JP3266691B2 - Inspection method for optical materials for excimer laser - Google Patents

Inspection method for optical materials for excimer laser

Info

Publication number
JP3266691B2
JP3266691B2 JP08111593A JP8111593A JP3266691B2 JP 3266691 B2 JP3266691 B2 JP 3266691B2 JP 08111593 A JP08111593 A JP 08111593A JP 8111593 A JP8111593 A JP 8111593A JP 3266691 B2 JP3266691 B2 JP 3266691B2
Authority
JP
Japan
Prior art keywords
excimer laser
absorption
irradiation
quartz glass
synthetic quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08111593A
Other languages
Japanese (ja)
Other versions
JPH06273355A (en
Inventor
生 伸 葛
野 健 一 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Original Assignee
Tosoh Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp filed Critical Tosoh Quartz Corp
Priority to JP08111593A priority Critical patent/JP3266691B2/en
Publication of JPH06273355A publication Critical patent/JPH06273355A/en
Application granted granted Critical
Publication of JP3266691B2 publication Critical patent/JP3266691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、紫外線レーザーである
エキシマレーザー用のレンズ、プリズム等の光学材料と
して使用される合成石英ガラスの検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting synthetic quartz glass used as an optical material such as a lens and a prism for an excimer laser as an ultraviolet laser.

【0002】[0002]

【従来の技術】近年エキシマレーザーを用いた超LSI
製造プロセスやエキシマレーザーを用いたCVDプロセ
スなどが発展し、エキシマレーザー用光学材料に対する
要求が特に強まって来ている。
2. Description of the Related Art In recent years, a super LSI using an excimer laser has been developed.
With the development of manufacturing processes, CVD processes using excimer lasers, and the like, the demand for optical materials for excimer lasers has been particularly increasing.

【0003】エキシマレーザーは、主として紫外線領域
で発振する高出力のパルスレーザーで、ガスの組合せに
より主なものとして、XeF(波長350nm、光子エ
ネルギー3.5eV)、XeCl(波長308nm、光
子エネルギー4.0eV)、KrF(波長248nm、
光子エネルギー5.0eV)、ArF(波長193n
m、光子エネルギー6.4eV)、F2(波長157n
m、光子エネルギー7.9eV)などがある。このう
ち、リソグラフィーや光CVD関係で注目されているの
は、KrF、及びArFエキシマレーザーで、特に、半
導体製造用のリソグラフィー工程では、KrFエキシマ
レーザーを中心に開発が進められている。
An excimer laser is a high-power pulse laser that mainly oscillates in the ultraviolet region. XeF (wavelength 350 nm, photon energy 3.5 eV) and XeCl (wavelength 308 nm, photon energy 4. 0 eV), KrF (wavelength 248 nm,
Photon energy 5.0 eV), ArF (wavelength 193n)
m, photon energy 6.4 eV), F 2 (wavelength 157 n
m, photon energy of 7.9 eV). Of these, KrF and ArF excimer lasers have attracted attention in relation to lithography and photo-CVD. In particular, KrF excimer lasers are being developed mainly in the lithography process for manufacturing semiconductors.

【0004】ArFおよびKrF等のエキシマレーザー
は、従来の水銀ランプ重水素ランプなどの紫外線光源と
比較すると、エネルギー密度が高くパワーがはるかに高
いため、石英ガラスに損傷を与える可能性が高い。ま
た、フォトマスク基板等の光学系材料としての合成石英
ガラスでは、製造過程におけるスパッタリングやプラズ
マエッチングにより、650nmに発光帯が、260n
mに吸収帯が出現して紫外線領域での透過性能が低下す
る場合があり、まして、従来の水銀ランプに替えてエキ
シマレーザー光を半導体製造用リソグラフィー工程での
露光用光源として使用した場合には、この透過率の低下
は非常に大きなものとなる。
[0004] Excimer lasers such as ArF and KrF have a higher energy density and a much higher power than ultraviolet light sources such as conventional mercury lamps and deuterium lamps, and thus are more likely to damage quartz glass. In the case of synthetic quartz glass as an optical system material such as a photomask substrate, the emission band at 650 nm is 260 nm due to sputtering or plasma etching in the manufacturing process.
m, an absorption band may appear and the transmission performance in the ultraviolet region may decrease, and even more, when excimer laser light is used as an exposure light source in a lithography process for semiconductor manufacturing instead of a conventional mercury lamp. This decrease in transmittance is very large.

【0005】このようなフォトマスク製造過程で変質し
て透過性能が低下するような基板材料は、事前に検査し
て排除しなければならないが、事前にそれを知る方法が
なく、スパッタリングやプラズマエッチングをした後に
一枚づつ基板の蛍光特性や吸収特性を測定しなければな
らず、手間がかかり、又、費用もかかるので現実的でな
く、簡易な方法で合成石英ガラスの吸収特性の変質を検
査する手段の開発が要望されていた。
[0005] Such a substrate material which deteriorates in transmission process due to deterioration in the photomask manufacturing process must be inspected and removed in advance, but there is no method of knowing it in advance, and sputtering or plasma etching is required. After that, it is necessary to measure the fluorescence characteristics and absorption characteristics of the substrates one by one, which is troublesome and costly, so it is not realistic and inspects the deterioration of the absorption characteristics of synthetic quartz glass by a simple method. There was a demand for the development of means to do this.

【0006】このため、本出願人は、何らかの方法で促
進試験ができれば予め材料を選別することができるとの
見地から、合成石英ガラスの吸収特性の変質を検査する
方法として、エキシマレーザー光を合成石英ガラスに照
射すると、フォトマスク基板として使用された合成石英
ガラスが、その製造過程においてスパッタリングやプラ
ズマエッチングなどによって変質して起こるのと同様の
吸収特性の変化が起こるとともに約650nmの赤色の
蛍光を発することを発見し、エキシマレーザーの照射時
の赤色発光の有無により選別する検査方法を見出した
(特開平1−189654号公報)。
[0006] Therefore, the applicant of the present invention, as a method of examining the deterioration of the absorption characteristics of synthetic quartz glass, from the viewpoint that materials can be preliminarily selected if an accelerated test can be performed by any method, synthesizes excimer laser light. When illuminated on quartz glass, the synthetic quartz glass used as the photomask substrate undergoes a change in absorption characteristics similar to that caused by alteration due to sputtering or plasma etching in the manufacturing process, and emits red light of about 650 nm. It was found that the emission occurred, and an inspection method for selecting the presence or absence of red light emission upon irradiation with an excimer laser was found (JP-A-1-189654).

【0007】つまり、赤色発光の有無により、超LSI
パターン転写用のレチクル作製工程で生じる260nm
にピークを持つ吸収帯の有無を判別する方法で、この吸
収帯の生成は、四塩化珪素の酸水素火炎中での加水分解
に際して、火炎中の水素の供給量を化学量論的必要量よ
りも過剰にすることにより防止できるものである。
[0007] That is, depending on the presence or absence of red light emission,
260 nm generated in the reticle fabrication process for pattern transfer
A method of determining the presence or absence of an absorption band having a peak at the time of the generation of this absorption band is based on the stoichiometric requirement of the supply amount of hydrogen in the flame during hydrolysis of silicon tetrachloride in an oxyhydrogen flame. Can also be prevented by making it excessive.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、エキシ
マレーザーの照射を長時間繰り返すと、220nmにピ
ークを持つ吸収帯が生成することによりエキシマレーザ
ー自身の透過率が低下する。このように超LSIのリソ
グラフィー用の縮小投影機(ステッパー)などでは、短
期間の使用では問題がなくても、長時間使用すると石英
ガラスが劣化し、吸収帯が生じるという問題がある。ま
た、220nmの吸収帯の生成の有無は、ArFエキシ
マレーザー照射時には比較的短時間で判別できるが、K
rFエキシマレーザー照射時には生成しにくく106
ョット程度の照射でようやく顕著となり、このため素材
の選別には長時間を要して効率が悪かった。
However, if the irradiation of the excimer laser is repeated for a long time, an absorption band having a peak at 220 nm is generated, thereby lowering the transmittance of the excimer laser itself. As described above, in a reduction projector (stepper) for lithography of an ultra LSI, there is a problem that even if there is no problem in use for a short period of time, the quartz glass is deteriorated after a long use and an absorption band is generated. Further, the presence or absence of the generation of the absorption band of 220 nm can be determined in a relatively short time at the time of ArF excimer laser irradiation.
Irradiation with an rF excimer laser is difficult to generate, and becomes noticeable only with irradiation of about 10 6 shots. Therefore, it takes a long time to select materials, and the efficiency is low.

【0009】以上述べたように、KrFエキシマレーザ
ー照射時に生じる吸収帯は、非常に弱くきわめて長時間
のエキシマレーザー照射によりはじめて顕著となるた
め、検査には数日から数週間の時間を要するため現実に
は実施が困難で、このような問題を解決するための促進
試験の提供が求められていた。
As described above, the absorption band generated during KrF excimer laser irradiation becomes very noticeable only after a very weak excimer laser irradiation, and it takes several days to several weeks for inspection. It was difficult to conduct such a program, and it was required to provide an accelerated test to solve such a problem.

【0010】[0010]

【課題を解決するための手段】そこで、本発明者らは、
前記課題を解決するために鋭意研究を重ねた結果、22
0nmにピークをもつ吸収帯は、≡Si・構造からなる
E’中心とよばれる欠陥構造に起因し、280nmの発
光原因にもなるので、このような、KrFエキシマレー
ザーによる吸収帯の生成の有無を判別するため、X線を
用いれば、KrFエキシマレーザーより短時間で吸収帯
の生成の有無を判別することができるとともに、光子エ
ネルギーが5eV以上のエキシマレーザーによる吸収帯
の生成の有無を判別できるとの知見を得て本発明を完成
した。
Means for Solving the Problems Accordingly, the present inventors have:
As a result of intensive studies to solve the above problems, 22
The absorption band having a peak at 0 nm is caused by a defect structure called an E ′ center composed of a ≡Si structure, and also causes emission at 280 nm. Therefore, whether or not such an absorption band is generated by a KrF excimer laser When X-rays are used to determine whether an absorption band is generated in a shorter time than with a KrF excimer laser, the presence or absence of an absorption band generated by an excimer laser having a photon energy of 5 eV or more can be determined. With this knowledge, the present invention has been completed.

【作用】[Action]

【0011】選別方法としては、光学素材を切り出す光
学材料の素塊より、例えば、厚さが5から30mm程度
の厚さの平行平面を鏡面に研磨した試料片を切り出す。
この試料片にエキシマレーザービーム及びX線を照射す
る部分の分光透過率を分光光度計にて測定し、しかるの
ち、エキシマレーザービームを所定の条件(エネルギー
密度、繰り返し周波数、ショット数)で照射する。照射
した部分の分光透過率を照射終了後ただちに測定し、2
20nmにおける吸光係数の差を求め、吸収の程度の指
標とするとともに、X線を所定の条件で照射し、同様に
220nmにおける吸光係数の差を求め、吸収の程度を
指標とする。このとき、あらかじめKrF、ArF、F
2エキシマレーザー、X線照射時の吸収の生成程度の異
なる試料に対して較正曲線を求めておき、それに基づい
て検査を行う。
As a sorting method, for example, a sample piece obtained by polishing a parallel plane having a thickness of about 5 to 30 mm to a mirror surface is cut out from a raw material block of an optical material from which an optical material is cut out.
The spectral transmittance of a portion to be irradiated with the excimer laser beam and the X-ray is measured by a spectrophotometer, and then the excimer laser beam is irradiated under predetermined conditions (energy density, repetition frequency, number of shots). . Immediately after the irradiation, the spectral transmittance of the irradiated part was measured.
The difference in extinction coefficient at 20 nm is determined and used as an index of the degree of absorption, and X-rays are irradiated under predetermined conditions. Similarly, the difference in extinction coefficient at 220 nm is determined and the degree of absorption is used as an index. At this time, KrF, ArF, F
(2) Calibration curves are determined for samples having different degrees of absorption during excimer laser and X-ray irradiation, and inspection is performed based on the calibration curves.

【0012】エキシマレーザーを長時間照射したとき、
220nm付近にピークをもつ吸収帯が生成する。この
220nmにピークをもつ吸収帯の生成については、エ
キシマレーザーの他に、γ線、X線、中性子線などの照
射によっても生成する。この吸収帯は、電子スピン共鳴
(ESR)スペクトルの解析から、E’センターと呼ば
れる≡Si・構造によるものであることが確認され、E
SRの信号強度から求められたスピンの濃度と220n
mの吸収帯強度は比例する。
When the excimer laser is irradiated for a long time,
An absorption band having a peak around 220 nm is generated. The absorption band having a peak at 220 nm is generated not only by excimer laser but also by irradiation with γ-rays, X-rays, neutron rays, or the like. Analysis of the electron spin resonance (ESR) spectrum confirmed that this absorption band was due to a ≡Si structure called an E ′ center.
Spin concentration obtained from signal intensity of SR and 220n
The absorption band intensity of m is proportional.

【0013】エキシマレーザーを照射したときのE’中
心の前駆体としては種々のものが考えられている。ひと
つは、≡Si−O−Si≡ でエキシマレーザーの照射
により
Various precursors for the E ′ center upon irradiation with an excimer laser have been considered. One is the irradiation of excimer laser with {Si-O-Si}

【化1】 または、Embedded image Or

【化2】 の機構による生成が考えられる。ここでEmbedded image Generation by the mechanism of (1) is conceivable. here

【化3】 は3つの酸素分子と結合した平面構造である。Embedded image Is a planar structure bonded to three oxygen molecules.

【0014】このほかに、≡Si−H H−O−Si≡
構造が考えられる。
In addition, {Si-H H-O-Si}
Structure is conceivable.

【化4】 Embedded image

【0015】何れの機構でも、光子の吸収によりE’中
心が生成する。石英ガラスのバンドのエネルギーギャッ
プは約9eVである。KrFエキシマレーザーの光子エ
ネルギーは5.0eV、ArFエキシマレーザーの光子
エネルギーは6.4eV、F2エキシマレーザーの光子
エネルギーは、7.9eVであるので、欠陥が生成する
ためには、何れの場合も光子エネルギーが5eV以上で
あり2光子吸収が考えられる。従って、F2エキシマレ
ーザー、ArFエキシマレーザー、KrFエキシマレー
ザーの順に光子エネルギーが高いため生成の効率がよい
ものと考えられる。
In either mechanism, an E ′ center is generated by absorption of a photon. The energy gap of the band of quartz glass is about 9 eV. The photon energy of the KrF excimer laser is 5.0 eV, the photon energy of the ArF excimer laser is 6.4 eV, and the photon energy of the F 2 excimer laser is 7.9 eV. Since the photon energy is 5 eV or more, two-photon absorption is considered. Therefore, it is considered that the generation efficiency is high because the photon energy is high in the order of F 2 excimer laser, ArF excimer laser, and KrF excimer laser.

【0016】一方、X線はさらに光子エネルギーが高い
が、適当な時間照射することによりArFおよびKrF
エキシマレーザー照射時の吸収帯強度と相関が得られ
る。但し、長時間照射するとガラスの網目構造の開裂が
始まり、エキシマレーザー照射時の誘起吸収との対応が
無くなる。
X-rays, on the other hand, have a higher photon energy, but ArF and KrF
The correlation is obtained with the absorption band intensity at the time of excimer laser irradiation. However, if the irradiation is performed for a long time, the network structure of the glass starts to be broken, and there is no correspondence with the induced absorption at the time of excimer laser irradiation.

【0017】合成石英ガラスとしては、四塩化珪素を酸
・水素火炎中で加水分解により直接堆積ガラス化したも
のがエキシマレーザーの波長領域での透過特性等のエキ
シマレーザー耐性に優れており、エキシマレーザー用光
学材料として好ましい。また、酸水素火炎中での加水分
解物を、化学量論的必要量より水素過剰で製造したもの
が、260nmの吸収帯の生成、およびそれに伴う65
0nmの赤色発光防止のために有効であり、エキシマレ
ーザー用光学材料として好ましい。
As synthetic quartz glass, silicon tetrachloride which is directly deposited and vitrified by hydrolysis in an acid / hydrogen flame is excellent in excimer laser resistance such as transmission characteristics in the wavelength region of an excimer laser. As an optical material for use. The hydrolyzate in an oxyhydrogen flame produced in excess of the stoichiometric amount of hydrogen produced an absorption band at 260 nm and associated with 65%.
It is effective for preventing emission of red light of 0 nm, and is preferable as an optical material for excimer laser.

【0018】X線源としては、種々のものが考えられ、
例えば、WやCu管球を用いたX線回折装置やRh管球
を用いた蛍光X線分析装置がそのまま使用できる。これ
らの装置を用いて、X線を照射する場合、X線の照射条
件は、サンプルの保持方法、X線管球の制御条件(電
圧、電流)により大きく異なるため、制御条件を一定に
するのはもちろん、サンプルの形状を一定にし、適当な
サンプル固定治具を使用しなければならない。その上
で、エキシマレーザーを照射した場合吸収の生じる材料
に対して、評価に十分な吸収が生じる条件を経験的に選
ぶことが好ましい。例えば、X線回折装置でWターゲッ
トの管球を用いた場合は、50kV、30mAの条件で
10〜30分程度、同じくX線回折装置を用いてCuの
管球で50kV、30mAで30〜120分程度の照射
で用いることができる。その他、適当な管球を用いて照
射装置を作製して用いることも出来る。
Various types of X-ray sources can be considered.
For example, an X-ray diffractometer using a W or Cu bulb or an X-ray fluorescence analyzer using a Rh bulb can be used as it is. When irradiating X-rays using these devices, the X-ray irradiation conditions vary greatly depending on the method of holding the sample and the control conditions (voltage and current) of the X-ray tube. Of course, the shape of the sample must be constant and an appropriate sample fixing jig must be used. In addition, it is preferable to empirically select a condition under which a material that absorbs when irradiated with an excimer laser causes sufficient absorption for evaluation. For example, when a W target tube is used in an X-ray diffractometer, it is about 10 to 30 minutes under the conditions of 50 kV and 30 mA. Similarly, a Cu tube is 50 kV and 30 to 120 mA at 30 mA using the X-ray diffractometer. It can be used with irradiation for about a minute. In addition, it is also possible to manufacture and use an irradiation device using an appropriate tube.

【0019】[0019]

【実施例】【Example】

実施例1 試料として、四塩化珪素を酸・水素火炎中での加水分解
による直接堆積ガラス化することにより製造し、OH濃
度がそれぞれ、A:450ppm、B:650ppm、
C:850ppm、D:1120ppm、E:1300
ppmを含む5種類のものを選別し、KrFエキシマレ
ーザー(200mJ/cm2、100Hz、106ショッ
ト)、ArFエキシマレーザー(100mJ/cm2
50Hz、104ショット)、及び、X線(蛍光X線装
置を用い、RhターゲットのX線を50mA、50kV
の条件で約10-2torrの真空中で10分及び15分
間)照射し、照射により誘起される吸収係数αを測定し
た。その結果を表1に示す。 なお、各サンプルは、3
0mm×10mm×10mmの形状に4個ずつ切り出
し、厚さが10mmになるように2面を鏡面研摩した。
Example 1 As a sample, silicon tetrachloride was produced by direct deposition vitrification by hydrolysis in an acid / hydrogen flame, and the OH concentration was A: 450 ppm, B: 650 ppm,
C: 850 ppm, D: 1120 ppm, E: 1300
5 kinds including those of ppm, and KrF excimer laser (200 mJ / cm 2 , 100 Hz, 10 6 shots), ArF excimer laser (100 mJ / cm 2 ,
50 Hz, 10 4 shots) and X-rays (using a fluorescent X-ray device, X-rays of a Rh target were applied at 50 mA and 50 kV).
Under a vacuum of about 10 -2 torr for 10 minutes and 15 minutes), and the absorption coefficient α induced by the irradiation was measured. Table 1 shows the results. Each sample is 3
Four pieces were cut out into a shape of 0 mm × 10 mm × 10 mm, and two surfaces were mirror-polished so as to have a thickness of 10 mm.

【0020】表1に示す数値は、吸収係数を1000倍
したものである。
The numerical values shown in Table 1 are obtained by multiplying the absorption coefficient by 1000.

【表1】 [Table 1]

【0021】また、ArFエキシマレーザー、KrFエ
キシマレーザー、及びX線照射により誘起される吸収係
数αArF、αKrF、αXを測定した表1の結果よ
り、下記(4)〜(7)式が導きだされ、αKrF、α
ArF、αXは、線形の関係にあることが判明した。こ
の例では、KrFエキシマレーザーが、100Hzで1
6ショットであることから、106/100Hz=10
000秒(約2.8時間)の照射時間で得られる吸収の
程度を、10〜15分間のX線照射で予測することがで
きる。このようにX線を照射すれば短時間で220nm
の吸収帯の生成の有無を判別することができ、また、X
線を使用することによって、ArFエキシマレーザー照
射時の吸収の程度を予測することもできる。
The following equations (4) to (7) are derived from the results of Table 1 obtained by measuring the absorption coefficients αArF, αKrF, and αX induced by ArF excimer laser, KrF excimer laser, and X-ray irradiation. , ΑKrF, α
ArF and αX were found to be in a linear relationship. In this example, the KrF excimer laser is 1 Hz at 100 Hz.
Since it is 0 6 shot, 10 6 / 100Hz = 10
The degree of absorption obtained with an irradiation time of 000 seconds (about 2.8 hours) can be predicted with 10 to 15 minutes of X-ray irradiation. By irradiating X-rays in this way, it is 220 nm in a short time.
The presence or absence of the generation of an absorption band can be determined.
By using the line, it is also possible to predict the degree of absorption upon irradiation with an ArF excimer laser.

【0022】 ○15分照射の場合 αKrF=0.14(αX−0.045cm-1) (4) αArF=0.16(αX−0.045cm-1) (5) ○10分照射の場合 αKrF=0.16(αX−0.031cm-1) (6) αArF=0.19(αX−0.031cm-1) (7)In the case of irradiation for 15 minutes αKrF = 0.14 (αX−0.045 cm −1 ) (4) αArF = 0.16 (αX−0.045 cm −1 ) (5) In the case of irradiation for 10 minutes αKrF = 0.16 (αX-0.031 cm -1 ) (6) αArF = 0.19 (αX-0.031 cm -1 ) (7)

【0023】実施例2 実施例1に準じて合成した石英ガラスから異なるロット
のものを5個選び出し、それぞれ実施例1に準じて30
mm×10mm×10mmの形状に3個づつ切り出して
厚さが10mmになるように2面を鏡面研磨した。その
うちの一つのサンプルに実施例1に準じてX線(50m
A、50kV)を15分間照射し、照射により誘起され
る吸収係数αXを測定した。その結果をもとに(4)、
(5)式によってKrF、ArFエキシマレーザーを実
施例1に準じて照射した場合の220nmに於ける吸収
係数の予測値を計算した。その後、他方のサンプルにK
rF、ArFエキシマレーザーを実施例1に準じて照射
したのち220nmに於ける吸収係数を測定した。その
結果を表2に示す。表2の結果から、予測値と実測値が
よく一致していることが判り、このことから、本発明に
よる検査方法が有効であることが示される。なお、表2
に示す数値は、吸収係数を1000倍したものである。
Example 2 Five pieces of quartz glass of different lots were selected from quartz glass synthesized according to Example 1, and 30 pieces were selected according to Example 1.
Three pieces each having a shape of mm × 10 mm × 10 mm were cut out, and two surfaces were mirror-polished so as to have a thickness of 10 mm. An X-ray (50 m) was applied to one of the samples according to Example 1.
A, 50 kV) for 15 minutes, and the absorption coefficient αX induced by the irradiation was measured. Based on the result (4),
The predicted value of the absorption coefficient at 220 nm when the KrF and ArF excimer lasers were irradiated in accordance with Example 1 was calculated by the equation (5). After that, the other sample
After irradiation with an rF or ArF excimer laser according to Example 1, the absorption coefficient at 220 nm was measured. Table 2 shows the results. From the results in Table 2, it can be seen that the predicted value and the measured value are in good agreement, which indicates that the inspection method according to the present invention is effective. Table 2
Numerical values shown in Table 1 are obtained by multiplying the absorption coefficient by 1000.

【表2】 [Table 2]

【0024】[0024]

【効果】合成石英ガラスにX線を照射して誘起される吸
収係数を測定することによって、この吸収係数と予め求
めていた相関関係に基づいて、エキシマレーザー光を長
時間透過させたときに吸収の生じない材料を選別するこ
とができる。また、X線を利用することにより、KrF
エキシマレーザーを照射した場合に比べて短時間で22
0nmの吸収帯の生成の有無を判別することができると
ともに一定の条件で、光子エネルギーが5eV以上のエ
キシマレーザーを照射したときに生じる吸収の程度を予
測することができる。
[Effect] By measuring the absorption coefficient induced by irradiating the synthetic quartz glass with X-rays, the absorption coefficient is determined when the excimer laser beam is transmitted for a long time based on the correlation between the absorption coefficient and the previously determined correlation. Can be sorted out. Also, by using X-rays, KrF
22 times faster than excimer laser irradiation
The presence / absence of generation of an absorption band of 0 nm can be determined, and under certain conditions, the degree of absorption generated when an excimer laser having a photon energy of 5 eV or more is irradiated can be predicted.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−189654(JP,A) 特開 昭55−89707(JP,A) 特開 昭62−32347(JP,A) 特開 平2−132313(JP,A) 実開 昭63−50052(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 23/06 G01M 11/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-189654 (JP, A) JP-A-55-89707 (JP, A) JP-A-62-232347 (JP, A) JP-A-2- 132313 (JP, A) Japanese Utility Model 63-60052 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 23/06 G01M 11/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】合成石英ガラスにX線を照射して誘起され
る吸収係数を測定し、この吸収係数と予め求めていた相
関関係に基づいてエキシマレーザーを照射したときに誘
起される吸収係数を求め、エキシマレーザーの照射によ
って吸収の生じないものを選別する合成石英ガラスの検
査方法。
An absorption coefficient induced by irradiating a synthetic quartz glass with X-rays is measured, and an absorption coefficient induced by irradiating an excimer laser is determined based on a correlation between the absorption coefficient and a previously determined correlation. A method for inspecting synthetic quartz glass that selects and does not cause absorption by excimer laser irradiation.
【請求項2】請求項1において、エキシマレーザーの光
子エネルギーが5eV以上であり、吸収は220nm付
近である合成石英ガラスの検査方法。
2. A method for inspecting a synthetic quartz glass according to claim 1, wherein the excimer laser has a photon energy of 5 eV or more and an absorption around 220 nm.
【請求項3】請求項1または2のいずれかにおいて、エ
キシマレーザーがKrFエキシマレーザーである合成石
英ガラスの検査方法。
3. A method for inspecting synthetic quartz glass according to claim 1, wherein the excimer laser is a KrF excimer laser.
【請求項4】請求項1または2のいずれかにおいて、エ
キシマレーザーがArFエキシマレーザーである合成石
英ガラスの検査方法。
4. The method for inspecting synthetic quartz glass according to claim 1, wherein the excimer laser is an ArF excimer laser.
【請求項5】請求項1または2のいずれかにおいて、エ
キシマレーザーがFエキシマレーザーである合成石英
ガラスの検査方法。
5. The method for inspecting synthetic quartz glass according to claim 1, wherein the excimer laser is an F 2 excimer laser.
JP08111593A 1993-03-17 1993-03-17 Inspection method for optical materials for excimer laser Expired - Fee Related JP3266691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08111593A JP3266691B2 (en) 1993-03-17 1993-03-17 Inspection method for optical materials for excimer laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08111593A JP3266691B2 (en) 1993-03-17 1993-03-17 Inspection method for optical materials for excimer laser

Publications (2)

Publication Number Publication Date
JPH06273355A JPH06273355A (en) 1994-09-30
JP3266691B2 true JP3266691B2 (en) 2002-03-18

Family

ID=13737384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08111593A Expired - Fee Related JP3266691B2 (en) 1993-03-17 1993-03-17 Inspection method for optical materials for excimer laser

Country Status (1)

Country Link
JP (1) JP3266691B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE518122T1 (en) * 2004-05-14 2011-08-15 Kla Tencor Tech Corp SYSTEMS FOR MEASURING OR ANALYZING SAMPLES USING VUV LIGHT

Also Published As

Publication number Publication date
JPH06273355A (en) 1994-09-30

Similar Documents

Publication Publication Date Title
KR100392127B1 (en) Quartz glass for optical lithography, optical member containing the same, exposure apparatus using the same, and manufacturing method thereof
US7825387B2 (en) Method for quantitative determination of the suitability of crystals for optical components exposed to high energy densities, crystals graded in this way and uses thereof
JP2010107506A (en) Method of determining laser stabilities of optical material, crystals obtained with this method, and uses of the crystals
JP4540636B2 (en) Method for measuring irreversible radiation damage of optical materials
US6075607A (en) Method for estimating durability of optical member against excimer laser irradiation and method for selecting silica glass optical member
JP3637489B2 (en) Improved method for measuring irradiation stability of crystals.
JP3266691B2 (en) Inspection method for optical materials for excimer laser
WO2003091175A1 (en) Synthetic quartz glass for optical member, projection exposure device, and projection exposure method
EP1050754B1 (en) Method of measuring the transmittance of optical members for ultraviolet use
JP3408574B2 (en) Measurement method of absorption coefficient of synthetic quartz glass
JP3287919B2 (en) Evaluation method of synthetic quartz glass
JP2005539245A (en) Method for determining compatibility of optical material for manufacturing optical element, apparatus for determining compatibility, and use of optical material
JPH01189654A (en) Method for inspecting synthetic quartz glass
JP4772172B2 (en) Method for evaluating synthetic quartz glass
JP2001021494A (en) Method and apparatus for detecting impurity element of quartz glass material
JP4174400B2 (en) Silica glass sorting method
JP3673391B2 (en) Method for evaluating synthetic quartz glass
JP3158854B2 (en) Quartz glass member and its evaluation method
JPH10152330A (en) Optical material for excimer laser and test thereof
JP2004294198A (en) Method for evaluating ultraviolet resistance of silica glass and ultraviolet-resistant silica glass
JP2001023884A (en) Vacuum ultraviolet-ray lithography device, its manufacture, and method for inspecting crystalline fluoride material
JPH10221206A (en) Evaluation method for excimer laser irradiation initial absorption of synthesized quartz glass member and photo-exposure device using synthesized glass member evaluated by the method
WO2003080525A1 (en) Synthetic quartz glass member and process for producing the same
JP2004307289A (en) Method for manufacturing crystal
JPS6329506A (en) Inspection of x-ray mask

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees