
第1図一点鎖線で示した時絡事故電流は、必ず1区間づ
つA、B、C相を通っており、この関係はあらゆる点で
の事故に対しても全く同じである。The time-corruption fault current shown by the alternate long and short dash line in FIG. 1 always passes through the A, B, and C phases one by one, and this relationship is exactly the same for all faults.
従って、両接地点の事故電流流出接地ジョイント又は接
地線を見つけ出し、これに別途検出した地絡相を組合せ
ることによって、事故区間が接地ジョイントNJ−絶縁
ジョイントIJ間、絶縁ジョイントIJ−IJ間のどこ
であっても、明確に特定することができる。Therefore, by finding the fault current outflow grounding joint or the grounding wire at both grounding points and combining it with the ground fault phase detected separately, the faulty section is between the grounding joint NJ and the insulating joint IJ and between the insulating joints IJ and IJ. It can be clearly identified everywhere.
なお、電力ケーブルの橋梁部分では事故電流が接地ジョ
イントを通して橋梁に流出して車や人に害を与えたり、
橋自身を損傷しないように、接地ジョイントで橋との連
結による接地は行なわれず、単に3つの接地ジョイント
に接地線で互に連結されるだけとなる場合が殆んどであ
るが、この場合には、大地帰路に相当する帰路回路が全
く存在しないことになるから、第2図の通りますます、
事故区間を挟む両接点から先に1/3 Ioの事故電流が平
等に流れるようになり、この発明の検出方法は有効とな
ってくる。In addition, in the bridge part of the power cable, accident current flows out to the bridge through the ground joint and may harm cars and people,
In order to prevent damage to the bridge itself, in most cases, the ground joint will not be grounded by connecting it to the bridge, but simply three ground joints will be connected to each other by ground wires. In this case, , There is no return circuit corresponding to the earth return route, so as shown in Fig. 2,
The accident current of 1/3 Io comes to flow evenly from both contacts across the accident section, and the detection method of the present invention becomes effective.
尚、線路の両端部に近い個所は地絡事故が生じた場合に
は、地絡電流2Ioは平等に2分割されて、両方向に分
れるのではなくて、端部に近い方向により多く流れるこ
とになる。When a ground fault occurs at a portion near both ends of the line, the ground fault current 2Io is equally divided into two and is not divided in both directions, but flows in a direction closer to the end. become.
このように両方向に流れる事故電流に、アンバランスが
生ずるものの、接地点の接地線に流れる事故電流の大小
関係、あるいは位相差の関係は何等変るところがないか
ら、本願の意図する処はそのまま実施可能である。Thus, although the imbalance occurs in the fault currents flowing in both directions, the magnitude relation of the fault currents flowing in the ground line at the ground point or the relation of the phase difference does not change at all, and therefore the process intended by the present application can be carried out as it is. Is.
尚、更に高精度に区間特定を行なうには、事故点を含む
最近接の2組の接地点に加えて更にもう一区間外側に隣
接する2組の接地点の接地線の事故電流の比較も行なう
ようにすれば有効である。In addition, in order to identify the section with higher accuracy, in addition to the two closest ground points including the fault point, also compare the fault currents of the ground lines of two pairs of ground points adjacent to the outside of the section. It is effective if it is done.
すなわち、隣接する4カ所の接地点の接地線を1セット
にして事故電流比較を行なってゆけば、2カ所の場合よ
り、より精度が上がることになり有効である。That is, if the fault currents are compared by using one set of the ground lines at the four adjacent ground points, the accuracy will be higher than in the case of two locations, which is effective.
又、本実施例では金属シースについて述べたが、クロス
ボンドシステムをとるようなケーブルは総て可能である
ことは勿論である。Further, although the metal sheath is described in the present embodiment, it goes without saying that all the cables adopting the cross bond system are possible.
〈発明の効果〉 以上のように、この発明によると、並列する電流ケーブ
ルにおける接地ジョイントの接地線にセンサーを取付
け、相隣り合う2組の接地点の接地線を流れる事故電流
を比較して、事故電流の流出する接地線を検出し、この
接地線につながれている接地ジョイントの相を明らかに
し、これら2組の事故電流流出の接地ジョイントの組合
せとこれとは別検出した事故相を組合せることにより、
事故区間を検出するようにしたので、電力ケーブルの地
絡事故の接地線にセンサーを取付けるのみで検出でき、
センサーの使用数を削減し、経済性と信頼性及び保守性
の向上をはかることができる。<Effects of the Invention> As described above, according to the present invention, the sensor is attached to the ground wire of the ground joint in the parallel current cables, and the fault currents flowing through the ground wires of the two adjacent ground points are compared, Detect the ground wire from which the accident current flows out, clarify the phase of the ground joint connected to this ground wire, and combine the combination of these two sets of the ground joint for the fault current outflow and the detected accident phase separately. By
Since it is designed to detect the accident section, it can be detected simply by mounting the sensor on the ground wire of the ground fault of the power cable,
It is possible to reduce the number of sensors used and improve economic efficiency, reliability, and maintainability.
また、接地線へのセンサーの取付けにより、接地ジョイ
ント−絶縁ジョイント間に生じた地絡事故の場合も、そ
のまま接地ジョイント−絶縁ジョイント間で特定できる
から事故点は常に事故点をはさむ2つのジョイント間に
特定でき極めて精度の高い事故区間検出を行なうことが
できる。In addition, even if a ground fault accident occurs between the ground joint and the insulation joint by mounting the sensor on the ground line, the accident point can always be identified between the ground joint and the insulation joint, so the accident point is always between the two joints that sandwich the accident point. Therefore, it is possible to detect an accident zone with extremely high accuracy.
更に接地線に対してセンサーをセットするのみでよいた
め、電力ケーブル本体に加工を施す必要がなく、既設、
新設を問わず経済的に地絡事故の検出を導入することが
できる。Furthermore, since it is only necessary to set the sensor to the ground wire, there is no need to process the power cable body,
It is possible to economically introduce ground fault detection regardless of new construction.
第1図は長距離電力送電システムの絶縁ジョイント間で
地絡事故が生じた場合の説明図、第2図は同じく絶縁ジ
ョイントと接地ジョイント間で地絡事故が生じた場合の
説明図、第3図は接地線に対するセンサーの取付状態を
示す説明図、第4図と第5図は接地線とセンサーの組合
せを示す説明図である。 11、12、13……クロスボンド線 14……接地線、15……センサー NJ……接地ジョイント(普通ジョイント) IJ……絶縁ジョイントFIG. 1 is an explanatory diagram in the case where a ground fault accident occurs between the insulation joints of the long-distance power transmission system, and FIG. 2 is an explanatory diagram in the case where a ground fault accident similarly occurs between the insulation joint and the ground joint. FIG. 4 is an explanatory view showing how the sensor is attached to the ground wire, and FIGS. 4 and 5 are explanatory views showing a combination of the ground wire and the sensor. 11,12,13 …… Cross bond wire 14 …… Ground wire, 15 …… Sensor NJ …… Grounding joint (normal joint) IJ …… Insulation joint
Claims (2)
であって、接地ジョイントの接地線に、接地線に流れる
事故電流の大小および/あるいは事故電流の位相の差を
検出するセンサーを取付け、事故点を中に含む相隣り合
う2組の接地点の各々3本の接地線を流れる電流の事故
電流の大きさおよび/あるいは事故電流の位相の差を比
較し、殆んど同じで小さい接地点はすべてカットし、2
本の接地線と他の1本で位相が略 180゜異なり、また1
本の方が他の2本より略2倍電流の大きい接地線を電流
の比較および/または位相の比較により見つけ出し、こ
の相隣り合う2組の接地線につながれている接地ジョイ
ントの相をあきらかにし、これに別途施される事故相の
検出を組合せることによって事故区間を判別することを
特徴とする電力ケーブルの事故区間検出方法。1. A power transmission line including a three-phase cross-bond connection, wherein a sensor for detecting a magnitude of a fault current flowing in the ground line and / or a phase difference of the fault current is attached to the ground line of the ground joint. The magnitude of the fault current and / or the phase difference of the fault current flowing through each of the three ground lines of two adjacent ground points including the fault point are compared, and the contact points are almost the same and small. Cut all points, 2
The phase of one ground wire differs from that of the other one by about 180 °, and
The book finds a grounding wire that has a current that is about twice as large as the other two by comparing the currents and / or the phases, and reveals the phase of the grounding joint connected to the two adjacent grounding wires. , A method of detecting an accident section of a power cable, characterized in that an accident section is discriminated by combining it with detection of an accident phase.
る電力伝送線路の各相の接地ジョイントの連結線である
特許請求の範囲第1項に記載の電力ケーブルの事故区間
検出方法。2. The method for detecting an accident section of a power cable according to claim 1, wherein the grounding wire of the grounding joint is a connecting wire of the grounding joint of each phase of the power transmission line on a bridge or the like.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11012686A JPH0627761B2 (en) | 1986-05-13 | 1986-05-13 | Electric power cable fault detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11012686A JPH0627761B2 (en) | 1986-05-13 | 1986-05-13 | Electric power cable fault detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62265578A JPS62265578A (en) | 1987-11-18 |
JPH0627761B2 true JPH0627761B2 (en) | 1994-04-13 |
Family
ID=14527686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11012686A Expired - Fee Related JPH0627761B2 (en) | 1986-05-13 | 1986-05-13 | Electric power cable fault detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0627761B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2899806B2 (en) * | 1988-11-22 | 1999-06-02 | 株式会社フジクラ | Fault detection method for power cable |
-
1986
- 1986-05-13 JP JP11012686A patent/JPH0627761B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS62265578A (en) | 1987-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110231539B (en) | Single-pole ground fault detection system for true bipolar direct current transmission and distribution line | |
JPH0627761B2 (en) | Electric power cable fault detection method | |
JPS60207078A (en) | Detection of accident section of single-core power cable | |
JPS6215473A (en) | Locating method for fault point of transmission line | |
JP2866172B2 (en) | Transmission line fault direction locating method | |
JPS6345568A (en) | Abnormality detection system for electric power cable sheath | |
JP2568097B2 (en) | Power cable accident section detection method | |
JPH0363711B2 (en) | ||
JPS62255880A (en) | Discriminating method for accident section of power cable | |
JP2568092B2 (en) | Power cable accident section detection method | |
JP2002152959A (en) | Power cable line | |
JP3528544B2 (en) | Method of locating insulation breakdown of power cable line | |
SU1718157A1 (en) | Method of determining a search direction in testing power lines for shorted spots and device thereof | |
JPH01299475A (en) | Method for determining failed section of underground transmission line | |
JP2561984B2 (en) | Substation fault section detection system | |
JPS62255881A (en) | Discriminating method for accident section of power cable | |
JPH04190642A (en) | System for judging fault section of transmission line | |
JPH02262072A (en) | Fault section locating system of underground transmission line | |
JPS60233574A (en) | Accident point detecting device of single core metallic sheath cable | |
JPH0283467A (en) | Apparatus for detecting distribution line accident section | |
JPH01299477A (en) | Method for determining failed section of underground transmission line | |
JPH05219645A (en) | Ground fault direction detecting method for transmission /distribution line | |
KR100457260B1 (en) | measuring method of load current on po- wer cable | |
JPS6355472A (en) | Detecting method for accident section of power cable | |
JPH0843473A (en) | Fault-section judgment method for power cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |