JPH01299475A - Method for determining failed section of underground transmission line - Google Patents

Method for determining failed section of underground transmission line

Info

Publication number
JPH01299475A
JPH01299475A JP12968388A JP12968388A JPH01299475A JP H01299475 A JPH01299475 A JP H01299475A JP 12968388 A JP12968388 A JP 12968388A JP 12968388 A JP12968388 A JP 12968388A JP H01299475 A JPH01299475 A JP H01299475A
Authority
JP
Japan
Prior art keywords
current
sheath
conductor
phase
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12968388A
Other languages
Japanese (ja)
Inventor
Makoto Hara
原 信
Hideo Sato
英男 佐藤
Koichi Sugiyama
耕一 杉山
Hiroshi Kawakami
川神 裕志
Mitsumasa Shimada
嶋田 光正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP12968388A priority Critical patent/JPH01299475A/en
Publication of JPH01299475A publication Critical patent/JPH01299475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To make it possible to determine a grounded position quickly and accurately, by detecting the synthesized currents in a conductor and a sheath at a plurality of positions for every phase, comparing the synthesized currents, and determining the failed section. CONSTITUTION:When, grounding occurs in a conductor 2, the conductor 2 and a sheath 6 are shorted. Therefore, a sheat current -IB whose direction is reverse with respect to a conductor current IC flows through the sheath 6 in the phase of the conductor 2. Said sheath current is divided into the sheath in each phase by 1/3IB through a grounding wire 9 at a connecting part on the side of a power source. Therefore, the current IC which is the normal value is detected with a current transformer 10 of the conductor 2 on the side of a load from the grounded point. But the synthesized current IC + 2/3IB is detected with a transformer 10 which is separated from the connecting part 6 on the side of the power source from the grounded point. The synthesized currents IC + 1/3IB is detected with transformers 11 and 12 in conductors 3 and 4 in other phases where there is no grounding. In a judging device 16, these current values are regenerated and compared. The section between the transformers wherein the level of the synthesized current is abruptly changed, i.e., the section between CT Nos 2 and 3, is determined to be the failed section.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は地中送電線路の絶縁破壊によって発生する地絡
事故の故障区間を特定する地中送電線路の故障区間標定
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for locating a faulty section of an underground power transmission line for identifying a faulty section of an earth fault caused by insulation breakdown of the underground power transmission line.

〔従来の技術〕[Conventional technology]

電気エネルギーの需要の増大により安定した電力供給が
必要となり、ケーブルをはじめとする地中送電線路の信
顛性に関する技術の開発が行われている。同様に、突発
的な事故に際しては、速やかに故障箇所を標定して適切
な復旧作業を行う必要がある。地中送電線路における事
故としては、絶縁破壊によって導体とシースとが短絡す
る地絡事故が代表的であり、この地絡事故が生じた場合
には地絡区間の特定を早急に行う必要があり、マレ−ル
ープ法、パルスレーダ法、サーチコイル法などの種々の
方法が採用されている。また、これらの方法に対し、ク
ロスボンド接続を有する単心型カケープル線路に関して
は、地絡時にクロスボンド線に流れる電流を電流トラン
スで検出し、その電流のレベル並びに電流位相の分布を
解析することで地絡区間を標定することが行われている
BACKGROUND OF THE INVENTION As the demand for electrical energy increases, a stable power supply becomes necessary, and technologies related to the reliability of underground power transmission lines such as cables are being developed. Similarly, in the event of a sudden accident, it is necessary to quickly locate the failure location and carry out appropriate restoration work. A typical accident on underground power transmission lines is a ground fault where the conductor and sheath are short-circuited due to insulation breakdown, and when this ground fault occurs, it is necessary to identify the ground fault section as soon as possible. Various methods have been adopted, such as the Murray loop method, the pulse radar method, and the search coil method. In addition, in contrast to these methods, for single-core cable cable lines with cross-bond connections, a current transformer detects the current flowing through the cross-bond wire during a ground fault, and the current level and current phase distribution are analyzed. The ground fault section is being located.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前者のマレ−ループ法などの方法では地絡位置
の標定の多大の時間と労力を必要とする共に、地絡点の
抵抗値が高い場合には地絡位置の検出ができない不都合
がある。
However, the former method, such as the Murray loop method, requires a great deal of time and effort to locate the ground fault location, and has the disadvantage that the ground fault location cannot be detected if the resistance value of the ground fault point is high. .

これに対し、後者のクロスボンド線の電流を検出する方
法は、地絡区間の標定を迅速、かつ、正確に行うことが
できるが、この方法はクロスボンド接続を有する単心の
電力ケーブルにのみ通用できるものである。すなわち、
3相の導体が単一のシース内に挿入された3心ケーブル
や各相の導体が個々のシース内に挿入されたトリプレン
クスケーブルなどのようにクロスボンド線を備えていな
い地中送電線路には適用できず、汎用性の狭いものとな
っている。
On the other hand, the latter method of detecting the current in the cross-bond line allows for quick and accurate location of the ground fault section, but this method is only applicable to single-core power cables with cross-bond connections. It is something that can be used. That is,
Underground power transmission lines without cross-bond wires, such as three-core cables in which the conductors of three phases are inserted in a single sheath, or triplex cables in which the conductors of each phase are inserted in individual sheaths. It cannot be applied to other countries, and its versatility is limited.

そこで本発明は、種々の構造の電カケープルを有する地
中送電線路に対して地絡位置を迅速、かつ、正確に標定
することができる地中送電線路の故障区間標定方法を提
供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a fault section locating method for underground power transmission lines that can quickly and accurately locate the ground fault location for underground power transmission lines having power cables of various structures. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はトリブワックスケーブルなどのように各相の導
体がシースに個々に挿入された電力ケーブルからなる送
電線路の地絡区間を標定するため、地絡によって生じる
シース電流を導体電流との合成電流として検出し、この
検出信号を他の部位における合成電流と比較するように
したものである。すなわち、本発明は以下の地中送電線
路を対象とし、次に示す手段を行うものである。
In order to locate a ground fault section of a power transmission line consisting of a power cable in which each phase conductor is individually inserted into a sheath, such as a trib-wax cable, the present invention combines the sheath current caused by the ground fault with the conductor current to generate a composite current. This detection signal is compared with the combined current at other parts. That is, the present invention targets the following underground power transmission lines and performs the following means.

(11適用対象の地中送電線路 各相の導体が個々独立したシース内に挿入されると共に
、それぞれの相がアース線により接続された電力ケーブ
ルである。このケーブルでは地絡により生じるシース電
流はアース線を介して他の相に分流されて他の相のシー
ス電流となり、これらの電流を各相の導体電流との合成
電流として検出する。すなわち、本発明は地絡によって
生じるシース電流をアース線で分流させることで合成電
流のレベルおよび位相の変動を検出するものである。従
って、シース電流をアース線によって分流させる構成で
あれば、上記送電線路に限定されるものではなく、上記
構成の電力ケーブルを2回線以上設け、各回線をアース
線に接続してシース電流を分流させる送電線路であって
も良い。
(11 Applicable underground power transmission line This is a power cable in which the conductors of each phase are inserted into individual sheaths, and each phase is connected by a ground wire. In this cable, the sheath current caused by a ground fault is The current is shunted to other phases via the ground wire and becomes the sheath current of the other phase, and these currents are detected as a composite current with the conductor current of each phase.In other words, the present invention This method detects fluctuations in the level and phase of the composite current by dividing the sheath current using a ground wire.Therefore, as long as the sheath current is divided by a ground wire, it is not limited to the above-mentioned power transmission line. It may be a power transmission line in which two or more power cables are provided, each line is connected to a ground wire, and the sheath current is divided.

(2)適用される手段 地絡によって生じるシース電流を導体電流との合成電流
として検出し、検出された合成電流を他の部位における
合成電流と比較することにより故障区間の標定を行う。
(2) Applicable means The sheath current caused by the ground fault is detected as a composite current with the conductor current, and the fault area is located by comparing the detected composite current with composite currents in other parts.

この場合、電力ケーブルが1回線の場合には合成電流を
各相毎に検出し、2回線以上の場合は合成電流を各回線
毎に検出する。前者の場合、シース電流は地絡を住じた
相から同一回線内の他の相に分流して各相毎に合成電流
として検出される。後者の場合にはシース電流は他の回
線に分流して回線毎に合成電流として検出される。この
合成電流は地絡点を境としてその前後で絶対値、位相が
大きく変動するため、これらの変位点を検出して故障区
間を標定する。
In this case, if the power cable has one line, the combined current is detected for each phase, and if the power cable has two or more lines, the combined current is detected for each line. In the former case, the sheath current is shunted from the phase where the ground fault occurred to other phases in the same line, and detected as a composite current for each phase. In the latter case, the sheath current is shunted to other lines and detected as a composite current for each line. Since the absolute value and phase of this composite current vary greatly before and after the ground fault point, these displacement points are detected to locate the fault area.

〔作用〕[Effect]

上記構成では、シース電流はアース線を介して同一回線
内の他の相または他の回線のケーブルに分流された後、
導体電流との合成電流として各相毎または回線ごとに検
出される。
In the above configuration, the sheath current is shunted to other phases in the same line or cables of other lines via the ground wire, and then
It is detected for each phase or line as a composite current with the conductor current.

検出された合成電流は地絡点を境として変化する。従っ
て、検出された合成電流を他の部位における合成電流と
比較することにより故障点を検出することができる。
The detected composite current changes with the ground fault point as a boundary. Therefore, by comparing the detected composite current with composite currents in other parts, it is possible to detect a failure point.

〔実施例〕〔Example〕

以下、本発明を添付図面により具体的に説明する。 Hereinafter, the present invention will be explained in detail with reference to the accompanying drawings.

本発明は絶縁破壊によって導体とシースとが短絡した場
合に、シースに流れる電流のレベルおよび位相が地絡点
を境にして急激に変化することを利用して故障区間の標
定を行うものであり、その原理を第6図+a)、0))
により説明する。これらの図において、導体42が絶縁
体42aによって絶縁され、シース43に挿入されて電
力ケーブル41が形成されている(半導電層等は省略)
。第6図(a)においては、この導体42の両端が電源
44に接続されており、同図(blにおいては導体42
の右端側が電源44に接続され、左端側が負荷45に接
続されている。
In the present invention, when a conductor and sheath are short-circuited due to dielectric breakdown, the fault area is located by utilizing the fact that the level and phase of the current flowing through the sheath changes rapidly from the ground fault point. , the principle is shown in Figure 6+a), 0))
This is explained by: In these figures, a conductor 42 is insulated by an insulator 42a and inserted into a sheath 43 to form a power cable 41 (semiconductor layers, etc. are omitted).
. In FIG. 6(a), both ends of this conductor 42 are connected to a power source 44, and in FIG.
The right end side is connected to the power supply 44, and the left end side is connected to the load 45.

正常な状態では電源44からの給電により電流は導体4
2内を矢印47方向に流れている。このようなケーブル
41に地絡が生じると、地絡点46を境にしてその両側
では導体電流47が反転してシース43内を各電源44
側に向かって流れるシース電流48が生じる(同図(a
))。すなわち、地絡点46の左右ではシース43内を
流れるシース電流の位相に180 °のずれを生じる。
Under normal conditions, current flows through the conductor 4 due to power supply from the power source 44.
2 in the direction of arrow 47. When such a ground fault occurs in the cable 41, the conductor current 47 is reversed on both sides of the ground fault point 46, and the conductor current 47 is reversed inside the sheath 43 and flows through each power source 44.
A sheath current 48 is generated that flows toward the side (see figure (a)
)). That is, the phase of the sheath current flowing in the sheath 43 is shifted by 180 degrees on the left and right sides of the ground fault point 46.

一方、同図(blでは地絡点46で導体42内の導体電
流47の大部分がシース電流48となって電源44側に
戻る。従って、地絡点46よりも負荷45例の導体に供
給される電流が少なくなり、この負荷側のシースを流れ
るシース電流が少なくなる。このため、地絡点46を中
心として電源44側のシース電流の絶対値に比べて負荷
45側のシース電流の絶対値が小さくなり、電流値が急
変する。このようなシース電流の位相の反転およびその
電流値の急変は地中送電線路の給電条件などによってい
ずれか一方、または双方が併合して起こるものであり、
所定部位のシース電流を測定し、その測定値を他の部位
のシース電流と比較することにより地絡点の標定が可能
となる。
On the other hand, in the same figure (bl), most of the conductor current 47 in the conductor 42 becomes a sheath current 48 at the ground fault point 46 and returns to the power supply 44 side. As a result, the absolute value of the sheath current on the load 45 side is smaller than the absolute value of the sheath current on the power source 44 side, centering on the ground fault point 46. The value decreases, and the current value suddenly changes.Such a reversal of the phase of the sheath current and a sudden change in the current value can occur either or both together, depending on the power supply conditions of the underground power transmission line. ,
By measuring the sheath current at a predetermined location and comparing the measured value with the sheath current at other locations, the ground fault point can be located.

第1図は本発明が適用される地中送電線路の概略を示し
、3相の導体2.3.4を備えて地中送電線路1が形成
されている。各電力ケーブルは各相の導体2.3.4が
それぞれ銅テープ、ワイヤシールドなどの金属シールド
を有するシース5内に挿入され、これらが撚り合わせて
構成されている。図中、6.7.8は電力ケーブルの各
相の導体2.3.4を隣接する電力ケーブルの導体と接
続する接続部である。また、各接続部はそれぞれアース
線9によって接続されて一括接地が行われている。この
地中送電線路1の地絡区間を標定するため、電流トラン
ス10.11.12が所定の間隔(接続部近傍)で配置
される。ここで、電流トランス10は導体2のシース6
の外周に取り付けられ、電流トランス11は導体3のシ
ース6の外周に取り付けられ、電流トランス12は導体
4のシース6の外周に取り付けられているものであり、
各電流トランス10.11.12は対応する導体2.3
.4の長手方向に設けられている。実施例では電流トラ
ンス10.1工、12は各導体2.3.4の接続部6.
7.8の近傍に設けられている。これら電流トランス1
0.11.12は正常時には導体2.3.4を流れる導
体電流■。を検出しているが、地絡により導体とシース
とが短絡すると導体を流れる導体電流ICとシースを流
れるシース電流■、との合成電流を検出する。すなわち
、本発明は導体電流とシース電流の合成電流を検出する
ことにより、シース電流の変動を導体電流とシース電流
との合成電流の変動として検出するものである。このよ
うな電流トランス10、IL 12はリード線13によ
り個々に電気/光変換器14に接続され、同変換器14
から光フアイバケーブル15を介して判定装置16に接
続されている。このような構成では電流トランス10.
11.12で検出された電流信号が電気/光変換器14
により光信号に変換された後、判定装置16に伝送され
る。判定装置16はこの光信号を電流値およびその位相
に再生してメモリする。また、判定装置16はこのよう
にして伝送された各電流トランス10.11.12から
の信号を相互に比較して地絡区間の標定を行う。
FIG. 1 schematically shows an underground power transmission line to which the present invention is applied, and an underground power transmission line 1 is formed with three-phase conductors 2, 3, and 4. Each power cable is constructed by inserting the conductors 2, 3, 4 of each phase into a sheath 5 having a metal shield such as a copper tape or a wire shield, and twisting these together. In the figure, reference numeral 6.7.8 is a connection part that connects the conductor 2.3.4 of each phase of the power cable with the conductor of the adjacent power cable. Further, each connection portion is connected by a ground wire 9, and collectively grounded. In order to locate the ground fault section of the underground power transmission line 1, current transformers 10, 11, and 12 are arranged at predetermined intervals (near the connection portion). Here, the current transformer 10 is a sheath 6 of the conductor 2.
The current transformer 11 is attached to the outer circumference of the sheath 6 of the conductor 3, and the current transformer 12 is attached to the outer circumference of the sheath 6 of the conductor 4,
Each current transformer 10.11.12 has a corresponding conductor 2.3
.. 4 in the longitudinal direction. In the embodiment, the current transformer 10.1 is connected to the connecting portion 6.1 of each conductor 2.3.4.
7.8. These current transformers 1
0.11.12 is the conductor current ■ flowing through the conductor 2.3.4 under normal conditions. However, when the conductor and sheath are short-circuited due to a ground fault, a composite current of the conductor current IC flowing through the conductor and the sheath current flowing through the sheath is detected. That is, the present invention detects fluctuations in the sheath current as fluctuations in the composite current of the conductor current and sheath current by detecting the composite current of the conductor current and the sheath current. These current transformers 10 and IL 12 are individually connected to an electrical/optical converter 14 by lead wires 13, and the converter 14
is connected to a determination device 16 via an optical fiber cable 15. In such a configuration, the current transformer 10.
11. The current signal detected in 12 is connected to the electrical/optical converter 14.
After the signal is converted into an optical signal, it is transmitted to the determination device 16. The determination device 16 reproduces this optical signal into a current value and its phase and stores it in memory. Further, the determining device 16 compares the signals transmitted from the current transformers 10, 11, and 12 with each other to locate the ground fault section.

次に、第1図の送電線路の右側の端部が電源に、左側の
端部が負荷に接続されている場合における地絡区間の標
定を説明する。導体2に地絡17が生じた場合、地絡1
7により導体2とそのシース6とが短絡するため、導体
2の相のシース6に導体電流I、と逆向きのシース電流
−■、が流れる。このシース電流は電源側の接続部にお
けるアース線9を介して各相のシースに略1/3Isず
つ分流する。従って、地絡点17より負荷側における導
体2の電流トランス10では正常時と同じ導体電流I、
を検出しているが地絡点17より電源側でしかも接続部
6を隔てた電流トランス10では導体電流とシース電流
の合成電流(IC+2/31B)を検出する。さらに地
絡が生じていない他相の導体3.4における電流トラン
スIL 12は導体電流と分流したシース電流の合成電
流(Ic +1/3 re )を検出する。判定装置7
はこれらの電流値を再生して相互に比較する。第2図は
判定装置7による比較結果を示し、合成電流のレベルが
急変している電流トランスの間、即ち、CT−m2とC
T−患3との間に地絡が生じ、この区間が地絡区間であ
ると標定することができる。
Next, a description will be given of locating a ground fault section when the right end of the power transmission line in FIG. 1 is connected to a power source and the left end is connected to a load. If ground fault 17 occurs in conductor 2, ground fault 1
Since the conductor 2 and its sheath 6 are short-circuited by 7, a conductor current I and a sheath current -■ in the opposite direction flow through the sheath 6 of the phase of the conductor 2. This sheath current is divided into the sheaths of each phase by approximately 1/3Is via the ground wire 9 at the connection portion on the power supply side. Therefore, in the current transformer 10 of the conductor 2 on the load side from the ground fault point 17, the conductor current I is the same as in the normal state,
However, in the current transformer 10 located on the power supply side from the ground fault point 17 and across the connecting portion 6, a composite current (IC+2/31B) of the conductor current and sheath current is detected. Furthermore, the current transformer IL 12 in the conductor 3.4 of the other phase in which no ground fault has occurred detects a composite current (Ic + 1/3 re ) of the conductor current and the shunted sheath current. Judgment device 7
reproduces these current values and compares them with each other. FIG. 2 shows the comparison result by the determination device 7, and shows the comparison result between the current transformers where the level of the composite current changes suddenly, that is, between CT-m2 and C
A ground fault occurs between T and patient 3, and this section can be identified as a ground fault section.

第3図は電力ケーブルが2回線設けられる地中送電線路
への適用例を示し、2回線の地中送電線路1と地中送電
線路21が構成されている。地中送電線路1は第1図と
同一のため、その説明を省略する。他の回線21はこの
回線1と同様な構成となっており、各相の導体22.2
3.24が個々にシース26に挿入されると共に接続部
26.27.28によって接続されており、さらに3相
は接続部26.27.28でアース綿29によって一括
接地されている。また、電流トランス30.31.32
が各相のシースに所定間隔で設けられている。この実施
例では電流トランス30.31.32は抵抗器35を有
するリード線33によって接続されており、抵抗器35
によって3相の電流トランス31.32.33の出力が
合成された後、電気/光変換器14に出力されるように
なっている。回線1側も同様な構成となっており、3相
の電流トランス10.11.12の出力が合成された後
、光変換される。すなわち、電気/光変換器14および
これに接続される光フアイバケーブル15は3相で1&
11となった電流トランスに対応して設けられるため、
その構成を節潔にすることができる。このような構成に
おいて、いずれか一方の回線のいずれかの相に地絡が生
じると、その相から生じるシース電流はアース線9また
は29により他の回線に分流するため、第1図と同様な
回路となる。すなわち、各回線で検出される導体電流と
シース電流との合成電流は地絡点を境にして急激に変化
するため、地絡区間の標定が可能となる。
FIG. 3 shows an example of application to an underground power transmission line in which two circuits of power cables are provided, and two circuits of underground power transmission line 1 and underground power transmission line 21 are configured. Since the underground power transmission line 1 is the same as that shown in FIG. 1, its explanation will be omitted. The other line 21 has the same configuration as this line 1, and has conductors 22.2 for each phase.
3.24 are individually inserted into the sheath 26 and connected by connections 26, 27, 28, and the three phases are collectively grounded by a ground cotton 29 at the connections 26, 27, 28. Also, current transformer 30.31.32
are provided at predetermined intervals on the sheath of each phase. In this example, the current transformers 30, 31, 32 are connected by a lead 33 with a resistor 35;
The outputs of the three-phase current transformers 31, 32, and 33 are combined and then output to the electrical/optical converter 14. The line 1 side has a similar configuration, and the outputs of the three-phase current transformers 10, 11, and 12 are combined and then optically converted. That is, the electrical/optical converter 14 and the optical fiber cable 15 connected thereto are 3-phase, 1&
Since it is provided to correspond to the current transformer that has become 11,
The structure can be kept simple. In such a configuration, if a ground fault occurs in any phase of either line, the sheath current generated from that phase will be shunted to the other line by the ground wire 9 or 29, resulting in a similar situation as shown in Figure 1. It becomes a circuit. That is, since the composite current of the conductor current and sheath current detected in each line changes rapidly with the ground fault point as a boundary, the ground fault section can be located.

第4図は上記2回線の場合における合成電流の検出結果
を示し、電流トランスCT−Ni12とCT−111h
3の間で合成電流のレベルが急変すると共に、その位相
が反転しており、この間が地絡区間となっている。
Figure 4 shows the detection results of the combined current in the case of the above two circuits, showing the current transformers CT-Ni12 and CT-111h.
Between 3 and 3, the level of the combined current suddenly changes and its phase is reversed, and this period is a ground fault section.

第5図は第3図の変形例を示し、電流トランス18が電
力ケーブルの3相の導体のシース全体に跨がるように取
り付けられており、導体電流とシース電流との合成電流
が3相分合成させた状態で検出されるようになっている
FIG. 5 shows a modification of FIG. 3, in which the current transformer 18 is installed so as to span the entire sheath of the three-phase conductor of the power cable, and the composite current of the conductor current and sheath current is It is now detected in a separated and synthesized state.

従って、この場合には3相の出力を合成する抵抗器を不
用となる。
Therefore, in this case, a resistor for combining three-phase outputs is not required.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、アース線によってシース
電流の分流を行い、このシース電流と導体電流との合成
電流を所定間障毎に検出し、検出された合成電流を比較
して故障区間の標定を行うため、各相の導体が個々にシ
ースに挿入された送電線路であってもその故障区間の標
定を瞬時、かつ、正確に行うことができる。
As explained above, the present invention divides the sheath current using the ground wire, detects the composite current of the sheath current and the conductor current for each predetermined fault, and compares the detected composite currents to determine the fault area. Since the location is performed, even if the conductor of each phase is individually inserted into the sheath of a power transmission line, the faulty section can be located instantly and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される地中送電線路の構成を示す
概略図、第2図は第1図における合成電流の比較を示す
特性図、第3図は本発明を複数回線の地中送電線路に適
用した場合の構成を示す概略図、第4図は第3図におけ
る比較結果を示す特性図、第5図は第3図の変形例を示
す概略図、第6図は本発明の基本原理を示す概略図。 符号の説明 1.2t−−−一・−・−地中送電線路2.3.4.2
2.23.24・−−−−−一−−−−導体5−−−−
−・−−−一−シース 6.7.8.26.27.28−・−−−−−一一−−
導体の接続部9.29−−−一−・−・・−アース線1
0.11.12.18.30.31.32・・・−一−
−−・・・電流トランス 13.33−一−−・・・−−−−リード線14−・−
・・−・−電気/光変換器 15−−−−−−−−−−一光ファイバ  16・−−
−−一−−−・−判定装置17−・・・−地絡点
FIG. 1 is a schematic diagram showing the configuration of an underground power transmission line to which the present invention is applied, FIG. 2 is a characteristic diagram showing a comparison of the composite current in FIG. A schematic diagram showing the configuration when applied to a power transmission line, FIG. 4 is a characteristic diagram showing the comparison results in FIG. 3, FIG. 5 is a schematic diagram showing a modification of FIG. 3, and FIG. Schematic diagram showing the basic principle. Explanation of symbols 1.2t---1...-Underground power transmission line 2.3.4.2
2.23.24・-----1----Conductor 5----
-・----1-Sheath 6.7.8.26.27.28-・----11--
Conductor connection part 9.29--1-----Ground wire 1
0.11.12.18.30.31.32...-1-
---Current transformer 13.33-1---Lead wire 14--
・・・−Electrical/optical converter 15−−−−−−−−One optical fiber 16・−−
---1----Judgment device 17---Ground fault point

Claims (2)

【特許請求の範囲】[Claims] (1)各相の導体が個々のシースに挿入されると共に各
シースがアース線によって接続された電力ケーブルを有
する地中送電線路の故障区間標定方法において、 電力ケーブルの所定部位における導体とシ ースの合成電流を各相ごとに複数の地点で検出し、検出
された合成電流を比較して故障区間の標定を行うことを
特徴とする地中送電線路の故障区間標定方法。
(1) In a fault section locating method for an underground power transmission line having a power cable in which the conductors of each phase are inserted into individual sheaths and each sheath is connected by a ground wire, A method for locating a faulty section of an underground power transmission line, characterized by detecting a composite current at multiple points for each phase, and locating a faulty section by comparing the detected composite currents.
(2)前記電力ケーブルが少なくとも2回線設けられて
いるとき前記合成電流を各回線毎に各相一括して複数の
地点で検出し、そのレベルあるいは位相の変化によって
故障点を標定する請求項第1項記載の地中送電線路の故
障区間標定方法。
(2) When the power cable is provided with at least two circuits, the composite current is detected at a plurality of points for each phase of each circuit, and the failure point is located by the change in the level or phase. A method for locating a faulty section of an underground power transmission line as described in Section 1.
JP12968388A 1988-05-27 1988-05-27 Method for determining failed section of underground transmission line Pending JPH01299475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12968388A JPH01299475A (en) 1988-05-27 1988-05-27 Method for determining failed section of underground transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12968388A JPH01299475A (en) 1988-05-27 1988-05-27 Method for determining failed section of underground transmission line

Publications (1)

Publication Number Publication Date
JPH01299475A true JPH01299475A (en) 1989-12-04

Family

ID=15015594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12968388A Pending JPH01299475A (en) 1988-05-27 1988-05-27 Method for determining failed section of underground transmission line

Country Status (1)

Country Link
JP (1) JPH01299475A (en)

Similar Documents

Publication Publication Date Title
US4988949A (en) Apparatus for detecting excessive chafing of a cable arrangement against an electrically grounded structure
EP2482090A1 (en) System for measuring partial discharges in power lines
CN109920601B (en) Power cable suitable for partial discharge detection positioning
JPH01299475A (en) Method for determining failed section of underground transmission line
JPS60207078A (en) Detection of accident section of single-core power cable
CN115469189A (en) Cable sheath fault judgment method based on sheath head-end current ratio and sheath circulation ratio
JPH01299477A (en) Method for determining failed section of underground transmission line
JPH02262072A (en) Fault section locating system of underground transmission line
JPS6215473A (en) Locating method for fault point of transmission line
JP2568097B2 (en) Power cable accident section detection method
JPH01299476A (en) Method for determining failed section of underground transmission line
AU2019289189A1 (en) A system and method for locating faults on an electricity network
JP2002152959A (en) Power cable line
JPH02247581A (en) Method for locating fault section of underground power transmission line
JPH0627761B2 (en) Electric power cable fault detection method
Baker et al. Performance of on-line fault distance monitor for distribution cable circuits
JPH063390A (en) Diagnostic method for deterioration of cable
JP2568092B2 (en) Power cable accident section detection method
JP2850463B2 (en) Power cable deterioration diagnosis method
CN115436749A (en) Method, device and system for positioning fault section of transmission cable
JPH06331666A (en) Diagnostic method for insulation deterioration of triplex power cable
CN117686836A (en) Online diagnosis and positioning method and device for damage defect of cable outer sheath
JP2017040529A (en) Ground fault position detection method of electric power cable, terminal box, and wiring equipment
JP3528544B2 (en) Method of locating insulation breakdown of power cable line
JPS60233574A (en) Accident point detecting device of single core metallic sheath cable