JP2002315180A - Current optical differential system - Google Patents

Current optical differential system

Info

Publication number
JP2002315180A
JP2002315180A JP2001109531A JP2001109531A JP2002315180A JP 2002315180 A JP2002315180 A JP 2002315180A JP 2001109531 A JP2001109531 A JP 2001109531A JP 2001109531 A JP2001109531 A JP 2001109531A JP 2002315180 A JP2002315180 A JP 2002315180A
Authority
JP
Japan
Prior art keywords
current
sensor
differential system
phase
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001109531A
Other languages
Japanese (ja)
Inventor
Yoichiro Tashiro
洋一郎 田代
Kiyoshi Kurosawa
潔 黒澤
Kenji Ogawara
健治 大河原
Shogo Miura
祥吾 三浦
Masao Hori
政夫 堀
Kiyohisa Terai
清寿 寺井
Kinichi Sasaki
欣一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2001109531A priority Critical patent/JP2002315180A/en
Publication of JP2002315180A publication Critical patent/JP2002315180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem of a current optical differential system that a transmission line and a signal processing section isolated each other are required. SOLUTION: The current optical differential system comprises a plurality of photocurrent sensors 113, a transmission line 112 connecting them in series, and a signal processing section 115 for inputting light from a light source section 111 to the transmission line 112 and detecting a failure of an objective conductor based on the quantity of light detected by each sensor wherein the sensors fixed to respective conductors separated into three-phases are connected entirely in series such that the incident light from the light source is outputted as a sample quantity Ik based on the following formula thus detecting any fault in three-phases. Ik =(Ka1 Ia1 +Kb1 Ib1 +Kc1 Ic1 +K01 I01 )+(Ka2 Ia2 +Kb2 Ib2 +Kc2 Ic2 +K02 I02 )+...(Kan Ian +Kbn Ibn +Kcn Icn +K0n I0n ), where Ia(square) , Ib(square) , Ic(square) , I0(square) : a, b, c three-phase current values and zero-phase current value of (square)-th photocurrent sensor. Ka(square) , Kb(square) , Kc(square) , K0(square) : coefficients for a, b, c three-phase current values and zero-phase current value of (square)-th photocurrent sensor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力流通設備等に
おいて導体内に発生した故障を検出する電流光差動シス
テムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current-optical differential system for detecting a fault occurring in a conductor in a power distribution facility or the like.

【0002】[0002]

【従来の技術】図7,図8,図9に従来の電流光差動シ
ステムの例を示す。図7は各相毎に構成されている例
で、今A相について説明する。他のB相,C相はA相と
同じ動きをする。光源部711より直線偏光の光が射出
され、伝送路部712と同一感度のセンサ部713を複
数個直列に接続したセンサ群714を通過することによ
り、センサ群714の中のセンサ部713を貫通する電
流の差動電流を反映した出力光を出力する。
2. Description of the Related Art FIGS. 7, 8 and 9 show examples of a conventional current optical differential system. FIG. 7 shows an example in which each phase is configured, and the phase A will now be described. The other phases B and C make the same movement as the phase A. Linearly polarized light is emitted from the light source section 711 and passes through a sensor group 714 in which a plurality of sensor sections 713 having the same sensitivity as the transmission path section 712 are connected in series, and penetrates the sensor section 713 in the sensor group 714. The output light reflects the differential current of the output current.

【0003】出力光は信号処理部715へ入力され、差
動電流相当の入力光が定められた感度に達していれば、
センサ部713によって囲まれた導体に故障があると判
別し、出力部716より外部に信号を出力する。図8
は、図7の各相の信号処理部715の出力をまとめ処理
を行ない、信号を出力する出力処理部717を追加した
構成例である。
The output light is input to a signal processing unit 715, and if the input light equivalent to the differential current has reached a predetermined sensitivity,
It is determined that the conductor surrounded by the sensor unit 713 has a failure, and a signal is output from the output unit 716 to the outside. FIG.
Is an example of a configuration in which the outputs of the signal processing units 715 of each phase in FIG. 7 are combined, and an output processing unit 717 that outputs a signal is added.

【0004】図9に図7のセンサ群714の例を示す。
a相,b相,c相の三相に分離された導体920には、
夫々いくつかの引き出し口があり、その引出し口には夫
々I a1,Ia2,…,Ian,Ib1,Ib2,…,Ibn
c1,Ic2,…,Icnという電流が流れているとする。
FIG. 9 shows an example of the sensor group 714 shown in FIG.
The conductor 920 separated into three phases of a phase, b phase, and c phase includes:
Each has several drawers, and the drawers
Each I a1, Ia2, ..., Ian, Ib1, Ib2, ..., Ibn,
Ic1, Ic2, ..., IcnIs flowing.

【0005】保護範囲とする導体920の全ての引き出
し口には、ファラデー効果によってそこに流れる電流に
比例して偏波面方位が回転する同一感度のセンサ921
を巻きつけ、センサ921の両端には直線偏光から円偏
光に変換、又はその逆変換を行なう光学素子923を取
り付け、各センサ921の光学素子923間を偏波面方
位を維持する光伝送路922により、各相毎にセンサ9
21を結合することによりシステムを構成する。
The same sensitivity sensor 921 whose polarization plane direction rotates in proportion to the current flowing therethrough due to the Faraday effect is provided at all the outlets of the conductor 920 to be protected.
And optical elements 923 that convert linearly polarized light into circularly polarized light or vice versa are attached to both ends of the sensor 921, and the optical transmission path 922 that maintains the polarization plane orientation between the optical elements 923 of each sensor 921. , Sensor 9 for each phase
The system is configured by combining the two.

【0006】ここで、三相のうちa相を代表して例をと
ると、システムの一方の端部となる偏波面方位を維持す
る光伝送路922より入射した直線偏波光は、光学素子
923を通過することにより直線偏波光から円偏波光に
変換されて、ファラデー効果を持つセンサ921へ入射
される。センサ921へ入射された円偏波光は、そのセ
ンサ921の取り付けられた導体920に流れる電流I
□n に応じて偏波面方位が回転し、光学素子923にて
円偏波光から直線偏波光に変換されて光伝送路922へ
入射する。
Here, taking the example of the phase a as a representative of the three phases, the linearly polarized light incident from the optical transmission line 922 that maintains the polarization plane orientation, which is one end of the system, is the optical element 923 , Is converted from linearly polarized light into circularly polarized light, and is incident on a sensor 921 having a Faraday effect. The circularly polarized light that has entered the sensor 921 has a current I flowing through a conductor 920 to which the sensor 921 is attached.
The polarization plane direction is rotated according to □ n, and the light is converted from circularly polarized light into linearly polarized light by the optical element 923 and enters the optical transmission line 922.

【0007】これと同様に次々とa相導体920に取り
付けられたセンサ921を通過した光は、システムのも
う一方の端部となる偏波面方位を維持する光伝送路92
2により、(1)式に基く差動電流Idを反映した直線
偏波光を出力する。
Similarly, the light that has passed through the sensor 921 attached to the a-phase conductor 920 one after another is transmitted to the optical transmission line 92 that maintains the polarization plane orientation at the other end of the system.
By (2), a linearly polarized light reflecting the differential current Id based on the equation (1) is output.

【数2】 Id=Ia1+Ia2+…+Ian ………………(1) Ia1+Ia2+…+Ian=0 ………………(2) Ia1+Ia2+…+Ian≠0 ………………(3) ここで、 Ia□ :第□光電流センサのa相電流値。[Number 2] Id = I a1 + I a2 + ... + I an .................. (1) I a1 + I a2 + ... + I an = 0 .................. (2) I a1 + I a2 + ... + I an ≠ 0 (3) where I a □ : a-phase current value of the □ th photocurrent sensor.

【0008】例えば、保護区間内の導体に事故が内在し
ていなければ、キルヒホッフの法則により(2)式とな
るが、a相導体内に事故が内在している場合は(3)式
となる。このような方法をb相,c相にも用いることに
より導体内の故障検出を行なうことができる。
For example, if an accident does not exist in the conductor in the protection section, equation (2) is obtained according to Kirchhoff's law, but if an accident exists in the a-phase conductor, equation (3) is obtained. . By using such a method for the b-phase and the c-phase, a fault in the conductor can be detected.

【0009】これらは、例えば電気学会 保護リレーシ
ステム研究会論文PSR−99−8「光CT技術を応用
した電流差動保護システムの基礎検討」や、平成12年
電気学会全国大会6−295「鉛ガラスファイバ型光C
Tを用いた光位相検出方式電流差動保護演算システム」
等に示されるようなループ型や、電学論C,118巻5
号,平成10年「捻り二重被覆ファイバを用いた光変流
器の開発」のような反射型の形態で実現可能である。
These are described, for example, in the Institute of Electrical Engineers of Japan, Protection Principles of Protection Relay Systems, PSR-99-8, "Basic Study on Current Differential Protection Systems Applying Optical CT Technology," and in the National Institute of Electrical Engineers of Japan, 6-295, "Lead. Glass fiber type light C
Optical phase detection method current differential protection operation system using T "
Etc., such as the loop type shown in, etc.
No. 1998, it can be realized in a reflection type such as "Development of an optical current transformer using a twisted double coated fiber".

【0010】[0010]

【発明が解決しようとする課題】しかしながら、この電
流光差動システムは、三相に分離した導体単位で光電流
センサを直列接続することから、三相に分離した伝送路
と信号処理部とを必要とした。本発明は上記課題を解決
するためになされたものであり、これらの伝送路と信号
処理部とを従来より削減しつつ、故障検出能力は従来例
と同等の性能を得ることの可能な電流光差動システムを
提供することを目的としている。
However, in this current-optical differential system, a photocurrent sensor is connected in series for each conductor separated into three phases, so that a transmission line and a signal processing section separated into three phases are connected. Needed. SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem. It is intended to provide a differential system.

【0011】[0011]

【課題を解決するための手段】本発明の[請求項1]に
係る電流光差動システムは、目的とする導体の故障を検
出できるように配置された複数の光電流センサと、前記
した各センサを直列に接続する伝送路と、この伝送路に
光源となる光の入力と各センサによって変化した光の出
力を受光しその受光量から目的とする導体の故障を検出
する信号処理部とからなる電流光差動システムにおい
て、三相に分離した導体夫々に取り付けた各センサを全
て直列に接続して光源より入射した光が下記(4)式に
基づく標本量Ik となって出力されるようにすることに
より、三相中のいかなる故障も検出するようにした。 記
According to a first aspect of the present invention, there is provided a current optical differential system comprising: a plurality of photocurrent sensors arranged so as to detect a failure of a target conductor; A transmission line that connects sensors in series, and a signal processing unit that receives the input of light serving as a light source and the output of light changed by each sensor in this transmission line, and detects the failure of the target conductor from the received light amount in becomes the current optical differential system, the light incident from the light source by connecting the respective sensor attached to people conductor respectively separated in all three phases in series is output as the sample quantity I k based on the following equation (4) By doing so, any faults in the three phases were detected. Record

【数3】 Ik =(Ka1a1+Kb1b1+Kc1c1+K0101) +(Ka2a2+Kb2b2+Kc2c2+K0202) +…(Kanan+Kbnbn+Kcncn+K0n0n) …………………………(4) ここで、 Ia□ ,Ib□ ,Ic□ ,I0□ :第□光電流センサの
a,b,c三相と零相電流値。 Ka□ ,Kb□ ,Kc□ ,K0□ :第□光電流センサの
a,b,c三相と零相電流値に対する係数。
I k = (K a1 I a1 + K b1 I b1 + K c1 I c1 + K 01 I 01 ) + (K a2 I a2 + K b2 I b2 + K c2 I c2 + K 02 I 02 ) + ... (K an I an + K bn I bn + K cn I cn + K 0n I 0n ) (4) where I a □ , I b □ , I c □ , I 0 □ : the □ th photocurrent A, b, c three-phase and zero-phase current values of the sensor. Ka , Kb □ , Kc □ , K0 : Coefficients for the three-phase and zero-phase current values of the □ th photocurrent sensor.

【0012】本発明の[請求項2]に係る電流光差動シ
ステムは、[請求項1]において、短絡事故と地絡事故
とを個別に判定できるように、光電流センサと伝送路部
と信号処理部を短絡検出用と地絡検出用とで分離して、
導出する標本量Ik を短絡検出用と地絡検出用とで分離
するようにした。
According to a second aspect of the present invention, there is provided a current optical differential system according to the first aspect, wherein the optical current sensor and the transmission line are connected so that a short-circuit fault and a ground fault can be individually determined. The signal processing part is separated for short-circuit detection and ground fault detection,
The specimen amount I k to derive was to be separated by and for detecting short-circuited with a ground fault detecting.

【0013】本発明の[請求項3]に係る電流光差動シ
ステムは、[請求項1]において、標本量Ik の導出に
際して係数Ka□ ,Kb□ ,Kc□ ,K0□ を変えるた
めに、係数に比例して各光電流センサの感度を変えるよ
うにした。
According to a third aspect of the present invention, in the current optical differential system according to the first aspect, coefficients K a □ , K b □ , K c □ , and K 0 □ are used for deriving the sample amount I k. In order to change the sensitivity, the sensitivity of each photocurrent sensor is changed in proportion to the coefficient.

【0014】本発明の[請求項4]に係る電流光差動シ
ステムは、[請求項1]において、標本量Ik の導出に
際して係数Ka□ ,Kb□ ,Kc□ ,K0□ を変えるた
めに、同一感度の光電流センサを係数に比例して巻数を
変えるようにした。
According to a fourth aspect of the present invention, in the current optical differential system according to the first aspect, coefficients K a □ , K b □ , K c □ , and K 0 □ are used for deriving the sample amount I k. In order to change the number of turns, the number of turns of a photocurrent sensor having the same sensitivity is changed in proportion to the coefficient.

【0015】本発明の[請求項5]に係る電流光差動シ
ステムは、[請求項2]において、標本量Ik の導出に
際して係数Ka□ ,Kb□ ,Kc□ ,K0□ を変えるた
めに、係数に比例して各光電流センサの感度を変えるよ
うにした。
In the current optical differential system according to claim 5 of the present invention, in claim 2, coefficients K a □ , K b □ , K c □ , K 0 □ for deriving the sample amount I k. In order to change the sensitivity, the sensitivity of each photocurrent sensor is changed in proportion to the coefficient.

【0016】本発明の[請求項6]に係る電流光差動シ
ステムは、[請求項2]において、標本量Ik の導出に
おいて係数Ka□ ,Kb□ ,Kc□ ,K0□ を変えるた
めに、同一感度の光電流センサを係数に比例して巻数を
変えるようにした。
In the current optical differential system according to claim 6 of the present invention, in claim 2, the coefficients K a □ , K b □ , K c □ , K 0 □ in deriving the sample amount I k. In order to change the number of turns, the number of turns of a photocurrent sensor having the same sensitivity is changed in proportion to the coefficient.

【0017】[0017]

【発明の実施の形態】本発明による電流光差動システム
は、装置構成を従来の電流光差動システムと同様の構成
をしているので、図1を使って改めて本発明に関わる電
流光差動システムの全体構成を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The current-optical differential system according to the present invention has the same configuration as that of the conventional current-optical differential system. Therefore, referring to FIG. The overall configuration of the motion system will be described.

【0018】光源部111より直線偏光の光が伝送路部
112に射出され、伝送路部112は入力光の偏波面を
維持しつつ次のブロックへ光を出力する。伝送路部11
2より光を受けたセンサ部113は、センサ113を貫
通する導体に流れる電流に比例して偏波面を回転させ
る。ここにて偏波面が回転した出力光は伝送路部112
を通じて次のセンサ部113へ入射される。
Linearly polarized light is emitted from the light source 111 to the transmission path 112, and the transmission path 112 outputs light to the next block while maintaining the polarization plane of the input light. Transmission line section 11
The sensor unit 113 receiving the light from 2 rotates the plane of polarization in proportion to the current flowing through the conductor passing through the sensor 113. Here, the output light whose polarization plane is rotated is transmitted to the transmission path unit 112.
Through to the next sensor unit 113.

【0019】最終的にこれらのセンサ113部を複数個
直列に接続したセンサ群114を通過することにより、
センサ群114の中のセンサ部113を貫通する各電流
によって演算される標本量Ikを反映した出力光を出力
する。出力光は信号処理部115へ入力され、この入力
光が定められた感度に達していれば、センサ部113に
よって囲まれた導体に故障があると判別し、出力部11
6より外部に信号を出力する。
Finally, a plurality of these sensors 113 are passed through a group of sensors 114 connected in series,
An output light reflecting a sample amount Ik calculated by each current passing through the sensor unit 113 in the sensor group 114 is output. The output light is input to the signal processing unit 115, and if the input light has reached a predetermined sensitivity, it is determined that the conductor surrounded by the sensor unit 113 has a failure, and the output unit 11
6 to output a signal to the outside.

【0020】(第1の実施の形態)([請求項1]対
応) 図2は図1中のセンサ群114の例を示す。各相に分離
した導体230には、夫々いくつかの引き出し口があ
り、その引出し口には夫々Ia1,Ia2,…,Ian
b1,Ib2,…,Ibn,Ic1,Ic2,…,Icnという電
流が流れているとする。
(First Embodiment) (corresponding to [Claim 1]) FIG. 2 shows an example of the sensor group 114 in FIG. Each of the conductors 230 separated into each phase has several outlets, and the outlets respectively include I a1 , I a2 ,..., I an ,
I b1, I b2, ..., I bn, I c1, I c2, ..., and current is flowing that I cn.

【0021】保護範囲とする導体230の全ての引き出
し口には、ファラデー効果によってそこに流れる電流に
比例して偏波面方位が回転するセンサ231を巻きつ
け、このセンサ231の両端には直線偏光から円偏光に
変換、又はその逆変換を行なう光学素子233を取り付
け、各センサ231の光学素子233間を偏波面方位を
維持する光伝送路232により、全てのセンサ231を
結合することによりシステムを構成する。
A sensor 231 whose polarization plane direction is rotated in proportion to the current flowing therethrough by the Faraday effect is wound around all the outlets of the conductor 230 to be the protection range. A system is configured by attaching an optical element 233 for converting to circularly polarized light or vice versa, and connecting all the sensors 231 by an optical transmission path 232 for maintaining the polarization plane orientation between the optical elements 233 of each sensor 231. I do.

【0022】システムの一方の端部となる偏波面方位を
維持する光伝送路232より入射した直線偏波光は、光
学素子233を通過することにより直線偏波光から円偏
波光に変換されファラデー効果を持つセンサ231へ入
射される。センサ231へ入射された円偏波光は、その
センサ231の取り付けられた導体に流れる電流I n
に応じて予め各種事故が検出できるように決定された比
例定数K□n に応じて偏波面方位が回転する。
The linearly polarized light incident from the optical transmission line 232 that maintains the polarization plane orientation, which is one end of the system, is converted from the linearly polarized light into a circularly polarized light by passing through the optical element 233, and the Faraday effect is obtained. Incident on the sensor 231. The circularly polarized light incident on the sensor 231 is a current I n flowing through a conductor to which the sensor 231 is attached.
, The direction of the plane of polarization rotates according to a proportionality constant K □ n previously determined so that various accidents can be detected.

【0023】そのため、光学素子233にて円偏波光か
ら直線偏波光に変換されて光伝送路232へ入射する。
これと同様に次々と全てのセンサを通過した光は、シス
テムのもう一方の端部となる偏波面方位を維持する光伝
送路232より、前記[数3](4)式に基く標本量I
k となる直線偏波光を出力する。
Therefore, the light is converted from circularly polarized light into linearly polarized light by the optical element 233 and enters the optical transmission line 232.
Similarly, the light that has passed through all the sensors one after another passes through the optical transmission line 232 that maintains the polarization plane orientation at the other end of the system, and the sample amount I based on the above equation (3) (4) is obtained.
Outputs linearly polarized light of k .

【0024】例えば、a,b,c各三相に設置されたセ
ンサの感度を、Ka□ =3,Kb□=2,Kc□ =1,
0□ =0(零相に相当するセンサが無いため)とする
と、保護区間内の導体に事故が内在していなければ、キ
ルヒホッフの法則により、(5)式となるが、a相導体
内に事故が内在している場合は(6)式となるので、導
体内事故無しの場合のIk=0,導体内事故ありの場合
のIk≠0となり、導体内の故障検出を行なうことがで
きる。
For example, the sensitivities of the sensors installed in each of the three phases a, b, and c are expressed as K a □ = 3, K b □ = 2, K c □ = 1,
Assuming that K 0 □ = 0 (because there is no sensor corresponding to zero phase), if there is no accident in the conductor in the protection zone, Equation (5) is obtained according to Kirchhoff's law, (6) when there is an accident in the conductor, Ik = 0 when there is no accident in the conductor, and Ik ≠ 0 when there is an accident in the conductor, and a fault in the conductor can be detected. .

【0025】[0025]

【数4】 Ia1+Ia2+…+Ian=0 Ib1+Ib2+…+Ibn=0 Ic1+Ic2+…+Icn=0 …………………………………(5) Ia1+Ia2+…+Ian≠0 Ib1+Ib2+…+Ibn=0 Ic1+Ic2+…+Icn=0 …………………………………(6)I a1 + I a2 +... + I an = 0 I b1 + I b2 +... + I bn = 0 I c1 + I c2 +... + I cn = 0... I a1 + I a2 +... + I an 0 I b1 + I b2 +... + I bn = 0 I c1 + I c2 +... + I cn = 0 …………………… (6)

【0026】各引出し口においてa,b,c相の電流は
(7)式となり、これを整理すると(8)式となる。こ
こで標本量Ik は(9)式であるから、導体内故障の様
相により、あらゆる値を取り得ることが判る。従って、
k の大きさによって、導体内の故障を判別することが
可能となる。
The currents of the phases a, b, and c at the respective outlets are expressed by the following equation (7). Here, since the sample amount I k is given by the equation (9), it can be understood that any value can be taken depending on the state of the fault in the conductor. Therefore,
The magnitude of I k makes it possible to determine a fault in the conductor.

【数5】 3Ia□ +2Ib□ +1Ic□ ……………(7) 2Ia□ +Ib +3I0□ ……………(8) Ik =Σ2Ia□ +Ib +3I0□ ……………(9)[Expression 5] 3Ia + 2Ib + 1Ic ………… (7) 2Ia + Ib + 3I0 ............ (8) I k = I2Ia + Ib + 3I0 ............ (9)

【0027】本実施の形態によれば、全てのセンサ23
1を直列に接続できることから、従来各相毎に分離して
いた伝送路部や光源部、信号処理部を共有化することが
できるため、運用・保守に優れ、単純ながら従来と同等
のシステムを構築することができる。
According to this embodiment, all the sensors 23
1 can be connected in series, so that the transmission path, light source, and signal processing unit, which were conventionally separated for each phase, can be shared. Can be built.

【0028】(第2の実施の形態)([請求項2]対
応) 図3は第2の実施の形態を示す構成図であり、図3にお
いて図1と同一機能部分については同一符号を付して説
明を省略する。本実施の形態では短絡検出用と地絡検出
用とで光源部111から出力部116までを分離したも
のである。
(Second Embodiment) (corresponding to [Claim 2]) FIG. 3 is a configuration diagram showing a second embodiment. In FIG. 3, the same reference numerals denote the same functional parts as in FIG. And the description is omitted. In this embodiment, the portion from the light source section 111 to the output section 116 is separated for short-circuit detection and ground fault detection.

【0029】本実施の形態によれば、従来各相毎に分離
していた伝送路部や光源部,信号処理部を短絡検出用及
び地絡検出用で共有化することができるので、運用,保
守に優れ、単純ながら従来と同等のシステムを構築する
ことができる。又、地絡電流が小さい系統においても高
感度に検出することが可能となる。
According to the present embodiment, the transmission line section, the light source section, and the signal processing section conventionally separated for each phase can be shared for short-circuit detection and ground fault detection. It is excellent in maintenance and can construct a simple but equivalent system. In addition, it is possible to detect with high sensitivity even in a system with a small ground fault current.

【0030】(第3の実施の形態)([請求項3]対
応) 第3の実施の形態では、前記標本量Ik の導出において
係数Ka□ ,Kb□ ,Kc□ ,K0□ を変えるために、
係数に比例して各光電流センサの感度を変えるようにし
たものである。例えば、各光電流センサの長さが同一と
すれば、Kc□の感度を基準に、Kb□ =2Kc□ ,K
a□ =3Kc□ なる感度のセンサを使用する。
[0030] (Third Embodiment) ([Claim 3] corresponding) the third embodiment, coefficients in the derivation of the specimen amount I k K a □, K b □, K c □, K 0 To change
The sensitivity of each photocurrent sensor is changed in proportion to the coefficient. For example, if the length of each optical current sensor the same, based on the sensitivity of K c □, K b □ = 2K c □, K
Use a sensor with a sensitivity of a □ = 3K c □ .

【0031】本実施の形態によれば、全てのセンサ23
1を直列に接続できることから、従来各相毎に分離して
いた伝送路部や光源部、信号処理部を共有化することが
できるので、運用・保守に優れ、単純ながら従来と同等
のシステムを構築することができる。
According to the present embodiment, all the sensors 23
1 can be connected in series, so that the transmission path, light source, and signal processing unit, which were conventionally separated for each phase, can be shared. Can be built.

【0032】(第4の実施の形態)([請求項4]対
応) 第4の実施の形態では、前記標本量Ik の導出において
係数Ka□ ,Kb□ ,Kc□ ,K0□ を変えるために、
同一感度の光電流センサを係数に比例して巻数を変える
ようにしたものである。例えば、各光電流センサの感度
が同一とし、K c□ の導体に対する巻数をTc すれば、
b□ の導体に対する巻数を2Tc ,K a□ の導体に対
する巻数3Tc となるセンサを使用する。
(Fourth Embodiment) (Claim 4)
A) In the fourth embodiment, the sample amount IkIn the derivation of
Coefficient Ka □ , Kb □ , Kc □ , K0 □ To change
Change the number of turns of a photocurrent sensor with the same sensitivity in proportion to the coefficient
It is like that. For example, the sensitivity of each photocurrent sensor
Are the same and K c □ The number of turns for a conductorcif,
Kb □ The number of turns for a conductor is 2Tc, K a □ Pair of conductors
3T turnscUse a sensor that

【0033】本実施の形態によれば、全てのセンサ23
1を直列に接続できることから、従来各相毎に分離して
いた伝送路部や光源部、信号処理部を共有化することが
できるので、運用・保守に優れ、単純ながら従来と同等
のシステムを構築することができる。
According to this embodiment, all the sensors 23
1 can be connected in series, so that the transmission path, light source, and signal processing unit, which were conventionally separated for each phase, can be shared. Can be built.

【0034】(第5の実施の形態)図4は第5の実施の
形態を示す構成図であり、図4において図3と同一機能
部分については同一符号を付して説明を省略する。本実
施の形態では短絡検出用と地絡検出用として夫々分離さ
れた信号処理部からの出力を夫々入力として信号処理を
行ない、それらを共通の出力処理部117を介して出力
する構成としたものである。本実施の形態によれば、出
力処理部を共通にできるため構成が簡単となる。
(Fifth Embodiment) FIG. 4 is a block diagram showing a fifth embodiment. In FIG. 4, the same reference numerals are given to the same functional portions as in FIG. 3, and the description will be omitted. In the present embodiment, signal processing is performed with the outputs from the signal processing units separated for short-circuit detection and ground fault detection as inputs, and output through a common output processing unit 117. It is. According to the present embodiment, since the output processing unit can be shared, the configuration is simplified.

【0035】(第6の実施の形態)図5は第6の実施の
形態を示す構成図であり、本実施の形態では図3,図4
中のセンサ群114の例を示す。図5に示すように各相
に分離した導体540には、夫々いくつかの引き出し口
があり、その引出し口には夫々Ia1,Ia2,…,I an
b1,Ib2,…,Ibn,Ic1,Ic2,…,Icnという電
流が流れているとする。保護範囲とする導体540の全
ての引き出し口には、ファラデー効果によってそこに流
れる電流に比例して偏波面方位が回転する各相センサ5
41及び零相センサ542を巻きつける。
(Sixth Embodiment) FIG. 5 shows a sixth embodiment.
FIG. 5 is a configuration diagram showing an embodiment, and in this embodiment, FIG.
9 shows an example of a sensor group 114 in the middle. As shown in FIG.
Each of the separated conductors 540 has several outlets.
There are Ia1, Ia2, ..., I an,
Ib1, Ib2, ..., Ibn, Ic1, Ic2, ..., IcnCalled
Suppose the current is flowing. All conductors 540 to be protected
Flow through the Faraday effect
Phase sensor 5 whose polarization plane direction rotates in proportion to the applied current
41 and the zero-phase sensor 542 are wound.

【0036】各相センサ541及び零相センサ542の
両端には直線偏光から円偏光に変換、又はその逆変換を
行なう光学素子543を取り付け、各相センサ541及
び零相センサ542の光学素子543間を偏波面方位を
維持する光伝送路544により全ての各相センサ541
を結合した短絡検出用伝送路と、全ての零相センサ54
2を結合した地絡検出用伝送路によりシステムを構成す
る。
Optical elements 543 for converting linearly polarized light into circularly polarized light or vice versa are attached to both ends of each phase sensor 541 and the zero-phase sensor 542. All the phase sensors 541 are controlled by the optical transmission line 544 that maintains the polarization plane orientation.
And a zero-phase sensor 54
The system is configured by a ground fault detection transmission path obtained by combining the two.

【0037】短絡検出用伝送路と地絡検出用伝送路の夫
々の端部となる偏波面方位を維持する光伝送路544よ
り入射した直線偏波光は、光学素子543を通過するこ
とにより、直線偏波光から円偏波光に変換されてファラ
デー効果を持つセンサ542へ入射される。
The linearly polarized light incident from the optical transmission line 544 that maintains the polarization plane orientation, which is the end of each of the short-circuit detection transmission line and the ground fault detection transmission line, passes through the optical element 543 to form a straight line. The polarized light is converted into circularly polarized light and is incident on a sensor 542 having a Faraday effect.

【0038】センサ542へ入射された円偏波光は、そ
のセンサ542の取り付けられた導体に流れる電流I
□n に応じて、予め各種事故が検出できるように決定さ
れた比例定数K□n に応じて偏波面方位が回転し、光学
素子543にて円偏波光から直線偏波光に変換され光伝
送路544へ入射する。これと同様に次々と全てのセン
サを通過した光は、システムのもう一方の端部となる偏
波面方位を維持する光伝送路544より前記[数3]
(4)式に基く標本量Ik となる直線偏波光を夫々出力
する。
The circularly polarized light incident on the sensor 542 has a current I flowing through a conductor to which the sensor 542 is attached.
□ n , the plane of rotation rotates according to the proportionality constant K □ n determined in advance so that various accidents can be detected, and the optical element 543 converts the circularly polarized light into linearly polarized light to transmit the optical transmission path. 544. Similarly, the light that has passed through all the sensors one after another passes through the optical transmission line 544 that maintains the plane of polarization, which is the other end of the system.
(4) the linearly polarized light respectively outputted as the sample quantity I k based on expression.

【0039】短絡検出用伝送路の出力する標本量Ik
特にIk S,地絡検出用伝送路の出力する標本量Ik
特にIk Gと定義する。ここで、例えば、a,b,c各
三相に設置されたセンサの感度を各相センサを全て同一
感度とし、各引出し口においてa相とc相で逆極性に接
続することにより、a相感度を基準に1とすれば、K
a□ =1,Kb□ =0,Kc□ =−1となる。又、零相
センサの感度を各相センサと同一感度とすれば、零相電
流は、1線地絡事故時に3I0相当流れるため、K0□
=3となる。
Sample amount I output from the short-circuit detection transmission linekTo
Especially IkS, sample amount I output from ground fault detection transmission linekTo
Especially IkDefined as G. Here, for example, each of a, b, and c
The sensitivity of sensors installed in three phases is the same for all phase sensors
Sensitivity, and a-phase and c-phase are connected in opposite polarities at each outlet.
By taking the a-phase sensitivity as 1 as a reference,
a □ = 1, Kb □ = 0, Kc □ = -1. Also, zero phase
If the sensitivity of the sensor is the same as that of each phase sensor,
The flow is equivalent to 3I0 at the time of one-line ground fault, so K0 □ 
= 3.

【0040】保護区間内の導体に事故が内在していなけ
れば、キルヒホッフの法則により、前記[数4](5)
式となるが、a相導体内に事故が内在している場合は前
記[数4](6)式となるので、導体内事故無しの場合
のIk S=0及びIk G=0,導体内事故ありの場合の
1線地絡事故であればIk G≠0となり、短絡事故相当
であれば、Ik S≠0となるので、導体内の故障検出を
行なうことができる。
If there is no accident in the conductor in the protection zone, according to Kirchhoff's law, [Equation 4] (5)
[Equation 4] (6) when there is an accident in the a-phase conductor, so that I k S = 0 and I k G = 0 when there is no accident in the conductor. If there is a fault in the conductor, if a single-line ground fault occurs, I k G ≠ 0, and if it is equivalent to a short-circuit fault, I k S ≠ 0, so that fault detection in the conductor can be performed.

【0041】各引出し口においてa,b,c相の電流は
(10)式となる。標本量Ik S,Ik Gは(11)式
であるから、導体内故障の様相により、あらゆる値を取
り得ることが判る。従って、Ik S及びIk Gの大きさ
によって、導体内の故障を判別することが可能となる。
The currents of the phases a, b, and c at the respective outlets are expressed by the following equation (10). Since the sample amounts I k S and I k G are given by the equation (11), it can be understood that any value can be taken depending on the state of the failure in the conductor. Therefore, it is possible to determine a fault in the conductor based on the magnitudes of I k S and I k G.

【数6】 短絡検出:Ia□ −Ic□ 地絡検出:3I0□ (=3(Ia□ +Ib□ +Ic□ )) ……………………………(10) Ik S=ΣIa□ −Ic□ k G=Σ3I0□ ……………………………(11)[Equation 6] Short circuit detection: Ia □ -Ic Ground fault detection: 3I0 (= 3 ( Ia □ + Ib □ + Ic )) ………………………………………………………… (10) I k S = ΣI a □ −I c □ I k G = Σ3I 0 □ …………………… (11)

【0042】本実施の形態によれば、従来各相毎に分離
していた伝送路部や光源部,信号処理部を短絡検出用及
び地絡検出用で共有化することができるため、運用・保
守に優れ、単純ながら従来と同等のシステムを構築する
ことができる。又、地絡電流が小さい系統においても高
感度に検出することが可能となる。
According to the present embodiment, the transmission path, the light source, and the signal processor, which have been conventionally separated for each phase, can be shared for short-circuit detection and ground fault detection. It is excellent in maintenance and can construct a simple but equivalent system. In addition, it is possible to detect with high sensitivity even in a system with a small ground fault current.

【0043】(第7の実施の形態)([請求項5]対
応) 第7の実施の形態では、短絡事故と地絡事故とを個別に
判定するものにおいて、標本量Ik の導出に際して係数
a□ ,Kb□ ,Kc□ ,K0□ を変えるために、係数
に比例して各光電流センサの感度を変えるようにしたも
のである。本実施の形態によれば、従来各相毎に分離し
ていた伝送路部や光源部,信号処理部を短絡検出用及び
地絡検出用で共有化することができるため、運用・保守
に優れ、単純ながら従来と同等のシステムを構築するこ
とができる。又、地絡電流が小さい系統においても高感
度に検出することが可能となる。
[0043] In the (Seventh Embodiment) ([Claim 5] corresponding) seventh embodiment, in which to determine the short-circuit failure and the ground fault separately, coefficient when deriving the sample quantity I k K a □, K b □, K c □, to alter the K 0 □, it is obtained by proportional to the coefficient to alter the sensitivity of each optical current sensors. According to the present embodiment, the transmission path unit, the light source unit, and the signal processing unit, which have conventionally been separated for each phase, can be shared for short-circuit detection and ground fault detection, so that operation and maintenance are superior Thus, it is possible to construct a system that is simple but equivalent to the conventional one. In addition, it is possible to detect with high sensitivity even in a system with a small ground fault current.

【0044】(第8の実施の形態)([請求項6]対
応) 第8の実施の形態では、短絡事故と地絡事故とを個別に
判定するものにおいて、標本量Ik の導出に際して係数
a□ ,Kb□ ,Kc□ ,K0□ を変えるために、同一
感度の光電流センサを係数に比例して巻数を変えるよう
にしたものである。本実施の形態によれば、従来各相毎
に分離していた伝送路部や光源部,信号処理部を短絡検
出用及び地絡検出用で共有化することができるため、運
用・保守に優れ、単純ながら従来と同等のシステムを構
築することができる。又、地絡電流が小さい系統におい
ても高感度に検出することが可能となる。
[0044] In (Eighth Embodiment) ([Claim 6] corresponding) eighth embodiment, in which to determine the short-circuit failure and the ground fault separately, coefficient when deriving the sample quantity I k K a □, K b □, K c □, to alter the K 0 □, it is obtained so as to vary the number of turns proportional to the photocurrent sensor of the same sensitivity coefficient. According to the present embodiment, the transmission path unit, the light source unit, and the signal processing unit, which have conventionally been separated for each phase, can be shared for short-circuit detection and ground fault detection, so that operation and maintenance are excellent. Thus, it is possible to construct a system that is simple but equivalent to the conventional one. Further, it is possible to detect with high sensitivity even in a system with a small ground fault current.

【0045】(第9の実施の形態)図6は第9の実施の
形態を示す構成図である。図6は第6の実施の形態(図
5)の各導体端部のセンサ取り付け個所における、他の
実施の形態を示す構成図である。図6において図5と同
一機能部分については同一符号を付して説明を省略す
る。
(Ninth Embodiment) FIG. 6 is a block diagram showing a ninth embodiment. FIG. 6 is a configuration diagram showing another embodiment of the sixth embodiment (FIG. 5) at the sensor mounting portion at each conductor end. 6, the same functional portions as those in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted.

【0046】本実施の形態では、保護区間とするGIS
551に接続される、三相分離したケーブル540があ
るとき、そのケーブルを三相分ひとくくりでセンシング
する零相センサ541と三相のうち任意の二相に各相セ
ンサ542を取り付け、夫々を短絡検出用と地絡検出用
の光伝送路544で接続することにより光差動システム
を構成したものである。
In this embodiment, the GIS serving as a protection section
When there is a three-phase separated cable 540 connected to 551, a zero-phase sensor 541 that senses the cable by three phases at a time, and each phase sensor 542 is attached to any two of the three phases, and An optical differential system is configured by connecting the optical transmission line 544 for short-circuit detection and the ground fault detection.

【0047】本実施の形態によれば、従来各相毎に分離
していた伝送路部や光源部,信号処理部を短絡検出用及
び地絡検出用で共有化することができるため、運用・保
守に優れ、単純ながら従来と同等のシステムを構築する
ことができる。又、地絡電流が小さい系統においても高
感度に検出することが可能となる。
According to the present embodiment, the transmission line section, the light source section, and the signal processing section conventionally separated for each phase can be shared for short-circuit detection and ground fault detection. It is excellent in maintenance and can construct a simple but equivalent system. In addition, it is possible to detect with high sensitivity even in a system with a small ground fault current.

【0048】[0048]

【発明の効果】以上説明したように、本発明によれば従
来各相毎に分離していた伝送路部や光源部、信号処理部
を共有化することができるため、運用・保守に優れ、単
純ながら従来と同等のシステムを構築することができ
る。
As described above, according to the present invention, the transmission path, the light source, and the signal processor, which have been conventionally separated for each phase, can be shared, so that operation and maintenance are excellent. A simple but equivalent system can be constructed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る第1の実施の形態を示す全体ブロ
ック図(三相一括標本量適用形)。
FIG. 1 is an overall block diagram (three-phase batch sample amount applicable type) showing a first embodiment according to the present invention.

【図2】図1のセンサ接続の構成図(三相一括標本量適
用形)。
FIG. 2 is a configuration diagram of a sensor connection of FIG. 1 (three-phase batch sample amount applicable type).

【図3】本発明に係る第2の実施の形態を示すブロック
図((短絡検出・地絡検出個別出力)。
FIG. 3 is a block diagram ((short circuit detection / ground fault detection individual output) showing a second embodiment according to the present invention.

【図4】本発明に係る第5の実施の形態を示す構成図
(短絡検出・地絡検出個別検出・一括出力)。
FIG. 4 is a block diagram showing a fifth embodiment according to the present invention (short circuit detection, ground fault detection individual detection, collective output).

【図5】本発明に係る第6の実施の形態を示す構成図
(短絡検出・地絡検出個別検出)。
FIG. 5 is a configuration diagram showing a sixth embodiment according to the present invention (individual detection of short-circuit detection and ground fault detection).

【図6】図5に示すセンサの取付図(短絡検出・地絡検
出個別検出)。
FIG. 6 is a mounting diagram of the sensor shown in FIG. 5 (individual detection of short-circuit detection / ground fault detection).

【図7】従来の電流光差動システムのブロック図(三相
個別出力)。
FIG. 7 is a block diagram of a conventional current optical differential system (three-phase individual output).

【図8】従来の電流光差動システムのブロック図(三相
個別検出・一括出力)。
FIG. 8 is a block diagram of a conventional current optical differential system (three-phase individual detection / batch output).

【図9】従来装置のセンサ接続の構成図。FIG. 9 is a configuration diagram of a sensor connection of a conventional device.

【符号の説明】[Explanation of symbols]

111 光源部 112 伝送路部 113 センサ部 114 センサ群 115 信号処理部 116 出力 117 出力処理部 540 導体 541 各相センサ 542 零相センサ 543 光学素子 544 光伝送路 111 light source unit 112 transmission path unit 113 sensor unit 114 sensor group 115 signal processing unit 116 output 117 output processing unit 540 conductor 541 each phase sensor 542 zero phase sensor 543 optical element 544 optical transmission path

フロントページの続き (72)発明者 黒澤 潔 東京都千代田区内幸町一丁目1番3号 東 京電力株式会社内 (72)発明者 大河原 健治 東京都千代田区内幸町一丁目1番3号 東 京電力株式会社内 (72)発明者 三浦 祥吾 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 堀 政夫 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 (72)発明者 寺井 清寿 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 (72)発明者 佐々木 欣一 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 Fターム(参考) 2G014 AA02 AA04 AB33 AC18 AC19 2G025 AA15 AB10 AC06 2G035 AA11 AA12 AB08 AC13 AC15 AD28 AD37 5G047 AA01 AA08 BA01 BB01 CB07(72) Inventor Kiyoshi Kurosawa 1-3-1 Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Company (72) Inventor Kenji Okawara 1-3-1 Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Stock Inside the company (72) Shogo Miura, 1-1-1, Shibaura, Minato-ku, Tokyo Inside the Toshiba head office (72) Inventor Masao Hori, 1-1-1, Shibaura, Minato-ku, Tokyo Inside the Toshiba head office (72) Inventor Kiyoto Terai 2-1 Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside the Toshiba Hamakawasaki Plant (72) Inventor Kinichi Sasaki 2-1 Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Toshiba Corporation F-term in Hamakawasaki Plant (reference) 2G014 AA02 AA04 AB33 AC18 AC19 2G025 AA15 AB10 AC06 2G035 AA11 AA12 AB08 AC13 AC15 AD28 AD37 5G047 AA01 AA08 BA01 BB01 CB07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 三相交流回路の所定の導体の故障を検出
できるように配置された複数の光電流センサと、前記し
た各光電流センサを直列に接続する伝送路に対して、光
源となる光を入力することにより前記各センサによって
変化した光の出力を受光しその受光量から導体の故障を
検出する信号処理部と、前記信号処理部での処理結果を
出力する出力部とからなる電流光差動システムにおい
て、三相に分離した各導体夫々に取り付けた各センサを
全て直列に接続し、光源より入射した光が下記式に基づ
く標本量Ik となって出力されるようにすることを特徴
とする電流光差動システム。 記 【数1】Ik =(Ka1a1+Kb1b1+Kc1c1+K01
01)+(Ka2a2+Kb2b2+Kc2c2+K0202
+…(Kanan+Kbnbn+Kcncn+K0n0n) ここで、 Ia□ ,Ib□ ,Ic□ ,I0□ :第□光電流センサの
a,b,c三相と零相電流値。 Ka□ ,Kb□ ,Kc□ ,K0□ :第□光電流センサの
a,b,c三相と零相電流値に対する係数。
1. A light source for a plurality of photocurrent sensors arranged to detect a failure in a predetermined conductor of a three-phase AC circuit, and a transmission line connecting each of the photocurrent sensors in series. A current consisting of a signal processing unit for receiving light output changed by each sensor by inputting light and detecting a failure of a conductor from the amount of received light, and an output unit for outputting a processing result in the signal processing unit in the optical differential system, each sensor attached to people each conductor respectively separated into three phases and all connected in series, the light incident from the light source is to be outputted as the sample quantity I k based on the following formula A current optical differential system characterized by the following. Note that I k = (K a1 I a1 + K b1 I b1 + K c1 I c1 + K 01
I 01 ) + (K a2 I a2 + K b2 I b2 + K c2 I c2 + K 02 I 02 )
+ ... In (K an I an + K bn I bn + K cn I cn + K 0n I 0n) Here, I a □, I b □ , I c □, I 0 □: first □ optical current sensor a, b, c Three-phase and zero-phase current values. Ka , Kb □ , Kc □ , K0 : Coefficients for the three-phase and zero-phase current values of the □ th photocurrent sensor.
【請求項2】 請求項1記載の電流光差動システムにお
いて、短絡事故と地絡事故を個別に判定できるように、
センサと伝送路部と信号処理部を短絡検出用と地絡検出
用とで分離し、導出する標本量Ik を短絡検出用と地絡
検出用とで分離することを特徴とする電流光差動システ
ム。
2. The current-optical differential system according to claim 1, wherein a short-circuit fault and a ground fault are individually determined.
Current light difference and separating the sensor and the transmission line portion and the signal processing unit separates at the detection shorted for ground fault detecting a specimen amount I k and a ground fault detection for detecting a short circuit to derive Motion system.
【請求項3】 請求項1記載の電流光差動システムにお
いて、標本量Ik の導出に際して係数Ka□ ,Kb□
c□ ,K0□ を変えるために、係数に比例して各光電
流センサの感度を変えることを特徴とする電流光差動シ
ステム。
3. A current-optical differential system of claim 1, wherein the coefficient upon derivation of sample quantity I k K a □, K b □,
K c □, current optical differential system wherein the changing to alter the K 0 □, in proportion to the coefficient the sensitivity of each optical current sensors.
【請求項4】 請求項1記載の電流光差動システムにお
いて、標本量Ik の導出に際して係数Ka□ ,Kb□
c□ ,K0□ を変えるために、同一感度の光電流セン
サを係数に比例して巻数を変えることを特徴とする電流
光差動システム。
4. A current-optical differential system of claim 1, wherein the coefficient upon derivation of sample quantity I k K a □, K b □,
K c □, to alter the K 0 □, current optical differential system characterized by varying the number of turns proportional to the photocurrent sensor of the same sensitivity coefficient.
【請求項5】 請求項2記載の電流光差動システムにお
いて、標本量Ik の導出に際して係数Ka□ ,Kb□
c□ ,K0□ を変えるために、係数に比例して各光電
流センサの感度を変えることを特徴とする電流光差動シ
ステム。
5. A current-optical differential system of claim 2, wherein the coefficient upon derivation of sample quantity I k K a □, K b □,
K c □, current optical differential system wherein the changing to alter the K 0 □, in proportion to the coefficient the sensitivity of each optical current sensors.
【請求項6】 請求項2記載の電流光差動システムにお
いて、標本量Ik の導出に際して係数Ka□ ,Kb□
c□ ,K0□ を変えるために、同一感度の光電流セン
サを係数に比例して巻数を変えることを特徴とする電流
光差動システム。
6. The method according to claim 2, wherein the current optical differential system, coefficients when deriving the sample quantity I k K a □, K b □,
K c □, to alter the K 0 □, current optical differential system characterized by varying the number of turns proportional to the photocurrent sensor of the same sensitivity coefficient.
JP2001109531A 2001-04-09 2001-04-09 Current optical differential system Pending JP2002315180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001109531A JP2002315180A (en) 2001-04-09 2001-04-09 Current optical differential system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001109531A JP2002315180A (en) 2001-04-09 2001-04-09 Current optical differential system

Publications (1)

Publication Number Publication Date
JP2002315180A true JP2002315180A (en) 2002-10-25

Family

ID=18961455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001109531A Pending JP2002315180A (en) 2001-04-09 2001-04-09 Current optical differential system

Country Status (1)

Country Link
JP (1) JP2002315180A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304915A (en) * 2003-03-31 2004-10-28 Tm T & D Kk Differential protective relay system
JP2004301770A (en) * 2003-03-31 2004-10-28 Toshiba Corp Protection system, and photoelectric current measuring instrument used therefor
JP2004301769A (en) * 2003-03-31 2004-10-28 Toshiba Corp Optical current measuring instrument and current differential protecting system using the same
JP2018146252A (en) * 2017-03-01 2018-09-20 東芝産業機器システム株式会社 Cable way failure detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084918A (en) * 1983-10-13 1985-05-14 株式会社東芝 Display wire relaying device
JP2000059987A (en) * 1998-06-01 2000-02-25 Tokyo Electric Power Co Inc:The Optical ct with failure judgement function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084918A (en) * 1983-10-13 1985-05-14 株式会社東芝 Display wire relaying device
JP2000059987A (en) * 1998-06-01 2000-02-25 Tokyo Electric Power Co Inc:The Optical ct with failure judgement function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304915A (en) * 2003-03-31 2004-10-28 Tm T & D Kk Differential protective relay system
JP2004301770A (en) * 2003-03-31 2004-10-28 Toshiba Corp Protection system, and photoelectric current measuring instrument used therefor
JP2004301769A (en) * 2003-03-31 2004-10-28 Toshiba Corp Optical current measuring instrument and current differential protecting system using the same
JP2018146252A (en) * 2017-03-01 2018-09-20 東芝産業機器システム株式会社 Cable way failure detection device

Similar Documents

Publication Publication Date Title
US5995911A (en) Digital sensor apparatus and system for protection, control, and management of electricity distribution systems
EP1820034B1 (en) Compensation of simple fiberoptic faraday effect sensors
US4578639A (en) Metering system for measuring parameters of high AC electric energy flowing in an electric conductor
CN110007133B (en) Digital AC/DC current sensor and current detection method
CN110098758A (en) Device and method for the feedback sense in multi-cell electric power
CN102495328B (en) Differential power reactor fault on-line monitoring instrument
JP2002315180A (en) Current optical differential system
WO2014091233A1 (en) Power line monitoring apparatus and method
US4513340A (en) Power transmission line protective apparatus
CN104965122B (en) Temperature self-compensation type optical voltage measuring device based on ring electric field coupled structure
KR200190768Y1 (en) United transformer for current/zero phase
JP5283369B2 (en) Disconnection protection relay
JPS62255880A (en) Discriminating method for accident section of power cable
JPH073346Y2 (en) Zero-phase current measuring device
JP2520915Y2 (en) Broadband current transformer for power line current measurement
SU737856A1 (en) Device for measuring power in high-voltage three-phase electric plants
Rushton et al. Fault-performance analyses of transmission-line differential protection systems related to their polar-characteristic requirements
JP3773020B2 (en) Fault location method using multi-terminal electric quantity
JPS62110162A (en) Apparatus for detecting zero phase current
JPH0394179A (en) Fault point locating device
JPS6350761A (en) Optical fiber zero phase current transformer
JPH02108976A (en) Double rated type light applied current sensor
JPH028531B2 (en)
JPH09304468A (en) Method for locating fault-point of parallel two line system
JP3082224B2 (en) Composite protection relay

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421