JPS62255880A - Discriminating method for accident section of power cable - Google Patents

Discriminating method for accident section of power cable

Info

Publication number
JPS62255880A
JPS62255880A JP9897486A JP9897486A JPS62255880A JP S62255880 A JPS62255880 A JP S62255880A JP 9897486 A JP9897486 A JP 9897486A JP 9897486 A JP9897486 A JP 9897486A JP S62255880 A JPS62255880 A JP S62255880A
Authority
JP
Japan
Prior art keywords
cross
current
bond
fault
accident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9897486A
Other languages
Japanese (ja)
Inventor
Ryosuke Hata
良輔 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9897486A priority Critical patent/JPS62255880A/en
Publication of JPS62255880A publication Critical patent/JPS62255880A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To execute decision with high reliability with simple constitution of a small number of detectors, by taking one piece out of three pieces of cross-bond currents, etc., in a phase opposite to other two pieces, and executing decision in accordance with the quantity of detected current. CONSTITUTION:As for parallel three-phase power cable A-C, a metallic sheath is connected to adjacent electrode sheaths by three pieces of cross-bond wires 11-13, a cross-bond current is detected in a phase opposite to the wire 12 by a sensor 14, and an accident current is detected by a detector. When a ground-fault accident is generated in the cable A between joints IJ, a current of 2I0 flows by I0 to both sides from an accident point X. Also, in a distant place from adjacent ground joints NJ, a current 1/3. I0 is generated in the wires 11-13, and in the wires 11-13 of both sides of the accident pint X, large unbalance is generated by a large current of the accident, and the accident point is decided through the detector. At the time of an accident between the joints NJ, IJ, as well, it is decided by a current 1/3. I0 and an unbalanced large current, and it is unnecessary to provide a detector on every cross-bond wire and discrimination is executed with high reliability with simple constitution.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明はクロスボンドを有する長距離電力送電システ
ムの地絡事故区間を検出するための電力ケーブルの事故
区間検出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for detecting a fault section of a power cable for detecting a fault section of a power cable in a long-distance power transmission system having cross bonds.

〈従来の技術〉 並列する電力ケーブルにおいて、絶縁ジョイン1〜I 
Jで区切られた金属シースを、隣接する電力ケーブルの
金属シースとクロスボンド線によって接続ツることが行
なわれており、このようなりロスボンドを有する長距離
電力送電システムにおいては、各ジヨイント間において
生じるケーブルの地絡事故を検出することが行なわれて
いる。
<Prior art> In parallel power cables, insulation joins 1 to I
The metal sheath separated by a J is connected to the metal sheath of an adjacent power cable by a cross bond wire. Detection of ground faults in cables is being carried out.

第7図はシングルコアの電力ケーブルにおける従来の事
故区間検出方法を示しており、各電力ケーブルA−Cの
絶縁ジヨイントIJで区切られた金属シースを、隣接す
る電力ケーブルの金属シースとクロスボンド線1によっ
て隣接し、各クロスボンド線1にCT2を設【プて構成
し、事故時の金属シースに流れる電流はクロスボンド線
では0PGWのようにキャンセルする事故電流の帰路と
なる導体のないシングルコアーゆえ、CT2で事故電流
がとり出せる。
Figure 7 shows the conventional fault section detection method for single-core power cables, in which the metal sheath separated by the insulation joint IJ of each power cable A-C is connected to the metal sheath of the adjacent power cable and the cross bond wire. A single core with no conductor serves as a return path for the fault current, and the current flowing through the metal sheath at the time of an accident is canceled as 0 PGW in the cross bond wire. Therefore, the fault current can be extracted by CT2.

これを、各絶縁ジヨイントIJ区間にとりつ(プた各C
T2に流れる電流の向きによって光F/1のBSOセン
“り一等で位相判別して事故区間を割り出している。
Apply this to each insulation joint IJ section (each C
Depending on the direction of the current flowing through T2, the optical F/1's BSO sensor determines the phase and determines the accident zone.

〈発明が解決しようとする問題点〉 ところで上記のような事故区間の検出方法は、1つのク
ロスボンド線に1つのCTを取(=jけ、その信号の位
相と相対ザる絶縁ジヨイント区間の0丁の位相を比較判
別して事故区間を特定しているので、各クロスボンド線
に仝てCTの取(=J(プが必要になり、各CTの拾い
出す事故電流の位相判別という複雑でデリケートな回路
処理が必要で高価になり、かつ信頼性が低く保守が困難
になるという問題点がある。又、ジヨイントの両端の金
属シース間に絶縁の施されていない接地ジヨイントNJ
を含む10間で地絡事故が生じた場合すなわちIJとN
J間で地絡事故が生じた場合、当該I J間の地絡事故
であることはわかっても、NJ、10間の判別は不可能
で市り事故区間の特定が不十分でおった。
<Problems to be Solved by the Invention> By the way, the method for detecting fault sections as described above is to take one CT for one cross bond line (=j) and calculate the phase of the signal and the relative Since the fault section is identified by comparing and determining the phase of the fault current, it is necessary to take a CT (=J There are problems in that delicate circuit processing is required and it is expensive, and it is also unreliable and difficult to maintain.In addition, the ground joint NJ has no insulation between the metal sheaths at both ends of the joint.
If a ground fault occurs between IJ and N
When a ground fault occurred between J and IJ, it was impossible to distinguish between NJ and 10, and the identification of the section where the fault occurred was insufficient.

〈発明の目的〉 この発明は、上記のような問題点を解決するためになさ
れたものであり、クロスボンド点あるいは接地点に対す
る検出器の使用数を減少させることができ、簡単で信頼
性の高い事故区間判別を行なえる電力ケーブルの事故区
間検出方法を提供することを目的とする。
<Purpose of the Invention> The present invention was made to solve the above-mentioned problems, and it is possible to reduce the number of detectors used for cross bond points or ground points, and to provide a simple and reliable method. The purpose of the present invention is to provide a method for detecting fault sections of power cables that can perform high fault section discrimination.

〈問題点を解決するための手段〉 上記のような問題点を解決するためこの発明は、クロス
ボンド接続を含む電力伝送線路であって、地絡電流の金
属シース帰路電流をクロスボンド線あるいは接地線から
検出し、1クロスポンド点の3本のクロスボンド電流お
るいは1接地点の3本の接地電流が平等であるか不平等
でおるかによって事故区間を検出する方法であり、クロ
スボンド点に関しては平等、不平等の判定を事故区間か
らある区間離れて平等電流が流れるクロスボンド点の3
本のクロスボンド電流の1本を伯の2本と逆相で取出し
て電流センサーで検出し、検出した事故電流出力が事故
電流の1/2を10としたとき、略Hoか略I○/3又
はそれ以下かの大さ゛ざの差によって事故区間を判別す
るようにしたもの、市るいは接地点に関しては平等、不
平等の判定を1接地点の接地線電流の1本を他の2本と
逆相でとり出して電流センサーで検出し、検出した事故
電流出力が略2/3 I 0以上でおるかそれよりいち
じるしく小さいかにJこつて事故区間を判別するように
したものあるいはこれらの両方を組合せて事故区間の判
別を行なうようにしたものである。
<Means for Solving the Problems> In order to solve the above-mentioned problems, the present invention provides a power transmission line including a cross-bond connection, in which a metal sheath return current of a ground fault current is connected to a cross-bond wire or to the ground. This method detects fault sections based on whether the three cross bond currents at one cross point or the three ground currents at one ground point are equal or unequal. Regarding the points, the judgment of equality and inequality is made by using 3 cross bond points where an equal current flows at a certain distance from the accident area.
One of the main cross-bond currents is taken out in the opposite phase to the two wires, and detected by a current sensor.If the detected fault current output is 1/2 of the fault current, then it is approximately Ho or approximately I○/ The accident section is determined by the difference in size of 3 or less, and the equality and inequality of cities or grounding points is determined by comparing one grounding wire current at one grounding point to the other two. The fault section is determined by taking out the fault current output in reverse phase and detecting it with a current sensor, and determining whether the detected fault current output is approximately 2/3 I 0 or more or significantly smaller than that. The accident area is determined by combining both methods.

〈作用〉 並列する電力ケーブルの金属シースを各絶縁ジョインh
 N Jの部分においてクロスボンド線で接続した状態
で、地絡事故が発生すると、先ず事故電流の1/2のI
oを見つけ、しかるのうその近傍のクロスボンド点にお
いては、電流セン1ノ゛−に対し、3本のクロスボンド
電流の1本を他の2本と逆相でとり出し、このクロスボ
ンド点のクロスボンド電流が、略■OかICl3かを見
つけ、接地点においては3本の接地線電流の1本を他の
2木と逆相でとり出し、この接地点の接地電流が2/3
Io内外であるか非常に小ざいかを見つりで事故区間を
検出するものである。
<Function> Connect the metal sheaths of the parallel power cables to each insulated joint h.
If a ground fault occurs with the NJ part connected by a cross bond wire, first I
At the cross-bond point near the lie, one of the three cross-bond currents is taken out with the phase opposite to the other two for the current sensor 1 node, and this cross-bond point is Find out whether the cross-bond current is approximately ■O or ICl3, and at the grounding point, take out one of the three grounding wire currents with the opposite phase to the other two, and the grounding current at this grounding point is 2/3
The accident area is detected by determining whether it is within or outside Io or is very small.

〈実施例〉 以下、この発明の実施例を添付図面にもとづいて説明す
る。以下、まずクロスボンド点を中心にして説明する。
<Example> Hereinafter, an example of the present invention will be described based on the accompanying drawings. In the following, explanation will be given first focusing on the cross bond points.

第1図のように、長距離電力線路において、並列する3
相の電力ケーブル△、B、Cは絶縁ジヨイントIJで区
切られた金属シースが隣接する電力ケーブルの電極シー
スと3本のクロスボンド線11.12.13によって接
続されている。
As shown in Figure 1, in a long-distance power line, three
Phase power cables Δ, B, and C have metal sheaths separated by insulating joints IJ and connected to electrode sheaths of adjacent power cables by three cross bond wires 11, 12, and 13.

上記各クロスボンド点において事故電流を検出する電流
セン1ノ14を配置し、このセン1ノ゛−14に対して
1木のクロスボンド線13を他の2本のクロスボンド線
11.12と逆相で取出しておく。
A current sensor 1-14 for detecting fault current is arranged at each of the above-mentioned cross-bond points, and one cross-bond wire 13 is connected to the other two cross-bond wires 11 and 12 for this sensor 1-14. Take it out in reverse phase.

第1図は長距離電力線路のクロスボンドと事故点及び金
属シース帰路電流の関係を示している。
FIG. 1 shows the relationship between cross-bonds, fault points, and metal sheath return current in a long-distance power line.

なお、導体電流は記していないと共に、ジヨイントの両
端の金属シース間に絶縁の施されていない接地ジヨイン
トNJにおいて金属シースは接地されている。いま、絶
縁ジヨイントIJ、IJ間において電力ケーブルAに地
絡事故が起きたとすると、事故点Xから両側に2Ioの
事故電流が■○づつ両側に分かれて進むことになり、金
属シースには第1図に一点鎖線で示す如く事故電流■0
が流れることになり、事故区間の接地ジョイン]〜IJ
−1、IJ+1から以遠は各相の金属シースに略同−の
事故電流が平均的に略同相的に帰って行く。
Note that the conductor current is not shown and the metal sheath is grounded at the ground joint NJ where no insulation is provided between the metal sheaths at both ends of the joint. Now, if a ground fault occurs in power cable A between insulating joints IJ and IJ, a fault current of 2Io will separate from the fault point X to both sides, and the metal sheath will have Fault current ■0 as shown by the dashed line in the figure
will flow, and the grounding join in the accident section]~IJ
-1, IJ+1 and beyond, fault currents of approximately the same magnitude return to the metal sheaths of each phase in approximately the same phase on average.

従って、隣接する接地ジヨイントNJ−1、NJ + 
1以遠ではクロスボンド線11.12.13には事故電
流の1/2の10の1/3の同相帰路電流が流れて行く
ことになる。
Therefore, the adjacent ground joints NJ-1, NJ +
1 and beyond, an in-phase return current of 1/10, which is 1/2, of the fault current flows through the cross bond lines 11, 12, and 13.

しかるに、事故点Xの両どなりの絶縁ジョインl〜IJ
−1、IJ+1は事故相とつながるクロスボンド線にの
み事故大電流がそのままの大きざで流れる。従って上記
クロスボンド線3本は大ぎな不平衡を生じる。
However, the insulation join l to IJ on both sides of the accident point
-1 and IJ+1, the fault large current flows with the same magnitude only in the cross bond wire connected to the fault phase. Therefore, the three cross bond lines described above cause a large unbalance.

次に、第2図は接地ジヨイントIJと絶縁ジヨイントN
Jの間で電力ケーブルAに事故が生じた場合を示してい
る。
Next, Figure 2 shows the grounding joint IJ and the insulation joint N.
This shows a case where an accident occurs in power cable A between cables A and J.

この場合も第1図の場合の説明より、接地ジヨイントN
J−1と絶縁ジヨイントIJ+1間で事故が生じると、
2列の絶縁ジヨイントIJ+1、IJ+2のクロスボン
ド線の1本に事故電流1゜が第2図一点鎖線の如く流れ
、クロスボンド線11.12.13にアンバランスが生
じる。
In this case as well, from the explanation for the case in Figure 1, the grounding joint N
If an accident occurs between J-1 and insulation joint IJ+1,
A fault current of 1° flows through one of the cross bond wires of the two rows of insulating joints IJ+1 and IJ+2 as shown by the dashed line in FIG. 2, causing an imbalance in the cross bond wires 11, 12, and 13.

前記第1図及び第2図は地絡事故発生の全てのケースを
表わしており、全てのケースにおいて、クロスボンド線
11.12.13間のアンバランス電流を検出すれば、
あとは演算により事故点の区間を割り出せることが分か
る。又は、事故点にもっとも近い両となりの2つのNJ
の接地線の場合は、事故電流の流れ出る接地線と事故電
流の流れ込む他の2本の接地線に流れる事故電流の大き
さがかわり、かつ位相もほぼ完全に180°近くかわる
ことから事故相事故点の判別が可能となる。
The above-mentioned Figures 1 and 2 represent all cases of ground fault occurrence, and in all cases, if unbalanced current between cross bond wires 11, 12, and 13 is detected,
It turns out that the area of the accident point can be determined by calculation. Or the two NJs closest to the accident point.
In the case of a grounding wire, the magnitude of the fault current flowing in the grounding wire from which the fault current flows and the other two grounding wires into which the fault current flows change, and the phase also changes almost completely by nearly 180 degrees, so it is a fault phase fault. It becomes possible to distinguish points.

さて、一般には、事故相の判別には、線路の両端に導体
電流測定用のCT又は光磁界センサー等を取付けて各相
毎に導体電流を測定するのが通例であるから事故相の導
体電流が異常に増えることによって容易に判別できる。
Now, generally speaking, to determine the fault phase, it is customary to install CT or optical magnetic field sensors for measuring conductor current at both ends of the line and measure the conductor current for each phase. It can be easily identified by an abnormal increase in

あるいは3相交流の事故相を除く健全2相は送電端で常
時電圧に比して異常に高い事故電圧を生じ、逆に事故相
は以上に低い電圧を示すから容易に事故相の判別は可能
である。
Alternatively, two healthy phases of three-phase AC, excluding the fault phase, produce an abnormally high fault voltage at the transmission end compared to the normal voltage, and conversely, the fault phase shows a much lower voltage, so it is possible to easily identify the fault phase. It is.

従って、事故区間を判別してやれば、上記線路両端での
事故相判別と組合わせることにJ:す、事故区間と事故
相が判別できることになる。
Therefore, if the accident section is determined, the accident section and accident phase can be determined by combining the above-mentioned accident phase determination at both ends of the line.

第3図と第4図は、前記事故区間の判別を行なうための
クロスボンド線11.12.13と電流センサー14の
組合せ構造を例示している。
3 and 4 illustrate a combination structure of the cross bond wires 11, 12, 13 and the current sensor 14 for determining the accident section.

第3図に示す例は、各々のクロスボンド線11.12.
13に0丁を1個づつ取付り、この3個を直列に結線し
て出力を取出している。図示のように、事故時に平等同
相事故電流が流れる区間のクロスボンド線の2本の作動
磁界がキャンセルすることになり、出力としては■0/
3が出ることになる。
In the example shown in FIG. 3, each cross bond line 11.12.
One 0-piece is attached to 13, and these three are connected in series to take out the output. As shown in the figure, in the event of an accident, the two working magnetic fields of the cross bond wires in the section where equal in-phase fault current flows cancel, and the output is ■0/
3 will come out.

第4図の例は、3本のクロスボンド線11.12.13
を1個のCTに通す場合でおり、上記の通り事故時に平
等クロスボンド電流が流れる区間の絶縁ジヨイントの3
本のクロスボンド線の少なくとも1本は逆向きに流れる
ようにCTを貫通ざUる。
The example in Figure 4 has three cross bond lines 11.12.13.
is passed through one CT, and as mentioned above, 3 of the insulation joints in the section where the equal cross bond current flows in the event of an accident.
At least one of the cross-bond wires passes through the CT so as to flow in the opposite direction.

上記のように、クロスボンド線11.12.13に対し
て電流センサー14を組合ぜてdUGプば前記第1図や
第2図で説明した事故発生時において、不平衡、即ら、
1本のクロスボンド線に全事故帰路電流の1/2のIo
が流れる区間の絶縁ジヨイントIJのクロスボンド線で
は、第5図の如くなり、第3図と第4図は共にIo相当
の出力が出ることになる。
As mentioned above, if the current sensor 14 is combined with the cross bond wires 11, 12, and 13 and the dUG is applied, unbalanced
Io of 1/2 of the total fault return current in one cross bond wire
The cross bond line of the insulating joint IJ in the section where the current flows is as shown in FIG. 5, and in both FIGS. 3 and 4, an output equivalent to Io is output.

なJ5、全てのクロスボンド点で正確に略Io/3を検
出しなくても、3本のクロスボンド線の電流が事故電流
の1/2のIoでおる1本とOである2本の組合せであ
るクロスボンド点さえ見つければ、その近傍のクロスボ
ンド点で全てのクロスボンド線電流がIo/3か更にI
o2本と02本の組合せかを調べればすむから、要する
にIoが1木のクロスボンド線に流れるクロスボンド点
を見つ(プることであることはいうまでもない。
J5, even if approximately Io/3 is not detected accurately at all cross-bond points, the current of the three cross-bond wires is 1/2 of the fault current, one with Io and two with O. If you find a cross bond point that is a combination, all the cross bond line currents at the nearby cross bond points will be Io/3 or even I
All you have to do is check whether it is a combination of o2 and 02, so it goes without saying that the key is to find a cross bond point where Io flows into one cross bond line.

接地点の場合は、同じく第3図または第4図の通り(似
し、矢印方向に接地点がおるものとする)に接地電流を
とり出すものとずれば第1図の通り、事故点にもっとも
近いとなり合う2つの接地点の接地線には、1本から流
出するほぼ2/31oと他の2本には流入するほぼ1/
3■0の電流が流れるから各々のキャンセル又は加算効
果から電流センサーには、2/3Ioが又は4/3Io
が流れることになる。この2組以外のN Jではほとん
ど接地線に事故電流が流れながら、非常に小さな電流し
か検知されない。
In the case of a grounding point, as shown in Figure 3 or 4 (similarly, the grounding point is placed in the direction of the arrow), the grounding current can be taken out at the point of failure, as shown in Figure 1. The grounding wires of the two grounding points closest to each other have approximately 2/31o flowing out from one and approximately 1/31o flowing into the other two.
Since a current of 3.0 flows, the current sensor has 2/3Io or 4/3Io due to each cancellation or addition effect.
will flow. In NJs other than these two sets, most fault currents flow through the grounding wires, but only very small currents are detected.

以上により不平衡クロスボンド事故電流あるいは不平衡
接地線事故電流の流れる区間は検出でき、これに基づい
て電力伝送線路の事故区間を2つの相隣り合うジヨイン
トの区間単位で判別できる。
As described above, the section where the unbalanced cross-bond fault current or the unbalanced ground line fault current flows can be detected, and based on this, the fault section of the power transmission line can be determined in units of sections of two adjacent joints.

なおりロスボンド線あるいは接地線に組合わせる電流セ
ンサーは、第3図、第4図の場合とも、CTに対してそ
のままファラデイー効果を有する光磁界センサーにおぎ
かえることもできるし、第6図の如く、リング状の磁気
コアー15の一部を切除し、そこへ上記光磁界センサ−
16を入れてもよく、又ホール素子を光磁界センサーの
かわりとすることもできる。
In addition, the current sensor combined with the loss bond wire or the ground wire can be directly replaced with an optical magnetic field sensor that has a Faraday effect on CT in both cases of Fig. 3 and Fig. 4, or as shown in Fig. 6. , a part of the ring-shaped magnetic core 15 is cut out, and the optical magnetic field sensor is inserted therein.
16 may be inserted, or a Hall element may be used in place of the optical magnetic field sensor.

更に、CTを用いる場合、その出力を0PGWの光CT
の如く、LEDの発光を介して光ファイバーに伝送して
もよい。
Furthermore, when using a CT, its output is 0 PGW optical CT.
The light may be transmitted to an optical fiber via light emitted from an LED, as in the example shown in FIG.

〈効果〉 以上のように、この発明によると、並列する電力ケーブ
ルの金属シースを接続する3本のクロスボンド線あるい
は1接地点の3本の接地線の1本を他の2木と逆相で取
出して検出し、クロスボンド点では検出した事故電流出
力が事故電流の1/2をIoとしたとき、略Ioか略■
o/3又はそれ以下かの大きざの差によって事故区間を
判別するようにし、接地点では検出した事故電流出力が
略2/3以上であるかそれよりいちじるしく小さい値で
あるかによって事故区間を判別するようにしたので、事
故電流の大きざの差によるオン、オフ的判断で事故区間
が検出でき、1個1個のCTによる事故区間前後の複雑
な位相検出比較回路が不要となる。又相隣り合う■J〜
I J間はもとよりNJ〜IJ間の場合の区間判別も接
地線電流を測定するから可能となる。
<Effects> As described above, according to the present invention, one of the three cross bond wires connecting the metal sheaths of parallel power cables or the three ground wires of one grounding point is connected to the other two wires in reverse phase. When the fault current output is taken out and detected at the cross bond point and Io is 1/2 of the fault current, it is approximately Io or approximately ■
The fault area is determined based on the difference in size between o/3 or less, and at the grounding point, the fault area is determined based on whether the detected fault current output is approximately 2/3 or more or significantly smaller than that. Since the discrimination is made, the fault section can be detected by on/off judgment based on the difference in the magnitude of the fault current, and complicated phase detection and comparison circuits before and after the fault section using each CT are not required. Also next to each other ■J~
It is possible to determine the section not only between I and J but also between NJ and IJ by measuring the ground line current.

また、1つのクロスポンド点間るいは接地点、即も、3
相3本のクロスボンド線おるいは接地線に1個のCTで
すませることも可能でおり、CTの使用個数を減少させ
ることができる経済的な効果と共に、小型で信頼性の高
い事故区間判別を実現することができる。
Also, between one cross pound point or ground point, immediately 3
It is also possible to use one CT for each of the three phase cross-bond wires or the ground wire, which has the economical effect of reducing the number of CTs used, as well as providing compact and highly reliable fault area identification. can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は長距離電力送電システムの絶縁ジヨイント間で
地絡事故が生じた場合の説明図、第2図は同上における
絶縁ジヨイントと接地ジヨイント間で地I8事故が生じ
た場合の説明図、第3図は電流センサーの例を示[四重
、第4図は同上の他の例を示す説明図、第5図はクロス
ボンド線に流れる電流の関係を示す説明図、第6図は電
流センンサーの更に他の例を示す説明図、第7図は従来
の判別方法を示す説明図である。
Figure 1 is an explanatory diagram of the case where a ground fault occurs between the insulating joints of a long-distance power transmission system. Figure 3 shows an example of a current sensor [quadruple, Figure 4 is an explanatory diagram showing another example of the same as above, Figure 5 is an explanatory diagram showing the relationship between the current flowing in the cross bond wire, and Figure 6 is a current sensor FIG. 7 is an explanatory diagram showing still another example of the conventional discrimination method.

Claims (3)

【特許請求の範囲】[Claims] (1)クロスボンド接続を含む電力伝送線路であって、
地絡電流の金属シース帰路電流をクロスボンド線又は接
地線から検出し、1クロスボンド点の3本のクロスボン
ド電流あるいは1接地点の3本の接地線電流が平等であ
るか不平等であるかによって事故区間を検出する方法で
あり平等、不平等の判定を事故区間からある区間離れて
平等電流が流れるクロスボンド点の3本のクロスボンド
電流の1本を他の2本と逆相で取出して電流センサーで
検出し、検出した事故電流出力が事故電流の1/2をI
oとしたとき、Ioか略Io/3又はそれ以下かの大き
さの差によつて事故区間を判別すること又は1接地点の
接地線電流の1本を他の2本と逆相でとり出して電流セ
ンサーで検出し、検出した事故電流出力が略2/3Io
以上であるかそれよりいちじるしく小さいかによって事
故区間を判別すること、あるいはこれらの両方を組合せ
て事故区間を判別することを特徴とする電力ケーブルの
事故区間判別方法。
(1) A power transmission line including a cross bond connection,
Detects the metal sheath return current of the ground fault current from the cross bond wire or the ground wire, and determines whether the three cross bond currents at one cross bond point or the three ground wire currents at one ground point are equal or unequal. This is a method of detecting an accident section based on whether the fault is equal or unequal.One of the three cross-bond currents at the cross-bond point where an equal current flows at a certain distance from the accident section is set in reverse phase to the other two. It is taken out and detected by a current sensor, and the detected fault current output is 1/2 of the fault current.
o, the fault section can be determined based on the difference in size between Io and approximately Io/3 or less, or one of the grounding wire currents at one grounding point is taken in the opposite phase to the other two wires. The detected fault current output is approximately 2/3 Io.
A method for determining an accident section of a power cable, characterized in that an accident section is determined based on whether it is greater than or significantly smaller than that, or a combination of both is used to determine an accident section.
(2)クロスボンド電流あるいは接地線電流の1本を他
の2本と逆相で取出して検出する電流センサーが各クロ
スボンド線あるいは各接地線にCTを取付け3個のCT
を直列に結線して出力を取出す特許請求の範囲第1項に
記載の電力ケーブルの事故区間判別方法。
(2) A current sensor that extracts and detects one of the cross bond currents or ground wire currents in the opposite phase to the other two has a CT attached to each cross bond wire or each ground wire, and three CTs.
A method for determining an accident section of a power cable according to claim 1, wherein the power cables are connected in series to obtain an output.
(3)クロスボンド電流あるいは接地線電流の1本を他
の2本と逆相で取出して検出する電流センサーが、少な
くとも1本のクロスボンド線あるいは接地線を他の2本
に対して逆向きに流れるようにCTを貫通させて出力を
取出す特許請求の範囲第1項に記載の電力ケーブルの事
故区間判別方法。
(3) A current sensor that extracts and detects one of the cross-bond currents or ground wire currents in a phase opposite to the other two wires has at least one cross-bond wire or ground wire in the opposite direction to the other two wires. The method for determining an accident section of a power cable according to claim 1, wherein the output is extracted by passing the CT through the CT so that the current flows through the CT.
JP9897486A 1986-04-28 1986-04-28 Discriminating method for accident section of power cable Pending JPS62255880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9897486A JPS62255880A (en) 1986-04-28 1986-04-28 Discriminating method for accident section of power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9897486A JPS62255880A (en) 1986-04-28 1986-04-28 Discriminating method for accident section of power cable

Publications (1)

Publication Number Publication Date
JPS62255880A true JPS62255880A (en) 1987-11-07

Family

ID=14234004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9897486A Pending JPS62255880A (en) 1986-04-28 1986-04-28 Discriminating method for accident section of power cable

Country Status (1)

Country Link
JP (1) JPS62255880A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295275A (en) * 1988-09-30 1990-04-06 Hitachi Cable Ltd Monitoring device for insulation deterioration of cable line
KR100477888B1 (en) * 2002-05-27 2005-03-18 엘지전선 주식회사 Display device of sheath circulating current for underground transmission cable
KR100691728B1 (en) 2004-09-30 2007-03-12 이관우 The Measuring Method of the Unperfected Circuiting Current of Underground Cable
KR102428537B1 (en) * 2021-12-27 2022-08-04 중앙제어 주식회사 Current unbalance detection device for cables connected in parallel, and electric vehicle charger having the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100150A (en) * 1976-02-17 1977-08-22 Tokyo Electric Power Co Inc:The Failure section detecting method of cable line

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100150A (en) * 1976-02-17 1977-08-22 Tokyo Electric Power Co Inc:The Failure section detecting method of cable line

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295275A (en) * 1988-09-30 1990-04-06 Hitachi Cable Ltd Monitoring device for insulation deterioration of cable line
KR100477888B1 (en) * 2002-05-27 2005-03-18 엘지전선 주식회사 Display device of sheath circulating current for underground transmission cable
KR100691728B1 (en) 2004-09-30 2007-03-12 이관우 The Measuring Method of the Unperfected Circuiting Current of Underground Cable
KR102428537B1 (en) * 2021-12-27 2022-08-04 중앙제어 주식회사 Current unbalance detection device for cables connected in parallel, and electric vehicle charger having the same

Similar Documents

Publication Publication Date Title
KR100822988B1 (en) Fault type selection system for identifying faults in an electric power system
JP3808624B2 (en) System protection relay device
EP1074849A2 (en) Fault detection in electrical transmission lines
JPS62255880A (en) Discriminating method for accident section of power cable
JPS62255881A (en) Discriminating method for accident section of power cable
JP4215656B2 (en) Ground fault detection device and ground fault detection method
JPS62265578A (en) Detecting method for accident section of power cable
JP2568097B2 (en) Power cable accident section detection method
JPH04220573A (en) Low-voltage system line wire insulation monitoring method
RU41926U1 (en) DEVICE FOR PROTECTION AGAINST SINGLE-PHASE EARTH CLOSES IN NETWORKS WITH INSULATED NEUTRAL
JP2885932B2 (en) Transmission line fault section identification system
JPS62261078A (en) Detection of fault point for cable
JP3260155B2 (en) Method and apparatus for detecting ground fault direction of transmission and distribution lines
JP2919866B2 (en) Fault location method and device
JPS6355472A (en) Detecting method for accident section of power cable
JP2002315180A (en) Current optical differential system
JP2002152959A (en) Power cable line
CN116359667A (en) Online detection method and system for typical defects of high-voltage transmission cable grounding system
JPS63201572A (en) Accident point detection system
KR100457260B1 (en) measuring method of load current on po- wer cable
JP2732000B2 (en) Insulation degradation detector
JP2005158810A (en) Zero-phase current transformer
JPH0222575A (en) Direction decision type fault current passage display device
JPH03167486A (en) Method for locating ground fault section of wire shield power cable
JPH03270633A (en) Ground relay device