JPH06275948A - Heat cycle resisting property improving method for junction body - Google Patents

Heat cycle resisting property improving method for junction body

Info

Publication number
JPH06275948A
JPH06275948A JP6067793A JP6067793A JPH06275948A JP H06275948 A JPH06275948 A JP H06275948A JP 6067793 A JP6067793 A JP 6067793A JP 6067793 A JP6067793 A JP 6067793A JP H06275948 A JPH06275948 A JP H06275948A
Authority
JP
Japan
Prior art keywords
aluminum nitride
nitride substrate
copper plate
heat
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6067793A
Other languages
Japanese (ja)
Inventor
Yoshihiko Tsujimura
好彦 辻村
Yoshiyuki Nakamura
美幸 中村
Katsunori Terano
克典 寺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP6067793A priority Critical patent/JPH06275948A/en
Publication of JPH06275948A publication Critical patent/JPH06275948A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the title heat cycle resisting property improving method for a junction body, consisting of a copper plate and an aluminum nitride substrate, with which an aluminum nitride substrate, having a copper circuit on which the durability against thermal impulse and the thermal history, namely, heat-cycle resisting property and heat-shock resisting property are sharply improved. CONSTITUTION:The title heat cycle resisting property improving method for a junction body is the method in which the heat cycle resisting property of the junction body, consisting of an aluminum nitride substrate on which a copper plate is jointed on both surfaces, is improved by heat-treating the junction body at 500 to 700 deg.C in a non-oxidizing atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、接合体の耐ヒートサイ
クル性向上方法、詳しくは、電子部品のパワーモジュー
ル等において好適に使用される銅回路を有する窒化アル
ミニウム基板(以下、「銅回路窒化アルミニウム基板」
という)を製造する際に使用される、銅板と窒化アルミ
ニウム基板の接合体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for improving heat cycle resistance of a bonded body, more specifically, an aluminum nitride substrate having a copper circuit which is preferably used in a power module of electronic parts and the like (hereinafter referred to as "copper circuit nitriding"). Aluminum substrate "
Which is used for manufacturing a bonded body of a copper plate and an aluminum nitride substrate.

【0002】[0002]

【従来の技術】近年、ロボットやモーター等の産業機器
の高性能化に伴い、大電力・高能率インバーター等大電
力モジュールの変遷が進んでおり、半導体素子から発生
する熱も増加の一途をたどっている。この熱を効率よく
放散させるため、大電力モジュール基板では従来より様
々な方法が取られてきた。最近、良好な熱伝導を有する
セラミックス基板が利用できるようになったため、セラ
ミックス基板上に銅板等の金属板を接合し、回路を形成
後、そのままあるいはメッキ等の処理を施してから半導
体素子を実装する構造も採用されつつある。
2. Description of the Related Art In recent years, with the high performance of industrial equipment such as robots and motors, the transition of high power modules such as high power and high efficiency inverters has progressed, and the heat generated from semiconductor elements has also continued to increase. ing. In order to efficiently dissipate this heat, various methods have been conventionally used for high power module substrates. Recently, ceramic substrates with good thermal conductivity have become available, so after joining a metal plate such as a copper plate on the ceramic substrate and forming a circuit, the semiconductor element is mounted as it is or after plating or other treatment. The structure that does is also being adopted.

【0003】金属とセラミックスを接合する方法には種
々あるが、回路基板の製造という点からは、Mo-Mn 法、
活性金属ろう付け法、硫化銅法、DBC法、銅メタライ
ズ法等がある。特に、大電力モジュール基板では、従来
のアルミナに変わって高熱伝導性の窒化アルミニウム基
板が注目されており、銅回路又は裏銅板となる銅板の接
合方法としては、銅板と窒化アルミニウム基板との間に
活性金属を含むろう材を介在させ、加熱処理して接合体
とする活性金属ろう付け法(例えば特開昭60-177634 号
公報)や、表面を酸化処理した窒化アルミニウム基板と
銅板を銅の融点以下でCu-Oの共晶温度以上で加熱接合す
るDBC法(例えば特開昭56-163093 号公報)等が採用
されている。
There are various methods for joining metal and ceramics, but from the viewpoint of manufacturing circuit boards, the Mo-Mn method,
There are active metal brazing method, copper sulfide method, DBC method, copper metallizing method and the like. In particular, in high power module substrates, attention has been paid to aluminum nitride substrates having high thermal conductivity in place of conventional alumina, and as a method for joining copper plates to be copper circuits or back copper plates, a copper plate and an aluminum nitride substrate are bonded to each other. An active metal brazing method (for example, Japanese Patent Laid-Open No. 60-177634) in which a brazing material containing an active metal is interposed and heat treatment is performed, or an aluminum nitride substrate whose surface is oxidized and a copper plate have a melting point of copper. In the following, a DBC method (for example, Japanese Patent Laid-Open No. 56-163093) in which heat bonding is performed at a temperature higher than the eutectic temperature of Cu-O is adopted.

【0004】[0004]

【発明が解決しようとする課題】このような大電力モジ
ュール基板を使用したインバーターの用途は、ロボット
・モーター等から各種工作機械や鉄道、エレベーター、
そして将来は電気自動車にまで広がることが予想されて
いる。そのため、モジュールの小型化と軽量化が益々要
求されており、それをかなえるには銅回路窒化アルミニ
ウム基板も必然的に小型化されなければならない。しか
し、小型化を行って従来と同等の電流密度を達成するに
は銅回路の厚みを増やさなければならないという問題が
あり、しかも窒化アルミニウム基板の面積も小さくなる
結果、熱抵抗の関係から、その厚みも減らす必要があっ
た。
Inverters using such high-power module substrates are used for various machine tools, railways, elevators, robots, motors, etc.
In the future, it is expected to spread to electric vehicles. Therefore, miniaturization and weight reduction of the module are increasingly demanded, and in order to meet the demand, the copper circuit aluminum nitride substrate must be necessarily miniaturized. However, there is a problem that the thickness of the copper circuit must be increased in order to achieve a current density equivalent to that of the conventional one by downsizing, and the area of the aluminum nitride substrate also becomes small. I also needed to reduce the thickness.

【0005】従来、この種の銅回路窒化アルミニウム基
板においては、銅板と窒化アルミニウム基板との接合を
終えた後は、何の後処理をも施さないで回路を形成して
いたので、シリコンチップの半田付け時やヒートサイク
ル等の熱衝撃を受けた場合、銅と窒化アルミニウムとの
熱膨張係数の差に基づく熱応力の影響によって、反りが
1.5〜2倍程度にまで増大する結果、銅回路又は裏銅
板が剥離したり、窒化アルミニウム基板にクラックが発
生したりして耐久性に問題があった。従って、上記のよ
うにして、銅回路の厚みを増やし窒化アルミニウム基板
の厚みを減らして小型化を達成しようとすると、両者の
熱膨張係数の差による応力差が益々大きくなり、耐久性
が一段と悪化する恐れがあった。
Conventionally, in this type of copper circuit aluminum nitride substrate, since the circuit is formed without any post-treatment after the joining of the copper plate and the aluminum nitride substrate is completed, When subjected to thermal shock such as during soldering or heat cycle, the warpage increases to about 1.5 to 2 times due to the effect of thermal stress based on the difference in thermal expansion coefficient between copper and aluminum nitride. There was a problem in durability because the circuit or the back copper plate was peeled off, or the aluminum nitride substrate was cracked. Therefore, as described above, if the thickness of the copper circuit is increased and the thickness of the aluminum nitride substrate is decreased to achieve miniaturization, the stress difference due to the difference in thermal expansion coefficient between the two becomes larger and the durability is further deteriorated. I was afraid to do it.

【0006】本発明者らは、上記問題点を解決するため
に鋭意検討を重ねた結果、銅板と窒化アルミニウム基板
との接合体を製造した後、それを速やかに非酸化性雰囲
気下で熱処理すれば、熱衝撃を受けてもその反りを1.
2倍以下に抑えることができることを見出し、本発明を
完成させたものである。
As a result of intensive studies to solve the above problems, the present inventors have manufactured a bonded body of a copper plate and an aluminum nitride substrate and then rapidly heat-treated it in a non-oxidizing atmosphere. For example, even if it receives a thermal shock, its warpage is 1.
The inventors have completed the present invention by finding that it can be suppressed to twice or less.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、窒
化アルミニウム基板の両面に銅板が接合されてなる接合
体を、非酸化性雰囲気下、温度500〜700℃で熱処
理することを特徴とする銅板と窒化アルミニウム基板の
接合体の耐ヒートサイクル性向上方法である。
That is, the present invention is characterized in that a bonded body in which copper plates are bonded to both surfaces of an aluminum nitride substrate is heat-treated at a temperature of 500 to 700 ° C. in a non-oxidizing atmosphere. It is a method for improving heat cycle resistance of a joined body of a copper plate and an aluminum nitride substrate.

【0008】以下、さらに詳しく本発明について説明す
ると、通常、この種の銅回路窒化アルミニウム基板は、
回路側の銅板厚の方が裏側の銅板厚よりも厚い(例えば
特公平3−51119号公報)ので、ヒートサイクル試
験を行った場合、銅と窒化アルミニウムとの熱膨張係数
の差によって回路側に引張り応力が働き回路側を凸にし
た反りが発生し、しかもヒートサイクルの増加に伴って
その反りが大きくなるので回路側の銅板が剥がれること
がしばしばあった。
The present invention will be described in more detail below. Usually, this type of copper circuit aluminum nitride substrate is
Since the copper plate thickness on the circuit side is thicker than the copper plate thickness on the back side (for example, Japanese Patent Publication No. 3-511119), when a heat cycle test is performed, the copper plate thickness on the circuit side varies depending on the difference in thermal expansion coefficient between copper and aluminum nitride. The tensile stress acts to generate a warp that makes the circuit side convex, and the warp increases with an increase in heat cycles, so that the copper plate on the circuit side is often peeled off.

【0009】これに対し、本発明のように、銅板と窒化
アルミニウム基板との接合体を非酸化性雰囲気下、温度
500〜700℃で熱処理することによって、銅板の熱
収縮によって生じる窒化アルミニウム基板の熱応力を緩
和させることができるので反り量の増大を減少させるこ
とができ、耐ヒートサイクル性を向上させることができ
るものである。
On the other hand, as in the present invention, by heat-treating a bonded body of a copper plate and an aluminum nitride substrate at a temperature of 500 to 700 ° C. in a non-oxidizing atmosphere, an aluminum nitride substrate produced by thermal contraction of the copper plate Since the thermal stress can be relaxed, the increase in the amount of warp can be reduced, and the heat cycle resistance can be improved.

【0010】さらに具体的に説明すると、まず、窒化ア
ルミニウム基板の両面に銅板を接合し接合体を製造す
る。その方法は、活性金属ろう付け法、DBC法のいず
れでも問題はないが、接合温度の低い活性金属ろう付け
法がより好ましい。窒化アルミニウム基板は、特殊なも
のである必要はなく、熱伝導率が80W/mK以上のも
のが好ましく使用され、また銅回路形成用の表銅板又は
ヒートシンク取付け用の裏銅板についても、従来と同様
に、無酸素銅板、タフピッチ銅板等が好ましく採用され
る。
More specifically, first, copper plates are bonded to both surfaces of an aluminum nitride substrate to manufacture a bonded body. There is no problem with the active metal brazing method or the DBC method, but the active metal brazing method having a low bonding temperature is more preferable. The aluminum nitride substrate does not have to be a special one, and one having a thermal conductivity of 80 W / mK or more is preferably used, and a front copper plate for forming a copper circuit or a back copper plate for attaching a heat sink is the same as the conventional one. In addition, oxygen-free copper plate, tough pitch copper plate, etc. are preferably adopted.

【0011】活性金属ろう付け法で使用されるろう材ペ
ーストは、金属成分に有機溶剤と必要に応じて有機結合
剤を加え、混合機例えばロール、ニーダ、バンバリミキ
サー、万能混合機、らいかい機等で混合することによっ
て調整することができる。その際の金属成分としては、
銀成分及び銅成分の主成分とチタン、ジルコニウム、ハ
フニウム、ニオブ、タンタル、バナジウム等及びこれら
の化合物から選ばれた1種又は2種以上の活性金属成分
とが使用され、また、有機溶剤としては、メチルセルソ
ルブ、エチルセルソルブ、テルピネオール、イソホロ
ン、トルエン等が、さらには有機結合剤としては、エチ
ルセルロース、メチルセルロース、ポリメチルメタクリ
レート等が使用される。ろう材ペーストは、スクリーン
印刷法、ロールコーター法等により窒化アルミニウム基
板上に塗布され、銅板が配置された後、加熱接合され
る。
The brazing filler metal paste used in the active metal brazing method comprises a metal component, an organic solvent and, if necessary, an organic binder, and a mixer such as a roll, a kneader, a Banbury mixer, a universal mixer or a ladle mixer. It can be adjusted by mixing with the like. As the metal component at that time,
The main component of the silver component and the copper component and one or more active metal components selected from titanium, zirconium, hafnium, niobium, tantalum, vanadium and the like and these compounds are used, and as the organic solvent , Methyl cellosolve, ethyl cellosolve, terpineol, isophorone, toluene and the like, and as the organic binder, ethyl cellulose, methyl cellulose, polymethyl methacrylate and the like are used. The brazing material paste is applied on an aluminum nitride substrate by a screen printing method, a roll coater method, or the like, and a copper plate is placed on the aluminum nitride substrate, followed by heat bonding.

【0012】本発明の熱処理行うのに特に好適な接合体
は、回路側銅板が凹となるような反りが与えられている
ものである。この反りが大きいほどヒートサイクル試験
の耐久性が向上するが、そうかといって、それをあまり
大きくしすぎると、銅回路窒化アルミニウム基板の裏銅
板をヒートシンクに半田付けする際にボイドが生じるの
で、反り値は400μm以下(0は含まない)、好まし
くは300μm以下特に好ましくは30〜200μmで
あることが望ましい。なお、反り値は、スリットゲージ
法、ダイアルゲージ法、表面粗さ計の使用等によって測
定することができる。
The joined body particularly suitable for carrying out the heat treatment of the present invention is one in which the copper plate on the circuit side is warped so as to be concave. The greater this warp, the more durable the heat cycle test is, but if it is too large, voids will occur when the back copper plate of the copper circuit aluminum nitride substrate is soldered to the heat sink. The warp value is 400 μm or less (0 is not included), preferably 300 μm or less, particularly preferably 30 to 200 μm. The warp value can be measured by a slit gauge method, a dial gauge method, use of a surface roughness meter, or the like.

【0013】上記のような接合体を製造するには、窒化
アルミニウム基板、表銅板及び裏銅板の厚みに左右され
る。例えば、窒化アルミニウム基板の厚みが0.635
mmで回路側の表銅板の厚みが0.3〜0.5mmであ
る場合、裏銅板の厚みが0.1〜0.25mmとする。
窒化アルミニウム基板の厚みが0.635mmよりも厚
いか又は薄い場合には、窒化アルミニウム基板の反り等
の変形や圧縮・引っ張り等の応力に対する耐久性が変化
するので、その厚みに応じて裏銅板の厚みを変えること
が望ましい。
The thickness of the aluminum nitride substrate, the front copper plate, and the back copper plate depends on the production of the above-mentioned bonded body. For example, the aluminum nitride substrate has a thickness of 0.635.
When the thickness of the front copper plate on the circuit side is 0.3 to 0.5 mm, the thickness of the back copper plate is 0.1 to 0.25 mm.
When the thickness of the aluminum nitride substrate is thicker or thinner than 0.635 mm, the durability of the aluminum nitride substrate against deformation such as warpage and stress such as compression and tension changes. It is desirable to change the thickness.

【0014】本発明は、上記によって製造された表銅板
及び裏銅板と窒化アルミニウム基板との接合体を炉に入
れ、窒素、水素、アルゴン等の非酸化性雰囲気下、温度
500〜700℃で熱処理を行うものである。500℃
未満の温度では、熱処理による効果が不十分であり、一
方、700℃をこえると、活性金属ろう付け法で製造さ
れた接合体の場合には、接合層を形成しているろう材の
融点に近づくので接合層が変質し、また、DBC法で製
造された接合体の場合には、銅板と窒化アルミニウム基
板の間にわずかに存在するCu2 Oと窒化アルミニウム
基板の熱膨張の差によって応力が発生し、窒化アルミニ
ウム基板に悪影響を与える。熱処理時間としては、1〜
3時間程度が好ましく、熱処理後は2℃/分程度の速度
で冷却を行う。
In the present invention, the joined body of the front and back copper plates and the aluminum nitride substrate manufactured as described above is placed in a furnace and heat-treated at a temperature of 500 to 700 ° C. in a non-oxidizing atmosphere of nitrogen, hydrogen, argon or the like. Is to do. 500 ° C
If the temperature is less than 1, the effect of the heat treatment is insufficient, while if it exceeds 700 ° C, in the case of a joined body produced by the active metal brazing method, the melting point of the brazing filler metal forming the joining layer is The bonding layer deteriorates due to the approach, and in the case of the bonded body manufactured by the DBC method, stress is caused by the difference in thermal expansion between Cu 2 O and the aluminum nitride substrate, which is slightly present between the copper plate and the aluminum nitride substrate. Occurs and adversely affects the aluminum nitride substrate. The heat treatment time is from 1 to
About 3 hours is preferable, and after the heat treatment, cooling is performed at a rate of about 2 ° C./minute.

【0015】本発明の熱処理は、銅板と窒化アルミニウ
ム基板を接合し、それを室温に冷却するまでの途中の温
度500〜700℃において、1〜3時間保持すること
によっても行うことができる。
The heat treatment of the present invention can also be carried out by joining a copper plate and an aluminum nitride substrate, and holding them for 1 to 3 hours at a temperature of 500 to 700 ° C. on the way to cooling to room temperature.

【0016】本発明の方法によって熱処理された接合体
に銅回路を形成させるには、塩化第2鉄や塩化第2銅を
用いて表銅板をエッチングするのが望ましい。このと
き、銅板の厚みに応じて、エッチングスピード、処理温
度、塩素イオン濃度を変化させる。銅回路の形状につい
ては、窒化アルミニウム基板と銅板との熱膨張の差を可
能な限り小さくするよう、窒化アルミニウム基板の長さ
に対して連続したパターンの長さを短くするのが望まし
い。また、窒化アルミニウム基板の長さは可能な限り短
い方が望ましい。
In order to form a copper circuit in the joined body which is heat-treated by the method of the present invention, it is desirable to etch the front copper plate with ferric chloride or cupric chloride. At this time, the etching speed, the processing temperature, and the chlorine ion concentration are changed according to the thickness of the copper plate. Regarding the shape of the copper circuit, it is desirable to shorten the length of the continuous pattern with respect to the length of the aluminum nitride substrate so as to minimize the difference in thermal expansion between the aluminum nitride substrate and the copper plate. Further, it is desirable that the length of the aluminum nitride substrate is as short as possible.

【0017】[0017]

【実施例】以下、本発明を実施例と比較例をあげて具体
的に説明する。 実施例1〜7 比較例1〜10 銀粉末75重量部、銅粉末25重量部、ジルコニウム粉末20
重量部、テルピネオール15重量部及び有機結合剤として
ポリイソブチルメタアクリレートのトルエン溶液を固形
分で1.5 重量部を加えてよく混合し、ろう材ペーストを
調整した。これを窒化アルミニウム基板(75mm×70mm×
厚み0.635mm)の両面にスクリーン印刷によって全面塗布
した。その際の塗布量(乾燥後)は 6〜8 mg/cm2とし
た。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. Examples 1-7 Comparative Examples 1-10 75 parts by weight of silver powder, 25 parts by weight of copper powder, 20 zirconium powder
1 part by weight, 15 parts by weight of terpineol and 1.5 parts by weight of solid content of a toluene solution of polyisobutyl methacrylate as an organic binder were added and mixed well to prepare a brazing paste. This is an aluminum nitride substrate (75mm × 70mm ×
The entire surface was coated on both sides with a thickness of 0.635 mm by screen printing. The coating amount (after drying) at that time was 6 to 8 mg / cm 2 .

【0018】次いで、表1に示す種々の厚みの表銅板と
裏銅板を接触配置してから炉に投入し、高真空下、温度
900 ℃で30分間加熱した後、2 ℃/分の降温速度で室温
まで冷却して接合体を製造し、反りをダイアルゲージで
測定した。次に、それを別の炉に入れ、窒素雰囲気下、
表1に示す温度と時間で熱処理を行った後、2℃/分程
度の速度で室温まで冷却し、再び反りを測定した。
Next, the front copper plate and the back copper plate having various thicknesses shown in Table 1 are placed in contact with each other, and then placed in a furnace and heated under high vacuum at a temperature.
After heating at 900 ° C. for 30 minutes, it was cooled to room temperature at a temperature decrease rate of 2 ° C./min to manufacture a joined body, and the warpage was measured with a dial gauge. Then put it in another furnace, under a nitrogen atmosphere,
After heat treatment at the temperature and time shown in Table 1, the temperature was cooled to room temperature at a rate of about 2 ° C./minute, and the warpage was measured again.

【0019】上記によって熱処理された接合体の表銅板
上に、UV硬化タイプのエッチングレジストをスクリー
ン印刷にて回路パターンに塗布した後、塩化第2銅溶液
を用いてエッチング処理を行って銅板不要部分を溶解除
去し、さらにエッチングレジストを5%苛性ソーダ溶液
で剥離した。
A UV-curing type etching resist is applied to the circuit pattern by screen printing on the surface copper plate of the joined body that has been heat-treated as described above, and then an etching treatment is performed using a cupric chloride solution to eliminate the copper plate unnecessary portion. Was removed by dissolution, and the etching resist was peeled off with a 5% caustic soda solution.

【0020】以上のようにして得られた銅回路窒化アル
ミニウム基板には、銅回路パターン間に残留不要ろう材
と活性金属成分と窒化アルミニウム基板の反応物がある
ので、それらを60℃、10%フッ化アンモニウム溶液に10
分間浸漬して除去した。
The copper circuit aluminum nitride substrate obtained as described above contains residual unnecessary brazing filler metal, active metal components, and reaction products of the aluminum nitride substrate between the copper circuit patterns. 10 in ammonium fluoride solution
It was immersed for a minute and removed.

【0021】これら一連の処理によって得られた銅回路
窒化アルミニウム基板について、反りを測定した後、ヒ
ートサイクル(熱衝撃)試験を行い、再び反りを測定し
た。ヒートサイクル試験は、気中、−65℃×20分保持後
150℃×20分保持を1サイクルとして行った。
For the copper circuit aluminum nitride substrate obtained by the above series of treatments, after measuring the warp, a heat cycle (thermal shock) test was conducted and the warp was measured again. Heat cycle test: After holding at -65 ℃ for 20 minutes in air
One cycle of holding at 150 ° C. for 20 minutes was performed.

【0022】評価は、各実施例毎にサンプル数10枚を作
製し、直ちにヒートサイクル試験を行った。そして3サ
イクル毎に各サンプルの状態を観察し、その中で1枚の
サンプルでも銅板剥離を起こしているものがあればその
時のサイクル数を銅板剥離回数とした。なお、いずれの
反りもサンプル数10枚の平均で示した。それらの結果を
表2に示す。
For evaluation, 10 samples were prepared for each example, and a heat cycle test was immediately performed. Then, the state of each sample was observed every three cycles, and if there was one sample in which copper plate peeling occurred, the number of cycles at that time was taken as the copper plate peeling number. Each warp is shown as an average of 10 samples. The results are shown in Table 2.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】本発明によって製造された接合体を用い
れば、熱衝撃や熱履歴に対する耐久性すなわち耐ヒート
サイクル性と耐ヒートショック性を著しく向上させた銅
回路を有する窒化アルミニウム基板を製造することがで
きる。
EFFECTS OF THE INVENTION By using the joined body produced by the present invention, an aluminum nitride substrate having a copper circuit having significantly improved durability against heat shock and heat history, that is, heat cycle resistance and heat shock resistance, is manufactured. be able to.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム基板の両面に銅板が接
合されてなる接合体を、非酸化性雰囲気下、温度500
〜700℃で熱処理することを特徴とする銅板と窒化ア
ルミニウム基板の接合体の耐ヒートサイクル性向上方
法。
1. A bonded body, in which a copper plate is bonded to both surfaces of an aluminum nitride substrate, in a non-oxidizing atmosphere at a temperature of 500.
A method for improving heat cycle resistance of a joined body of a copper plate and an aluminum nitride substrate, characterized by performing a heat treatment at ˜700 ° C.
JP6067793A 1993-03-19 1993-03-19 Heat cycle resisting property improving method for junction body Pending JPH06275948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6067793A JPH06275948A (en) 1993-03-19 1993-03-19 Heat cycle resisting property improving method for junction body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6067793A JPH06275948A (en) 1993-03-19 1993-03-19 Heat cycle resisting property improving method for junction body

Publications (1)

Publication Number Publication Date
JPH06275948A true JPH06275948A (en) 1994-09-30

Family

ID=13149197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6067793A Pending JPH06275948A (en) 1993-03-19 1993-03-19 Heat cycle resisting property improving method for junction body

Country Status (1)

Country Link
JP (1) JPH06275948A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004483A1 (en) * 1995-07-21 1997-02-06 Kabushiki Kaisha Toshiba Ceramic circuit board
JP2003273289A (en) * 2002-03-15 2003-09-26 Dowa Mining Co Ltd Ceramic circuit board and power module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004483A1 (en) * 1995-07-21 1997-02-06 Kabushiki Kaisha Toshiba Ceramic circuit board
JP2003273289A (en) * 2002-03-15 2003-09-26 Dowa Mining Co Ltd Ceramic circuit board and power module
JP4692708B2 (en) * 2002-03-15 2011-06-01 Dowaメタルテック株式会社 Ceramic circuit board and power module

Similar Documents

Publication Publication Date Title
JP3211856B2 (en) Circuit board
JP3449458B2 (en) Circuit board
JP3419620B2 (en) Method for manufacturing ceramic circuit board having metal circuit
JP3526710B2 (en) Circuit board manufacturing method
JPH06275948A (en) Heat cycle resisting property improving method for junction body
JP3257869B2 (en) Circuit board
JPH06310822A (en) Ceramic substrate and usage thereof
JP3255310B2 (en) Aluminum nitride substrate with copper circuit
JP3537320B2 (en) Circuit board
JP3155874B2 (en) Circuit board
JP3353990B2 (en) Circuit board manufacturing method
JP3182354B2 (en) Circuit board and its evaluation method
JP3260213B2 (en) Circuit board
JP2002137974A (en) Method of bonding ceramic body and copper plate
JP3454331B2 (en) Circuit board and method of manufacturing the same
JP3260222B2 (en) Circuit board manufacturing method
JP3219545B2 (en) Method for manufacturing aluminum oxide substrate having copper circuit
JPH06350215A (en) Aluminium nitride board having copper circuit
JP3460167B2 (en) Method for manufacturing aluminum nitride circuit board having metal circuit
JP4111253B2 (en) Circuit board
JPH0936541A (en) Manufacture of circuit board
JP3812988B2 (en) Circuit board
JPH07162105A (en) Circuit board
JP3354002B2 (en) Circuit board manufacturing method
JP3797784B2 (en) Circuit board