JPH06273355A - Inspection method for optical material for excimer laser - Google Patents

Inspection method for optical material for excimer laser

Info

Publication number
JPH06273355A
JPH06273355A JP5081115A JP8111593A JPH06273355A JP H06273355 A JPH06273355 A JP H06273355A JP 5081115 A JP5081115 A JP 5081115A JP 8111593 A JP8111593 A JP 8111593A JP H06273355 A JPH06273355 A JP H06273355A
Authority
JP
Japan
Prior art keywords
excimer laser
absorption
rays
quartz glass
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5081115A
Other languages
Japanese (ja)
Other versions
JP3266691B2 (en
Inventor
Shin Kuzuu
生 伸 葛
Kenichi Kuno
野 健 一 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEKIEI GLASS KK
NIPPON SEKIEI YAMAGUCHI KK
YAMAGUCHI NIPPON SEKIEI KK
Original Assignee
NIPPON SEKIEI GLASS KK
NIPPON SEKIEI YAMAGUCHI KK
YAMAGUCHI NIPPON SEKIEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEKIEI GLASS KK, NIPPON SEKIEI YAMAGUCHI KK, YAMAGUCHI NIPPON SEKIEI KK filed Critical NIPPON SEKIEI GLASS KK
Priority to JP08111593A priority Critical patent/JP3266691B2/en
Publication of JPH06273355A publication Critical patent/JPH06273355A/en
Application granted granted Critical
Publication of JP3266691B2 publication Critical patent/JP3266691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To provide a method for selecting such a material as causing no absorption, when excimer laser light is transmitted for a long time by irradiating a synthetic silica glass with X-rays, easily in a short time. CONSTITUTION:Silicon tetrachloride is subjected to hydrosis in hydrogen flame and deposited directly to produce a synthetic silica glass sample which is then irradiated with excimer laser of KrF, ArF, F2, etc., or X-rays. In this regard, a linear relationship exists between absorption coefficients alpha derived through irradiation. Extent of absorption when the sample is subjected to 10<6> shots (about 2.8 hours) of 100HZ KrF excimer laser, for example, can be predicted by irradiating the sample with Rh target X-rays of 50mA, 5OkV for 10-15 min in the vacuum of about 10<-2>Torr. When X-rays are used, generation of 220nm absorption band can be decided in a short time and the extent of absorption can be predicted when the sample is irradiated with excimer laser having photon energy of 5eV or above. Consequently, a material causing no absorption even after transmission of excimer laser for a long time can be selected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紫外線レーザーである
エキシマレーザー用のレンズ、プリズム等の光学材料と
して使用される合成石英ガラスの検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting synthetic quartz glass used as an optical material for lenses and prisms for excimer lasers, which are ultraviolet lasers.

【0002】[0002]

【従来の技術】近年エキシマレーザーを用いた超LSI
製造プロセスやエキシマレーザーを用いたCVDプロセ
スなどが発展し、エキシマレーザー用光学材料に対する
要求が特に強まって来ている。
2. Description of the Related Art Recently, a VLSI using an excimer laser
With the development of manufacturing processes and CVD processes using excimer lasers, the demand for optical materials for excimer lasers has become particularly strong.

【0003】エキシマレーザーは、主として紫外線領域
で発振する高出力のパルスレーザーで、ガスの組合せに
より主なものとして、XeF(波長350nm、光子エ
ネルギー3.5eV)、XeCl(波長308nm、光
子エネルギー4.0eV)、KrF(波長248nm、
光子エネルギー5.0eV)、ArF(波長193n
m、光子エネルギー6.4eV)、F2(波長157n
m、光子エネルギー7.9eV)などがある。このう
ち、リソグラフィーや光CVD関係で注目されているの
は、KrF、及びArFエキシマレーザーで、特に、半
導体製造用のリソグラフィー工程では、KrFエキシマ
レーザーを中心に開発が進められている。
The excimer laser is a high-power pulse laser that oscillates mainly in the ultraviolet region, and mainly consists of XeF (wavelength 350 nm, photon energy 3.5 eV), XeCl (wavelength 308 nm, photon energy 4. 0 eV), KrF (wavelength 248 nm,
Photon energy 5.0 eV, ArF (wavelength 193n)
m, photon energy 6.4 eV), F 2 (wavelength 157 n
m, photon energy 7.9 eV). Of these, KrF and ArF excimer lasers are drawing attention in relation to lithography and photo-CVD, and in particular, in the lithography process for semiconductor manufacturing, KrF excimer lasers are being developed.

【0004】ArFおよびKrF等のエキシマレーザー
は、従来の水銀ランプ重水素ランプなどの紫外線光源と
比較すると、エネルギー密度が高くパワーがはるかに高
いため、石英ガラスに損傷を与える可能性が高い。ま
た、フォトマスク基板等の光学系材料としての合成石英
ガラスでは、製造過程におけるスパッタリングやプラズ
マエッチングにより、650nmに発光帯が、260n
mに吸収帯が出現して紫外線領域での透過性能が低下す
る場合があり、まして、従来の水銀ランプに替えてエキ
シマレーザー光を半導体製造用リソグラフィー工程での
露光用光源として使用した場合には、この透過率の低下
は非常に大きなものとなる。
Excimer lasers such as ArF and KrF have high energy density and much higher power than ultraviolet light sources such as conventional mercury lamps and deuterium lamps, and are therefore likely to damage quartz glass. Further, in synthetic quartz glass as an optical system material such as a photomask substrate, the emission band at 650 nm is 260 n due to sputtering or plasma etching in the manufacturing process.
In some cases, an absorption band may appear in m and the transmission performance in the ultraviolet region may deteriorate, and when an excimer laser beam is used as an exposure light source in a semiconductor manufacturing lithography process instead of a conventional mercury lamp. However, this decrease in transmittance is extremely large.

【0005】このようなフォトマスク製造過程で変質し
て透過性能が低下するような基板材料は、事前に検査し
て排除しなければならないが、事前にそれを知る方法が
なく、スパッタリングやプラズマエッチングをした後に
一枚づつ基板の蛍光特性や吸収特性を測定しなければな
らず、手間がかかり、又、費用もかかるので現実的でな
く、簡易な方法で合成石英ガラスの吸収特性の変質を検
査する手段の開発が要望されていた。
Substrate materials that are deteriorated in the photomask manufacturing process and deteriorate in transmission performance must be inspected and eliminated in advance, but there is no way to know them in advance, and there is no way to know them in advance. Since it is necessary to measure the fluorescence characteristics and absorption characteristics of the substrates one by one after each step, it is time consuming and costly, so it is not realistic, and the deterioration of the absorption characteristics of synthetic quartz glass is inspected by a simple method. There was a demand for the development of means for doing so.

【0006】このため、本出願人は、何らかの方法で促
進試験ができれば予め材料を選別することができるとの
見地から、合成石英ガラスの吸収特性の変質を検査する
方法として、エキシマレーザー光を合成石英ガラスに照
射すると、フォトマスク基板として使用された合成石英
ガラスが、その製造過程においてスパッタリングやプラ
ズマエッチングなどによって変質して起こるのと同様の
吸収特性の変化が起こるとともに約650nmの赤色の
蛍光を発することを発見し、エキシマレーザーの照射時
の赤色発光の有無により選別する検査方法を見出した
(特開平1−189654号公報)。
Therefore, the applicant of the present invention synthesized excimer laser light as a method for inspecting alteration of absorption characteristics of synthetic quartz glass from the viewpoint that materials can be selected in advance if an accelerated test can be carried out by some method. When the quartz glass is irradiated, the synthetic quartz glass used as the photomask substrate undergoes a change in absorption characteristics similar to that caused by spattering, plasma etching, etc. in the manufacturing process, and red fluorescence of about 650 nm is emitted. It was found that the light emitted was emitted, and an inspection method for selecting according to the presence or absence of red light emission during irradiation of an excimer laser was found (Japanese Patent Laid-Open No. 1-189654).

【0007】つまり、赤色発光の有無により、超LSI
パターン転写用のレチクル作製工程で生じる260nm
にピークを持つ吸収帯の有無を判別する方法で、この吸
収帯の生成は、四塩化珪素の酸水素火炎中での加水分解
に際して、火炎中の水素の供給量を化学量論的必要量よ
りも過剰にすることにより防止できるものである。
That is, depending on the presence or absence of red light emission, the VLSI
260 nm generated in the reticle manufacturing process for pattern transfer
It is a method to determine the presence or absence of an absorption band with a peak at the time of generation of this absorption band, because the amount of hydrogen supplied in the flame is more than the stoichiometrically required amount during the hydrolysis of silicon tetrachloride in an oxyhydrogen flame. Can also be prevented by making it excessive.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、エキシ
マレーザーの照射を長時間繰り返すと、220nmにピ
ークを持つ吸収帯が生成することによりエキシマレーザ
ー自身の透過率が低下する。このように超LSIのリソ
グラフィー用の縮小投影機(ステッパー)などでは、短
期間の使用では問題がなくても、長時間使用すると石英
ガラスが劣化し、吸収帯が生じるという問題がある。ま
た、220nmの吸収帯の生成の有無は、ArFエキシ
マレーザー照射時には比較的短時間で判別できるが、K
rFエキシマレーザー照射時には生成しにくく106
ョット程度の照射でようやく顕著となり、このため素材
の選別には長時間を要して効率が悪かった。
However, if the irradiation of the excimer laser is repeated for a long time, an absorption band having a peak at 220 nm is generated, so that the transmittance of the excimer laser itself is lowered. As described above, in a reduction projector (stepper) for VLSI lithography, there is a problem that silica glass deteriorates and an absorption band is generated when used for a long time even if there is no problem in a short-term use. Whether or not the 220 nm absorption band is generated can be determined in a relatively short time when ArF excimer laser irradiation is performed.
It was difficult to generate during irradiation with rF excimer laser, and became conspicuous only after irradiation with about 10 6 shots. Therefore, it took a long time to select the material and the efficiency was poor.

【0009】以上述べたように、KrFエキシマレーザ
ー照射時に生じる吸収帯は、非常に弱くきわめて長時間
のエキシマレーザー照射によりはじめて顕著となるた
め、検査には数日から数週間の時間を要するため現実に
は実施が困難で、このような問題を解決するための促進
試験の提供が求められていた。
As described above, the absorption band generated during irradiation of the KrF excimer laser is very weak and becomes conspicuous only after irradiation of the excimer laser for a very long time. Therefore, it takes a few days to a few weeks to carry out the inspection, and therefore it is a reality. Was difficult to implement and was required to provide accelerated testing to solve these problems.

【0010】[0010]

【課題を解決するための手段】そこで、本発明者らは、
前記課題を解決するために鋭意研究を重ねた結果、22
0nmにピークをもつ吸収帯は、≡Si・構造からなる
E’中心とよばれる欠陥構造に起因し、280nmの発
光原因にもなるので、このような、KrFエキシマレー
ザーによる吸収帯の生成の有無を判別するため、X線を
用いれば、KrFエキシマレーザーより短時間で吸収帯
の生成の有無を判別することができるとともに、光子エ
ネルギーが5eV以上のエキシマレーザーによる吸収帯
の生成の有無を判別できるとの知見を得て本発明を完成
した。
Therefore, the present inventors have
As a result of intensive studies to solve the above problems, 22
The absorption band having a peak at 0 nm is caused by a defect structure called E ′ center composed of ≡Si · structure and also causes emission of light at 280 nm. Therefore, whether or not such an absorption band is generated by the KrF excimer laser. In order to determine whether or not the X-ray is used, it is possible to determine whether or not the absorption band is generated in a shorter time than the KrF excimer laser, and it is also possible to determine whether or not the absorption band is generated by the excimer laser having a photon energy of 5 eV or more. The present invention has been completed based on the knowledge that

【作用】[Action]

【0011】選別方法としては、光学素材を切り出す光
学材料の素塊より、例えば、厚さが5から30mm程度
の厚さの平行平面を鏡面に研磨した試料片を切り出す。
この試料片にエキシマレーザービーム及びX線を照射す
る部分の分光透過率を分光光度計にて測定し、しかるの
ち、エキシマレーザービームを所定の条件(エネルギー
密度、繰り返し周波数、ショット数)で照射する。照射
した部分の分光透過率を照射終了後ただちに測定し、2
20nmにおける吸光係数の差を求め、吸収の程度の指
標とするとともに、X線を所定の条件で照射し、同様に
220nmにおける吸光係数の差を求め、吸収の程度を
指標とする。このとき、あらかじめKrF、ArF、F
2エキシマレーザー、X線照射時の吸収の生成程度の異
なる試料に対して較正曲線を求めておき、それに基づい
て検査を行う。
As a selection method, a sample piece obtained by polishing a parallel plane having a thickness of, for example, about 5 to 30 mm into a mirror surface is cut out from a lump of the optical material from which the optical material is cut out.
This sample piece is measured with a spectrophotometer for the spectral transmittance of the portion where the excimer laser beam and X-rays are irradiated, and then the excimer laser beam is irradiated under predetermined conditions (energy density, repetition frequency, number of shots). . The spectral transmittance of the irradiated part was measured immediately after the end of irradiation, and 2
The difference in absorption coefficient at 20 nm is obtained and used as an index of the degree of absorption, and X-ray irradiation is performed under a predetermined condition, and the difference in absorption coefficient at 220 nm is similarly obtained, and the degree of absorption is used as an index. At this time, KrF, ArF, F
(2) Examine the calibration curve for samples with different generation of absorption during excimer laser and X-ray irradiation, and perform the inspection based on the calibration curve.

【0012】エキシマレーザーを長時間照射したとき、
220nm付近にピークをもつ吸収帯が生成する。この
220nmにピークをもつ吸収帯の生成については、エ
キシマレーザーの他に、γ線、X線、中性子線などの照
射によっても生成する。この吸収帯は、電子スピン共鳴
(ESR)スペクトルの解析から、E’センターと呼ば
れる≡Si・構造によるものであることが確認され、E
SRの信号強度から求められたスピンの濃度と220n
mの吸収帯強度は比例する。
When the excimer laser is irradiated for a long time,
An absorption band having a peak around 220 nm is generated. The absorption band having a peak at 220 nm is generated not only by the excimer laser but also by irradiation with γ rays, X rays, neutron rays, or the like. From the analysis of electron spin resonance (ESR) spectrum, it was confirmed that this absorption band is due to the ≡Si · structure called E ′ center.
220 n of spin concentration obtained from SR signal intensity
The absorption band intensity of m is proportional.

【0013】エキシマレーザーを照射したときのE’中
心の前駆体としては種々のものが考えられている。ひと
つは、≡Si−O−Si≡ でエキシマレーザーの照射
により
Various precursors of the E'center when irradiated with an excimer laser are considered. One is ≡Si-O-Si≡ by irradiation with an excimer laser.

【化1】 または、[Chemical 1] Or

【化2】 の機構による生成が考えられる。ここで[Chemical 2] It is considered that the generation is caused by the mechanism of. here

【化3】 は3つの酸素分子と結合した平面構造である。[Chemical 3] Is a planar structure in which three oxygen molecules are bonded.

【0014】このほかに、≡Si−H H−O−Si≡
構造が考えられる。
In addition to this, ≡Si—H H—O—Si≡
The structure is conceivable.

【化4】 [Chemical 4]

【0015】何れの機構でも、光子の吸収によりE’中
心が生成する。石英ガラスのバンドのエネルギーギャッ
プは約9eVである。KrFエキシマレーザーの光子エ
ネルギーは5.0eV、ArFエキシマレーザーの光子
エネルギーは6.4eV、F2エキシマレーザーの光子
エネルギーは、7.9eVであるので、欠陥が生成する
ためには、何れの場合も光子エネルギーが5eV以上で
あり2光子吸収が考えられる。従って、F2エキシマレ
ーザー、ArFエキシマレーザー、KrFエキシマレー
ザーの順に光子エネルギーが高いため生成の効率がよい
ものと考えられる。
In either mechanism, the E'center is generated by the absorption of photons. The energy gap of the quartz glass band is about 9 eV. The photon energy of the KrF excimer laser is 5.0 eV, the photon energy of the ArF excimer laser is 6.4 eV, and the photon energy of the F 2 excimer laser is 7.9 eV. Therefore, in any case, defects are generated. The photon energy is 5 eV or more, and two-photon absorption is considered. Therefore, since the photon energy is higher in the order of F 2 excimer laser, ArF excimer laser, and KrF excimer laser, it is considered that the generation efficiency is good.

【0016】一方、X線はさらに光子エネルギーが高い
が、適当な時間照射することによりArFおよびKrF
エキシマレーザー照射時の吸収帯強度と相関が得られ
る。但し、長時間照射するとガラスの網目構造の開裂が
始まり、エキシマレーザー照射時の誘起吸収との対応が
無くなる。
On the other hand, X-rays have higher photon energy, but ArF and KrF can be obtained by irradiating them for an appropriate time.
The correlation with the absorption band intensity during excimer laser irradiation is obtained. However, when irradiation is carried out for a long time, cleavage of the network structure of the glass begins, and there is no correspondence with the induced absorption during irradiation of the excimer laser.

【0017】合成石英ガラスとしては、四塩化珪素を酸
・水素火炎中で加水分解により直接堆積ガラス化したも
のがエキシマレーザーの波長領域での透過特性等のエキ
シマレーザー耐性に優れており、エキシマレーザー用光
学材料として好ましい。また、酸水素火炎中での加水分
解物を、化学量論的必要量より水素過剰で製造したもの
が、260nmの吸収帯の生成、およびそれに伴う65
0nmの赤色発光防止のために有効であり、エキシマレ
ーザー用光学材料として好ましい。
As the synthetic quartz glass, one obtained by directly depositing vitrified silicon tetrachloride by hydrolysis in an acid / hydrogen flame is excellent in excimer laser resistance such as transmission characteristics in the wavelength region of the excimer laser. Preferred as an optical material for use. In addition, the hydrolyzate produced in the oxyhydrogen flame produced in excess of stoichiometric amount of hydrogen produced an absorption band of 260 nm, and the resulting 65
It is effective for preventing red emission of 0 nm and is preferable as an optical material for excimer laser.

【0018】X線源としては、種々のものが考えられ、
例えば、WやCu管球を用いたX線回折装置やRh管球
を用いた蛍光X線分析装置がそのまま使用できる。これ
らの装置を用いて、X線を照射する場合、X線の照射条
件は、サンプルの保持方法、X線管球の制御条件(電
圧、電流)により大きく異なるため、制御条件を一定に
するのはもちろん、サンプルの形状を一定にし、適当な
サンプル固定治具を使用しなければならない。その上
で、エキシマレーザーを照射した場合吸収の生じる材料
に対して、評価に十分な吸収が生じる条件を経験的に選
ぶことが好ましい。例えば、X線回折装置でWターゲッ
トの管球を用いた場合は、50kV、30mAの条件で
10〜30分程度、同じくX線回折装置を用いてCuの
管球で50kV、30mAで30〜120分程度の照射
で用いることができる。その他、適当な管球を用いて照
射装置を作製して用いることも出来る。
Various types of X-ray sources are conceivable,
For example, an X-ray diffractometer using a W or Cu tube or a fluorescent X-ray analyzer using a Rh tube can be used as it is. When irradiating X-rays using these devices, the X-ray irradiation conditions greatly differ depending on the sample holding method and the control conditions (voltage, current) of the X-ray tube, so the control conditions should be kept constant. Of course, the shape of the sample must be constant and an appropriate sample fixing jig must be used. In addition, it is preferable to empirically select a condition in which sufficient absorption for evaluation occurs with respect to a material that absorbs when an excimer laser is irradiated. For example, when a W target tube is used in the X-ray diffractometer, it is used for about 10 to 30 minutes under the conditions of 50 kV and 30 mA. It can be used with irradiation for about a minute. In addition, an irradiation device can also be manufactured and used by using an appropriate tube.

【0019】[0019]

【実施例】【Example】

実施例1 試料として、四塩化珪素を酸・水素火炎中での加水分解
による直接堆積ガラス化することにより製造し、OH濃
度がそれぞれ、A:450ppm、B:650ppm、
C:850ppm、D:1120ppm、E:1300
ppmを含む5種類のものを選別し、KrFエキシマレ
ーザー(200mJ/cm2、100Hz、106ショッ
ト)、ArFエキシマレーザー(100mJ/cm2
50Hz、104ショット)、及び、X線(蛍光X線装
置を用い、RhターゲットのX線を50mA、50kV
の条件で約10-2torrの真空中で10分及び15分
間)照射し、照射により誘起される吸収係数αを測定し
た。その結果を表1に示す。 なお、各サンプルは、3
0mm×10mm×10mmの形状に4個ずつ切り出
し、厚さが10mmになるように2面を鏡面研摩した。
Example 1 A sample was produced by subjecting silicon tetrachloride to direct deposition vitrification by hydrolysis in an acid / hydrogen flame, and OH concentrations were A: 450 ppm and B: 650 ppm, respectively.
C: 850 ppm, D: 1120 ppm, E: 1300
5 kinds including ppm are selected, and KrF excimer laser (200 mJ / cm 2 , 100 Hz, 10 6 shots), ArF excimer laser (100 mJ / cm 2 ,
50 Hz, 10 4 shots, and X-rays (using a fluorescent X-ray device, X-rays of Rh target at 50 mA, 50 kV)
Under a vacuum of about 10 -2 torr for 10 minutes and 15 minutes), and the absorption coefficient α induced by the irradiation was measured. The results are shown in Table 1. Each sample has 3
Four pieces each having a shape of 0 mm x 10 mm x 10 mm were cut out, and two surfaces were mirror-polished to have a thickness of 10 mm.

【0020】[0020]

【表1】 [Table 1]

【0021】また、ArFエキシマレーザー、KrFエ
キシマレーザー、及びX線照射により誘起される吸収係
数αArF、αKrF、αXを測定した表1の結果よ
り、下記(4)〜(7)式が導きだされ、αKrF、α
ArF、αXは、線形の関係にあることが判明した。こ
の例では、KrFエキシマレーザーが、100Hzで1
6ショットであることから、106/100Hz=10
000秒(約2.8時間)の照射時間で得られる吸収の
程度を、10〜15分間のX線照射で予測することがで
きる。このようにX線を照射すれば短時間で220nm
の吸収帯の生成の有無を判別することができ、また、X
線を使用することによって、ArFエキシマレーザー照
射時の吸収の程度を予測することもできる。
Further, the following formulas (4) to (7) are derived from the results of Table 1 in which the absorption coefficients αArF, αKrF and αX induced by ArF excimer laser, KrF excimer laser and X-ray irradiation are measured. , ΑKrF, α
It was found that ArF and αX have a linear relationship. In this example, the KrF excimer laser is 1 Hz at 100 Hz.
Since it is 0 6 shot, 10 6 / 100Hz = 10
The extent of absorption obtained with an irradiation time of 000 seconds (about 2.8 hours) can be predicted by X-ray irradiation for 10 to 15 minutes. By irradiating X-rays in this way, 220 nm can be obtained in a short time.
It is possible to determine whether or not the absorption band of
It is also possible to predict the degree of absorption upon irradiation with ArF excimer laser by using the line.

【0022】 ○15分照射の場合 αKrF=0.14(αX−0.045cm-1) (4) αArF=0.16(αX−0.045cm-1) (5) ○10分照射の場合 αKrF=0.16(αX−0.031cm-1) (6) αArF=0.19(αX−0.031cm-1) (7)○ In the case of irradiation for 15 minutes αKrF = 0.14 (αX−0.045 cm −1 ) (4) αArF = 0.16 (αX−0.045 cm −1 ) (5) ○ In the case of irradiation for 10 minutes αKrF = 0.16 (αX-0.031 cm -1 ) (6) αArF = 0.19 (αX-0.031 cm -1 ) (7)

【0023】実施例2 実施例1に準じて合成した石英ガラスから異なるロット
のものを5個選び出し、それぞれ実施例1に準じて30
mm×10mm×10mmの形状に3個づつ切り出して
厚さが10mmになるように2面を鏡面研磨した。その
うちの一つのサンプルに実施例1に準じてX線(50m
A、50kV)を15分間照射し、照射により誘起され
る吸収係数αXを測定した。その結果をもとに、(4)
(5)式から、KrF、ArFエキシマレーザーを実施
例1に準じて照射した場合の220nmに於ける吸収係
数の値を予測した。その後、他方のサンプルにKrF、
ArFエキシマレーザーを実施例1に準じて照射したの
ち220nmに於ける吸収係数を測定した。その結果を
表2に示す。表2の結果から、予測値と実測値がよく一
致していることが判り、このことから、本発明による検
査方法が有効であることが示される。
Example 2 From the quartz glass synthesized according to Example 1, five different lots were selected, and 30 according to Example 1 respectively.
Three pieces each having a shape of mm × 10 mm × 10 mm were cut out, and two surfaces thereof were mirror-polished to have a thickness of 10 mm. X-ray (50 m
A, 50 kV) was irradiated for 15 minutes, and the absorption coefficient αX induced by irradiation was measured. Based on the result, (4)
From the formula (5), the value of the absorption coefficient at 220 nm when the KrF and ArF excimer laser was irradiated according to Example 1 was predicted. Then, KrF,
The ArF excimer laser was irradiated according to Example 1 and then the absorption coefficient at 220 nm was measured. The results are shown in Table 2. From the results in Table 2, it was found that the predicted value and the actually measured value were in good agreement, which indicates that the inspection method according to the present invention is effective.

【表2】 [Table 2]

【0024】[0024]

【効果】合成石英ガラスにX線を照射することによっ
て、エキシマレーザー光を長時間透過させたときに吸収
の生じない材料を選別することができる。また、X線を
利用することにより、KrFエキシマレーザーを照射し
た場合に比べて短時間で220nmの吸収帯の生成の有
無を判別することができるとともに一定の条件で、光子
エネルギーが5eV以上のエキシマレーザーを照射した
ときに生じる吸収の程度を予測することができる。
[Effect] By irradiating synthetic quartz glass with X-rays, it is possible to select a material that does not absorb when excimer laser light is transmitted for a long time. In addition, by using X-rays, it is possible to determine whether or not an absorption band of 220 nm is generated in a shorter time than in the case of irradiating with a KrF excimer laser, and under certain conditions, the excimer with a photon energy of 5 eV or more is used. The extent of absorption that occurs when irradiated with a laser can be predicted.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 合成石英ガラスに、X線を照射すること
によつて、光子エネルギーが5eV以上のエキシマレー
ザーを照射したときに吸収の生じない材料を選別する合
成石英ガラスの検査方法。
1. A method for inspecting synthetic quartz glass, which comprises selecting a material that does not absorb when irradiated with an excimer laser having a photon energy of 5 eV or more by irradiating the synthetic quartz glass with X-rays.
【請求項2】 合成石英ガラスに、X線を照射すること
によって、光子エネルギーが5eV以上のエキシマレー
ザーを照射したときに220nm付近の吸収の生じない
材料を選別する合成石英ガラスの検査方法。
2. A method for inspecting synthetic quartz glass, which comprises irradiating synthetic quartz glass with X-rays to select a material that does not cause absorption around 220 nm when an excimer laser having a photon energy of 5 eV or more is emitted.
【請求項3】 合成石英ガラスに、X線を照射すること
によって、光子エネルギーが5eV以上のエキシマレー
ザーを照射したときにE’中心により生成した220n
m付近の吸収の生じない材料を選別する合成石英ガラス
の検査方法。
3. Synthetic quartz glass is irradiated with X-rays to produce 220n produced by E ′ center when irradiated with an excimer laser having a photon energy of 5 eV or more.
A method for inspecting synthetic quartz glass that selects materials that do not cause absorption near m.
【請求項4】 エキシマレーザーがKrFエキシマレー
ザーである請求項1から3のいずれかに記載の合成石英
ガラスの検査方法。
4. The method for inspecting synthetic quartz glass according to claim 1, wherein the excimer laser is a KrF excimer laser.
【請求項5】 エキシマレーザーがArFエキシマレー
ザーである請求項1から3のいずれかに記載の合成石英
ガラスの検査方法。
5. The method for inspecting synthetic quartz glass according to claim 1, wherein the excimer laser is an ArF excimer laser.
【請求項6】 エキシマレーザーがF2エキシマレーザ
ーである請求項1から3のいずれかに記載の合成石英ガ
ラスの検査方法。
6. The method for inspecting synthetic quartz glass according to claim 1, wherein the excimer laser is an F 2 excimer laser.
JP08111593A 1993-03-17 1993-03-17 Inspection method for optical materials for excimer laser Expired - Fee Related JP3266691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08111593A JP3266691B2 (en) 1993-03-17 1993-03-17 Inspection method for optical materials for excimer laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08111593A JP3266691B2 (en) 1993-03-17 1993-03-17 Inspection method for optical materials for excimer laser

Publications (2)

Publication Number Publication Date
JPH06273355A true JPH06273355A (en) 1994-09-30
JP3266691B2 JP3266691B2 (en) 2002-03-18

Family

ID=13737384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08111593A Expired - Fee Related JP3266691B2 (en) 1993-03-17 1993-03-17 Inspection method for optical materials for excimer laser

Country Status (1)

Country Link
JP (1) JP3266691B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127708A (en) * 2004-05-14 2015-07-09 ケーエルエー−テンカー コーポレイション Systems and methods for measurement or analysis of specimen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127708A (en) * 2004-05-14 2015-07-09 ケーエルエー−テンカー コーポレイション Systems and methods for measurement or analysis of specimen

Also Published As

Publication number Publication date
JP3266691B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
KR100392127B1 (en) Quartz glass for optical lithography, optical member containing the same, exposure apparatus using the same, and manufacturing method thereof
JPH10260349A (en) Image formation optical system for ultraviolet-ray laser
US6075607A (en) Method for estimating durability of optical member against excimer laser irradiation and method for selecting silica glass optical member
JP2002195962A (en) Improved method for measuring irradiated stability of crystal
JPWO2003091175A1 (en) Synthetic quartz glass for optical members, projection exposure apparatus and projection exposure method
EP1050754B1 (en) Method of measuring the transmittance of optical members for ultraviolet use
JP2821074B2 (en) Manufacturing method of optical member for UV resistant laser
JP3266691B2 (en) Inspection method for optical materials for excimer laser
JP3408574B2 (en) Measurement method of absorption coefficient of synthetic quartz glass
JP3287919B2 (en) Evaluation method of synthetic quartz glass
KR100628015B1 (en) Exposure apparatus, semiconductor device, and photomask
JP3834114B2 (en) Test method of optical material for excimer laser
JP2005539245A (en) Method for determining compatibility of optical material for manufacturing optical element, apparatus for determining compatibility, and use of optical material
JPH0912323A (en) Quartz glass member suppressed from becoming dense due to irradiation of uv ray
JPH1187808A (en) Manufacture of optical element for arf excimer laser
JP4772172B2 (en) Method for evaluating synthetic quartz glass
JPH01189654A (en) Method for inspecting synthetic quartz glass
Guenster et al. Radiation resistance of optical materials against synchrotron radiation
JP3158854B2 (en) Quartz glass member and its evaluation method
JPH01197343A (en) Element for producing optical system with laser
JP2001021494A (en) Method and apparatus for detecting impurity element of quartz glass material
EP1491513A1 (en) Synthetic quartz glass member and process for producing the same
JP2558217B2 (en) Optical lithography equipment
JP2001023884A (en) Vacuum ultraviolet-ray lithography device, its manufacture, and method for inspecting crystalline fluoride material
JP2005061903A (en) Evaluate method and evaluate device for fluorite, and fluorite

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees