JPH0912323A - Quartz glass member suppressed from becoming dense due to irradiation of uv ray - Google Patents

Quartz glass member suppressed from becoming dense due to irradiation of uv ray

Info

Publication number
JPH0912323A
JPH0912323A JP16403995A JP16403995A JPH0912323A JP H0912323 A JPH0912323 A JP H0912323A JP 16403995 A JP16403995 A JP 16403995A JP 16403995 A JP16403995 A JP 16403995A JP H0912323 A JPH0912323 A JP H0912323A
Authority
JP
Japan
Prior art keywords
quartz glass
irradiation
refractive index
amount
increase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16403995A
Other languages
Japanese (ja)
Inventor
Norio Komine
典男 小峯
Hiroyuki Hiraiwa
弘之 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP16403995A priority Critical patent/JPH0912323A/en
Publication of JPH0912323A publication Critical patent/JPH0912323A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE: To obtain such a synthesized quartz glass suitable for an optical system of photolithography that the structure is suppressed from becoming dense due to irradiation of UV rays in a specified wavelength region by controlling the conc. of OH groups in the quartz glass member to a specified value or smaller and adding hydrogen molecules to the member. CONSTITUTION: This quartz glass member has a low OH group conc. as <=200ppm. Even when the quartz glass member is irradiated with UV rays or excimer laser beams in a specified wavelength region of <=400nm for a long time, the increase in the refractive index, generation of strain and recession of the surface can be suppressed. Therefore, a lens comprising this glass member shows no deterioration of focusing performance even when the glass is irradiated with UV rays for a long time. Moreover, by adding hydrogen molecules to the glass member to obtain >=1×10<17> molecules/cm<2> hydrogen molecule density, the glass member is more suppressed from becoming dense.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は紫外線用光学系に利用さ
れる石英ガラス部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz glass member used in an ultraviolet optical system.

【0002】[0002]

【従来の技術】従来、シリコン等のウエハ上に集積回路
の微細パターンを露光・転写する光リソグラフィ技術に
おいては、ステッパと呼ばれる露光装置が用いられる。
このステッパの光源は、近年のLSIの高集積化に伴っ
てg線(436nm)からi線(365nm)、さらにはKrF
(248nm)やArF(193nm)エキシマレーザへと短波長
化が進められている。一般に、ステッパの照明系あるい
は投影レンズとして用いられる光学ガラスは、i線より
も短い波長領域では光透過率が低下するため、従来の光
学ガラスにかえて合成石英ガラスが用いられる。
2. Description of the Related Art Conventionally, in an optical lithography technique for exposing and transferring a fine pattern of an integrated circuit on a wafer such as silicon, an exposure apparatus called a stepper is used.
The light source of this stepper is g-line (436 nm) to i-line (365 nm), and further KrF with the recent high integration of LSI.
(248 nm) and ArF (193 nm) excimer lasers are being shortened in wavelength. In general, optical glass used as an illumination system of a stepper or a projection lens has a low light transmittance in a wavelength region shorter than the i-line, and thus synthetic quartz glass is used instead of conventional optical glass.

【0003】合成石英ガラスは主に直接法、スート法、
プラズマ法に分類される。これらはすべて気相合成法と
いう製造方法に属している。まず、直接法は、原料に四
塩化ケイ素などのケイ素化合物を用い、原料を酸素水素
火炎で加水分解して石英ガラス微粒子(スート)を形成
させ、それを回転、揺動、引き下げを行っているターゲ
ット上で堆積、溶融、透明化を一気に行うことによって
石英ガラス塊を得る方法である。また、スート法は、原
料に四塩化ケイ素を用い、原料を酸水素火炎で加水分解
してスートを形成させ、それをターゲット上に堆積させ
てスート塊を得たのち、2次処理で透明化して石英ガラ
ス塊を得る方法である。さらに、プラズマ法は、原料に
四塩化ケイ素を用い、原料を酸素+アルゴン混合の高周
波プラズマ火炎で酸化することによりスートを形成さ
せ、それを回転、引き下げしているターゲット上に堆
積、溶融、透明化を一気に行うことによって石英ガラス
塊を得る方法である。
Synthetic quartz glass is mainly used for direct method, soot method,
It is classified into the plasma method. All of these belong to a manufacturing method called a gas phase synthesis method. First, in the direct method, a silicon compound such as silicon tetrachloride is used as a raw material, and the raw material is hydrolyzed with an oxygen-hydrogen flame to form quartz glass fine particles (soot), which are rotated, rocked, and lowered. In this method, a lump of quartz glass is obtained by performing deposition, melting, and clarification on a target all at once. In addition, the soot method uses silicon tetrachloride as a raw material, hydrolyzes the raw material with an oxyhydrogen flame to form soot, deposits it on the target to obtain a soot mass, and then makes it transparent by secondary treatment. It is a method of obtaining a quartz glass block. Furthermore, the plasma method uses silicon tetrachloride as a raw material, and oxidizes the raw material with a high-frequency plasma flame of a mixture of oxygen and argon to form soot, which is deposited on the target that is rotating and pulling down, melting, and transparent. It is a method of obtaining a lump of quartz glass by performing crystallization at once.

【0004】これらの合成石英ガラスを光リソグラフィ
の光学系で用いる場合、集積回路パターンを大きな面積
で高解像度で露光するためには、その合成石英ガラス光
学部材には非常に高い品質が要求される。例えば、部材
の屈折率分布が、直径200mm程度の非常に大きな口径内
で10-6オータ゛ー以下であることが要求される。また、複屈
折量を減少させること、すなわち光学部材の内部歪を減
少させることが、屈折率分布の均質性を向上させること
と同様に、光学系の解像度に対して重要である。
When these synthetic quartz glass are used in an optical system for optical lithography, very high quality is required for the synthetic quartz glass optical member in order to expose an integrated circuit pattern in a large area with high resolution. . For example, the refractive index distribution of the member is required to be 10 −6 order or less in a very large diameter of about 200 mm. Also, reducing the amount of birefringence, that is, reducing the internal strain of the optical member, is important for the resolution of the optical system, as is improving the homogeneity of the refractive index distribution.

【0005】一般に、ガラスのような非結晶体は内部に
応力が存在して歪を受けていないかぎり、あらゆる性質
において等方的である。しかし、歪んでいるガラスは異
方体であり、光学的には複屈折という現象が出現する。
複屈折とは、一つの入射光が光学的異方体を通過したと
きに二つの屈折光が得られる現象である。この屈折光は
振動面が互いに直交する直線偏光のことであり、その屈
折率が異なっているため、それらの二つの屈折光の位相
は異なる。このとき、複屈折量とは物質内を光が単位長
さ通過したときの、二つの屈折光の位相差のことであ
る。通常、ガラスの歪量はこの複屈折量として定義され
る。光学部材にこのような歪が存在することは、光学系
の解像度に対して悪影響を及ぼす。
[0005] In general, an amorphous material such as glass is isotropic in all properties unless stress is present inside the material and strained. However, distorted glass is an anisotropic body, and a phenomenon called birefringence appears optically.
Birefringence is a phenomenon in which two refracted lights are obtained when one incident light passes through an optically anisotropic body. This refracted light is linearly polarized light whose vibrating planes are orthogonal to each other, and since the refraction indices thereof are different, the phases of these two refracted lights are different. At this time, the amount of birefringence is a phase difference between two refracted lights when light passes through a substance for a unit length. Usually, the strain amount of glass is defined as this birefringence amount. The presence of such distortion in the optical member adversely affects the resolution of the optical system.

【0006】このため、光リソグラフィ装置の結像光学
系に用いられる合成石英ガラスには屈折率の均質性がよ
く、歪の少ない高品質なものが用いられている。
For this reason, a synthetic quartz glass used in an image forming optical system of an optical lithography apparatus is of high quality with good refractive index homogeneity and little distortion.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、そのよ
うな屈折率の均質性、歪に関して高品質な合成石英ガラ
スであっても高出力の紫外光やエキシマレーザ光を長時
間照射すると、E’センターと呼ばれる構造欠陥に起因
する215nmの吸収帯やNBOHC(Non-BridgingOxygen
Hole Center)と呼ばれる構造欠陥に起因する260nm吸収
帯が現れて紫外領域の透過率が著しい低下が生じる場合
があった。さらに、同時に、屈折率の上昇や歪の発生、
表面の凹みなどの現象が現れるため、光学系の解像度を
著しく劣化させるという問題があった。これらの現象は
それぞれ、石英ガラスに紫外線を照射したときに、照射
部分の屈折率が未照射部分の屈折率より高くなってしま
うこと、また、照射部分と未照射部分の境界付近に大き
な歪が生じること、さらに、石英ガラス表面の照射部分
が未照射部分に比較して凹んでしまうことを意味する。
However, even if high-quality synthetic silica glass with respect to such homogeneity and strain of the refractive index is irradiated with high-power ultraviolet light or excimer laser light for a long time, the E ′ center 215nm absorption band and NBOHC (Non-Bridging Oxygen) caused by structural defects called
In some cases, the 260 nm absorption band due to a structural defect called a hole center) appeared and the transmittance in the ultraviolet region decreased remarkably. Furthermore, at the same time, the rise of the refractive index and the occurrence of distortion,
Since a phenomenon such as a dent on the surface appears, there is a problem that the resolution of the optical system is significantly deteriorated. Each of these phenomena is that when the quartz glass is irradiated with ultraviolet rays, the refractive index of the irradiated part becomes higher than the refractive index of the unirradiated part, and a large strain is generated near the boundary between the irradiated part and the unirradiated part. This means that the irradiated portion of the quartz glass surface is recessed as compared with the unirradiated portion.

【0008】このような屈折率の上昇や歪の発生、表面
の凹みが発生することについては、これまでにいくつか
の報告例がある。しかし、それぞれの現象が独立に論じ
られていることがあっても、それらの現象の発生のメカ
ニズムやそれらの相互関係、さらには、それらの現象を
どうすれば抑制できるかについては明らかになっていな
かった。
Regarding the rise of the refractive index, the generation of strain, and the dent on the surface, there have been some reports to date. However, even though each phenomenon was discussed independently, it was not clear about the mechanism of their occurrence, their interrelationships, and how they could be suppressed. .

【0009】本発明はそのような従来技術の欠点であっ
た紫外線照射による屈折率の上昇や歪の発生、表面の凹
みを抑制して、光リソグラフィの光学系に最適な合成石
英ガラスを提供することを目的とする。
The present invention provides a synthetic quartz glass most suitable for an optical system of optical lithography by suppressing the increase of the refractive index, the occurrence of distortion, and the depression of the surface due to the irradiation of ultraviolet rays, which are the drawbacks of the prior art. The purpose is to

【0010】[0010]

【課題を解決するための手段】本発明者らは、紫外線照
射に伴う屈折率の上昇や歪の発生、表面の凹みの原因に
関して鋭意研究を行ってきた。その結果、これらの特性
は紫外線照射によって引き起こされる石英ガラスの構造
の緻密化、すなわち密度の上昇という現象に伴って生じ
ていることがわかった。そして、そのような緻密化を抑
制するためには、石英ガラス中に含有するOH基濃度を
低くすればよいという結論に達した。そこで、本発明は
OH基濃度が200ppm以下である石英ガラス部材であっ
て、紫外線照射による構造の緻密化が抑制されたことを
特徴としている。
Means for Solving the Problems The inventors of the present invention have earnestly studied the cause of the increase in the refractive index, the generation of strain, and the depression of the surface due to the irradiation of ultraviolet rays. As a result, it was found that these characteristics are caused by the phenomenon that the structure of quartz glass is densified, that is, the density is increased, which is caused by ultraviolet irradiation. Then, in order to suppress such densification, it was concluded that the OH group concentration contained in the silica glass should be lowered. Therefore, the present invention is a quartz glass member having an OH group concentration of 200 ppm or less, and is characterized in that densification of the structure due to ultraviolet irradiation is suppressed.

【0011】また、さらに調査を行った結果、部材中に
水素分子を添加することによってさらに緻密化を抑制す
ることができることが判明した。そこで、本発明はOH
基濃度が200ppm以下である石英ガラス部材であって、水
素分子濃度が1×1017molecules/cm3以上であることを
特徴としている。以上のように、紫外線照射によって引
き起こされる密度の上昇を抑制することができれば、短
波長でかつ高出力の紫外線やエキシマレーザ光を長期間
照射によってもレンズの結像性能を劣化させない石英ガ
ラス光学部材を提供することができる。
Further, as a result of further investigation, it was found that the addition of hydrogen molecules into the member can further suppress the densification. Therefore, the present invention is OH
A quartz glass member having a base concentration of 200 ppm or less and a hydrogen molecule concentration of 1 × 10 17 molecules / cm 3 or more. As described above, if the increase in density caused by ultraviolet irradiation can be suppressed, a quartz glass optical member that does not deteriorate the imaging performance of the lens even when irradiated with ultraviolet light or excimer laser light of short wavelength and high output for a long period of time. Can be provided.

【0012】このような石英ガラス光学部材は、ArF
エキシマレーザをワンパルスエネルギー密度200mJ/cm2
で6×105パルス照射した後の密度と照射前の密度との差
が3×10-5g/cm3以下であることを特徴とする。
Such a quartz glass optical member is made of ArF.
Excimer laser with one pulse energy density 200 mJ / cm 2
The difference between the density after 6 × 10 5 pulse irradiation and the density before irradiation is 3 × 10 −5 g / cm 3 or less.

【0013】[0013]

【作用】石英ガラスに強力な紫外線や放射線を照射した
ときに屈折率上昇や歪の発生、さらに表面凹みが生じる
ことについては、これまでにいくつかの報告例がある。
このような現象が紫外線用の光学系の性能劣化につなが
ることは従来技術で述べたとおりである。しかし、これ
らの現象が生じるメカニズムやそれらの相互の関連、さ
らにはそれらの物性変化をどうすれば抑制できるかにつ
いては、明らかになっていなかった。
[Function] There have been some reports so far about the rise of the refractive index, the occurrence of strain, and the surface dent when the quartz glass is irradiated with strong ultraviolet rays or radiation.
As described in the prior art, such a phenomenon leads to performance deterioration of the optical system for ultraviolet rays. However, it has not been clarified about the mechanism of these phenomena, their relation to each other, and how to suppress their physical property changes.

【0014】本発明者らは、まずこれらの現象の相互関
係について調べた。いろいろなエキシマレーザ照射条件
を設定して、多種類の石英ガラスに照射実験を行い、屈
折率上昇、歪、表面凹みのデータを測定した。屈折率上
昇量はHe−Neレーザを光源としたフィゾー型干渉計
によって、エキシマレーザ照射した部分の屈折率と未照
射の部分との屈折率差を測定することによって求められ
た。また、歪量はHe−Neレーザを光源とした自動複
屈折測定装置によって、エキシマレーザ照射部分と未照
射部分との境界付近に発生する歪量を測定し、その最大
歪量として求めた。この装置は、歪んでいるガラスに一
つの入射光がを通過したときに複屈折という現象で発生
した二つの屈折光の、光が単位長さ通過したときの位相
差(複屈折量)を測定し、部材の領域内での複屈折量の
空間的分布を測定する装置である。通常、ガラスの歪量
はこの複屈折量として定義される。また、表面凹み量は
ダイヤモンド針接触型表面形状測定機によって、試料の
エキシマレーザ光入射面、出射面両方に発生する凹み量
を測定し、その合計として求めた。
The present inventors first investigated the interrelationship of these phenomena. Various excimer laser irradiation conditions were set, and irradiation experiments were conducted on various types of quartz glass, and the data of the refractive index rise, strain, and surface dents were measured. The amount of increase in the refractive index was obtained by measuring the refractive index difference between the part irradiated with the excimer laser and the part not irradiated with the Fizeau interferometer using a He—Ne laser as a light source. The strain amount was determined as the maximum strain amount by measuring the strain amount generated near the boundary between the excimer laser-irradiated portion and the non-irradiated portion with an automatic birefringence measuring device using a He-Ne laser as a light source. This device measures the phase difference (amount of birefringence) of two refracted lights generated by a phenomenon called birefringence when one incident light passes through a distorted glass when the light passes through a unit length. However, it is a device for measuring the spatial distribution of the birefringence amount in the region of the member. Usually, the strain amount of glass is defined as this birefringence amount. Further, the amount of surface depression was determined by measuring the amount of depression generated on both the incident surface and the exit surface of the excimer laser light of the sample using a diamond needle contact surface shape measuring instrument, and calculated as the sum.

【0015】その結果、図2に示したように、屈折率上
昇量と歪量との間に1対1の相関があることが判明し
た。さらに、図3に示したように、屈折率上昇量と表面
凹み量との間にも1対1の相関関係が成り立つことが判
明した。このことから、屈折率上昇、歪の発生、表面凹
みは同一の現象、すなわち、エキシマレーザ照射に伴う
石英ガラス構造の緻密化によって発生しているとの結論
に至った。エキシマレーザ照射によって石英ガラス内部
で結合(例えば、≡Si-O-Si≡、≡Si-O-Hなど。なお、
≡Siは三重結合ではなく、Siが3つの酸素と結合して
いることを表す。)の組み替えが生じ、構造の緻密化が
進行すると、密度の上昇に伴う屈折率の上昇が結果的に
生じていると考えられる。照射部分でこのような構造の
緻密化が進行するので、緻密化の進行しない未照射部分
との境界付近では、大きな応力が発生することになり、
結果的に、歪として現れる。またさらに、緻密化の進行
は体積収縮を伴うため、照射部分は未照射部分に比較し
て表面が凹んでしまうと考えられる。
As a result, as shown in FIG. 2, it was found that there is a one-to-one correlation between the amount of increase in refractive index and the amount of strain. Furthermore, as shown in FIG. 3, it was found that a one-to-one correlation also holds between the refractive index increase amount and the surface depression amount. From this, it was concluded that the increase in the refractive index, the occurrence of strain, and the surface depression were caused by the same phenomenon, that is, the densification of the silica glass structure due to the excimer laser irradiation. Bonding inside the quartz glass by excimer laser irradiation (eg, ≡Si-O-Si≡, ≡Si-OH, etc.
≡Si does not represent a triple bond, but represents that Si is bonded to three oxygens. It is considered that, when the rearrangement of (1) occurs and the densification of the structure progresses, the refractive index increases as the density increases. Since densification of such a structure progresses in the irradiated portion, a large stress is generated near the boundary with the unirradiated portion where the densification does not proceed,
As a result, it appears as distortion. Furthermore, since the progress of densification is accompanied by volume contraction, it is considered that the surface of the irradiated portion is recessed as compared with the unirradiated portion.

【0016】紫外線照射による密度の上昇量はアルキメ
デス法によって測定することができる。本発明者等は紫
外線照射による密度上昇が光学系の結像性能に及ぼす影
響を調査した結果、ArFエキシマレーザをワンパルス
エネルギー密度200mJ/cm2で6×105パルス照射した後の
密度と照射前の密度との差が3×10-5g/cm3以下である
石英ガラス光学部材を用いれば、ArFエキシマレーザ
ステッパ投影光学系の結像性能が劣化しないことを突き
とめた。
The increase in density due to ultraviolet irradiation can be measured by the Archimedes method. As a result of investigating the influence of the increase in density due to ultraviolet irradiation on the imaging performance of the optical system, the present inventors have found that the density and irradiation after irradiation of ArF excimer laser with 6 × 10 5 pulses at one pulse energy density of 200 mJ / cm 2 It was found that the image forming performance of the ArF excimer laser stepper projection optical system is not deteriorated by using a silica glass optical member whose difference from the previous density is 3 × 10 −5 g / cm 3 or less.

【0017】次に、本発明者らは前述のような緻密化を
抑制する方法について検討してきた。その結果、石英ガ
ラス中のOH基濃度を減らすことによって、緻密化の抑
制を達成できることを突き止めた。すなわち、OH基の
存在が、石英ガラスの結合の組み替えを生じさせやすく
なることがわかった。このような、OH基の存在が緻密
化をより進行させてしまう機構については必ずしも明確
ではないが、本発明者らの研究に基づいて推定すると、
例えば、エキシマレーザ照射に伴う以下のような反応、 ≡Si-O-H H-O-Si≡ → ≡Si-O-Si≡ + H2O (1) によって、構造的な緻密化が進行するもの推定される。
Next, the present inventors have studied a method for suppressing the above-mentioned densification. As a result, it was found that suppression of densification can be achieved by reducing the OH group concentration in quartz glass. That is, it was found that the presence of the OH group facilitates the rearrangement of the bond of the quartz glass. The mechanism by which the presence of the OH group promotes the densification further is not necessarily clear, but it is estimated based on the studies by the present inventors.
For example, the following reactions associated with excimer laser irradiation, ≡Si-OH HO-Si≡ → ≡Si-O-Si≡ + H 2 O (1), are presumed to lead to structural densification. .

【0018】次に、水素分子が含有されることによる、
緻密化の抑制の機構について、本発明者らの研究結果に
基づいて推定する。水素分子が存在する石英ガラスにγ
線を照射したときに、 ≡Si-O-Si≡ + H2 → ≡Si-OH H-Si≡ (2) のような反応が生じ、多量のOH基の存在により屈折率
が減少するといわれている。すなわち、密度が減少する
といわれている。そこで、本発明者らは石英ガラスに水
素分子を含有させれば、紫外線照射に伴う緻密化と同時
に、OH基の生成による密度の減少を生じさせることに
よって、2つの現象の相殺によって実質的に緻密化を抑
制できるのではないかと考え、研究を重ねてきた。その
結果、実際に水素分子の存在により歪の発生が抑制され
ることを突き止めた。このとき(1)で示された光分解
過程に水素分子が存在すると、さらに緻密な構造へ変化
する前に≡Si-OH H-Si≡に終端され安定化するものと推
定される。
Next, due to the inclusion of hydrogen molecules,
The mechanism of suppression of densification will be estimated based on the results of the study by the present inventors. Γ in quartz glass containing hydrogen molecules
It is said that when irradiated with a ray, a reaction such as ≡Si-O-Si≡ + H 2 → ≡Si-OH H-Si≡ (2) occurs and the refractive index decreases due to the presence of a large amount of OH groups. There is. That is, it is said that the density decreases. Therefore, when the quartz glass contains hydrogen molecules, the inventors of the present invention substantially densify the material with ultraviolet irradiation and simultaneously reduce the density due to the formation of OH groups. I have been conducting research, thinking that it may be possible to suppress densification. As a result, they have found that the presence of hydrogen molecules actually suppresses the generation of strain. At this time, if hydrogen molecules are present in the photolysis process shown in (1), it is presumed that the hydrogen is stabilized by being terminated by ≡Si-OH H-Si≡ before changing to a more dense structure.

【0019】このようなOH基濃度の減少による緻密化
の抑制効果は、どのような石英ガラスにも見られるもの
ではなく、ある一定の構造、すなわち、以下に述べるよ
うな、不完全構造を持たない、理想に近い構造を持つ石
英ガラスに限って発揮される。不完全構造の例として
は、酸素欠乏型欠陥である≡Si-Si≡結合や、酸素過剰
型欠陥である≡Si-O-O-Si≡結合等が提案されている
が、本発明の石英ガラスは、そのような化学量論比から
のずれに起因する不完全構造も存在しないことが必要と
される。すなわち、酸素欠乏型欠陥吸収帯(7.6、5.0eV
吸収帯)を実質的に含まない。本発明の石英ガラスにA
rFエキシマレーザを照射したとき、酸素過剰型欠陥吸
収帯(4.8eV吸収帯)が実質的に生成しない。これらの
欠陥が存在しないことにより、真空紫外・紫外・可視・
赤外分光光度計による透過率測定では、g線(436nm)
〜i線(365nm)、さらにはKrF(248nm)波長では内
部透過率99.9%以上、ArF(193nm)波長では略99.8%
以上を得ることが出来る。
The effect of suppressing the densification due to the decrease of the OH group concentration is not found in any quartz glass, but has a certain structure, that is, an incomplete structure as described below. No, it is effective only for quartz glass that has a structure close to ideal. As an example of the incomplete structure, ≡Si-Si≡ bond which is an oxygen deficient type defect, ≡Si-OO-Si≡ bond which is an oxygen excess type defect, etc. have been proposed. , It is also necessary that there be no incomplete structure due to such deviation from the stoichiometric ratio. That is, oxygen deficiency type defect absorption band (7.6, 5.0 eV
Absorption band) is substantially not included. The quartz glass of the present invention has A
When irradiated with the rF excimer laser, the oxygen excess defect absorption band (4.8 eV absorption band) is not substantially generated. Due to the absence of these defects, vacuum ultraviolet, ultraviolet, visible,
In the transmittance measurement with an infrared spectrophotometer, g-line (436 nm)
~ I-line (365nm), further KrF (248nm) wavelength internal transmittance 99.9% or more, ArF (193nm) wavelength approximately 99.8%
The above can be obtained.

【0020】従来、例えばVAD法の合成石英ガラスで
は、その製造工程でOH基濃度を低減させようとしたと
き、酸素欠乏型欠陥が発生してしまうことが多かった。
このような酸素欠乏型欠陥が、OH基濃度は低くしたに
もかかわらず、エキシマレーザ照射に伴う大きな緻密化
が生ずる原因であった。また、逆に、例えばプラズマ法
で製造された合成石英ガラスでは原理的にOH基を含ま
ない合成石英ガラスが得られるが、多量の酸素過剰型欠
陥構造を含んでいるために、やはり、エキシマレーザ照
射に伴う大きな緻密化が進行してしまった。また、さら
に、石英ガラス薄膜、導波路、石英系ファイバの分野で
は、紫外線照射による石英ガラスの緻密化は積極的に利
用されており、紫外線照射による屈折率制御、導波路作
製、ファイバグレーティング作製などに応用されてい
る。これらの分野においてはむしろ、より効率的に、す
なわち同じエネルギーの紫外線照射でより大きな緻密化
を生じさせるような研究が行われている。その結果最近
では、薄膜、ファイバを還元処理することよってより効
率的に緻密化を生じさせることがことが明らかになって
いる。このような薄膜やファイバの石英ガラスは理想的
な構造ではなく、たとえば酸素欠乏性欠陥構造を含んで
いる(7.6eV、5.0eV吸収帯が観測される)ため、大きな
緻密化が進行することが明らかになっている。以上のよ
うに、本発明のような理想に近い構造を持つ石英ガラ
ス、すなわち構造欠陥の無い石英ガラスにおいては、O
H基濃度を減少させることによって紫外線照射による緻
密化を抑制する効果が発揮される。
Conventionally, for example, in the synthetic quartz glass of the VAD method, when an OH group concentration is reduced in the manufacturing process, oxygen deficiency type defects are often generated.
Such an oxygen-deficient defect was a cause of large densification accompanying excimer laser irradiation, even though the OH group concentration was low. On the contrary, synthetic quartz glass produced by, for example, the plasma method can theoretically obtain synthetic quartz glass containing no OH group, but since it contains a large amount of oxygen-excessive defect structure, the excimer laser is also used. Large densification progressed with irradiation. Furthermore, in the field of quartz glass thin films, waveguides, and silica-based fibers, densification of quartz glass by UV irradiation is actively used, and refractive index control by UV irradiation, waveguide fabrication, fiber grating fabrication, etc. Has been applied to. Rather, research is being carried out in these fields in a more efficient manner, that is, irradiation with ultraviolet rays of the same energy causes greater densification. As a result, recently, it has been revealed that reduction treatment of a thin film and a fiber causes densification more efficiently. Quartz glass of such thin films and fibers does not have an ideal structure, but contains, for example, an oxygen deficient defect structure (7.6 eV and 5.0 eV absorption bands are observed), so that large densification may proceed. It is clear. As described above, in the silica glass having a structure close to the ideal as in the present invention, that is, in the silica glass having no structural defect, O
By reducing the H group concentration, the effect of suppressing densification due to ultraviolet irradiation is exhibited.

【0021】本発明で得られる石英ガラスはエキシマレ
ーザステッパの投影レンズのみならず照明系、エタロン
等の紫外線精密光学素子に有用である。
The silica glass obtained in the present invention is useful not only for the projection lens of the excimer laser stepper, but also for an illumination system, an ultraviolet precision optical element such as an etalon.

【0022】[0022]

【実施例1】高純度の四塩化珪素を原料として用い、石
英ガラス製バーナにて酸素ガス及び水素ガスを混合、燃
焼させ、中心部から原料ガスをキャリアガス(通常、酸
素ガス)で希釈して噴出させ、ターゲット上に石英ガラ
ス微粒子(スート)を堆積させ、石英ガラスの多孔質体
を形成した。この多孔質体を不活性ガス雰囲気中で1000
℃で20時間加熱処理したのち、真空中で1000℃で20時間
加熱処理した。続いて不活性ガス雰囲気下で1600℃で15
時間、透明化のための熱処理を行った。このようにして
透明な石英ガラスインゴットを得たのち、直径60mm、厚
さ10mmの形状を持つ、ArFエキシマレーザ照射用試験
片を切り出し、厚さ方向の向かい合う2面に光学研磨を
施した。これを実施例1とした。実施例1のOH基濃度
は10ppmであった。また、水素分子濃度は検出下限(5×
1016molecules/cm3)以下であった。
Example 1 Using high-purity silicon tetrachloride as a raw material, a quartz glass burner was used to mix and burn oxygen gas and hydrogen gas, and the raw material gas was diluted with a carrier gas (usually oxygen gas) from the center. The silica glass particles (soot) were deposited on the target to form a porous body of silica glass. This porous body is heated to 1000 in an inert gas atmosphere.
After heat treatment at ℃ for 20 hours, heat treatment at 1000 ℃ in vacuum for 20 hours. Then, at 1600 ℃ in an inert gas atmosphere,
A heat treatment for transparency was performed for a time. After obtaining a transparent quartz glass ingot in this manner, a test piece for ArF excimer laser irradiation having a shape with a diameter of 60 mm and a thickness of 10 mm was cut out, and two surfaces facing each other in the thickness direction were optically polished. This is Example 1. The OH group concentration of Example 1 was 10 ppm. In addition, the hydrogen molecule concentration is the detection limit (5 ×
10 16 molecules / cm 3 ) or less.

【0023】なお、OH基濃度は1.38μmの吸収量を測
定することにより算出した。また、水素分子濃度の測定
はレーザーラマン分光光度計により行った。Ar+レー
ザ(出力400mW)を照射した時に発生する試料と直角方
向のラマン散乱光のうち、800cm-1と4135cm-1の強度を
測定し、その強度比をとることにより行った。このよう
にして作成した実施例1の試験片に、ArFエキシマレ
ーザ光をワンパルスエネルギー密度:200mJ/cm2/puls
e、繰り返し周波数:100Hz、ビーム形状:0.7×0.7cm2
で6×105パルス照射試験を行い、屈折率上昇量と密度上
昇量を測定した。なお、屈折率上昇量はHe−Neレー
ザ(633nm)を光源としたフィゾー型干渉計によって、
照射部部分と未照射部分の屈折率差として測定した。ま
た、密度上昇量はアルキメデス法によって測定した。そ
の結果、実施例1の屈折率上昇量は2.5×10-6で、密度
上昇量は1.3×10-5g/cm3であった。実施例1の屈折率
上昇量は5×10-6以下であり、密度上昇量は3×10-5g/c
m3以下であるので、非常に良好な結果が得られた。
The OH group concentration was calculated by measuring the amount of absorption at 1.38 μm. The hydrogen molecule concentration was measured by a laser Raman spectrophotometer. The intensity at 800 cm -1 and 4135 cm -1 of the Raman scattered light in the direction perpendicular to the sample generated when irradiated with an Ar + laser (output 400 mW) was measured and the intensity ratio was taken. One pulse energy density: 200 mJ / cm 2 / puls was applied to the test piece of Example 1 thus created by ArF excimer laser light.
e, Repetition frequency: 100Hz, Beam shape: 0.7 × 0.7cm 2
A 6 × 10 5 pulse irradiation test was performed in order to measure the amount of increase in refractive index and the amount of increase in density. The amount of increase in refractive index was measured by a Fizeau interferometer using a He-Ne laser (633 nm) as a light source.
It was measured as the difference in refractive index between the irradiated part and the unirradiated part. Moreover, the amount of density increase was measured by the Archimedes method. As a result, the refractive index increase amount of Example 1 was 2.5 × 10 −6 and the density increase amount was 1.3 × 10 −5 g / cm 3 . The amount of increase in refractive index of Example 1 was 5 × 10 −6 or less, and the amount of increase in density was 3 × 10 −5 g / c.
Since it is less than m 3 , very good results were obtained.

【0024】[0024]

【実施例2】実施例2の試験片はほぼ実施例1と同様の
工程で作製されるが、実施例1の工程と異なる点は、真
空中での加熱処理を行っていないことである。実施例2
の試験片のOH基濃度は145ppmであった。また、水素分
子濃度は検出下限(5×1016molecules/cm3)以下であっ
た。
Example 2 The test piece of Example 2 is manufactured by substantially the same process as that of Example 1, but the difference from the process of Example 1 is that the heat treatment is not performed in vacuum. Example 2
The OH group concentration of the test piece of was 145 ppm. The hydrogen molecule concentration was below the lower limit of detection (5 × 10 16 molecules / cm 3 ).

【0025】このようにして作成した実施例2の試験片
に、実施例1の場合と同様の条件でArFエキシマレー
ザの照射試験を行い、屈折率上昇量を測定した。その結
果、実施例2の屈折率上昇量は4.4×10-6で、密度上昇
量は2.2×10-5g/cm3であり、非常に良好な結果が得ら
れた。
The thus prepared test piece of Example 2 was subjected to an irradiation test of ArF excimer laser under the same conditions as in Example 1 to measure the amount of increase in refractive index. As a result, the amount of increase in refractive index in Example 2 was 4.4 × 10 −6 and the amount of increase in density was 2.2 × 10 −5 g / cm 3 , and very good results were obtained.

【0026】[0026]

【比較例1】比較例の石英ガラスインゴットは、原料と
して高純度の四塩化硅素を用い、石英ガラス製バーナに
て酸素ガス及び水素ガスを混合、燃焼させ、中心部から
原料ガスをキャリアガス(通常、酸素ガス)で希釈して
噴出させ、ターゲット上に堆積、溶融して合成した。こ
のとき、酸素ガスと水素ガスの混合比率をO2/H2=0.2と
設定した。得られた石英ガラスインゴットから直径60m
m、厚さ10mmの形状を持つ、ArFエキシマレーザ照射
用試験片を切り出し、厚さ方向の向かい合う2面に光学
研磨を施した。次に、試験片を真空加熱処理により脱水
素を行った。処理温度は700℃で、処理時間は60時間と
した。この様な手順により、比較例1の試験片を作製し
た。比較例1のOH基濃度は600ppmであった。また、水
素分子濃度は検出下限以下であった。
[Comparative Example 1] The quartz glass ingot of the comparative example uses high-purity silicon tetrachloride as a raw material, and an oxygen gas and a hydrogen gas are mixed and burned by a quartz glass burner to burn the raw material gas from the center portion into a carrier gas ( Usually, it was diluted with oxygen gas) and ejected, deposited on a target, melted, and synthesized. At this time, the mixing ratio of oxygen gas and hydrogen gas was set to O 2 / H 2 = 0.2. 60m diameter from the obtained quartz glass ingot
An ArF excimer laser irradiation test piece having a shape of m and a thickness of 10 mm was cut out, and two surfaces facing each other in the thickness direction were optically polished. Next, the test piece was dehydrogenated by vacuum heat treatment. The treatment temperature was 700 ° C. and the treatment time was 60 hours. The test piece of Comparative Example 1 was produced by such a procedure. The OH group concentration of Comparative Example 1 was 600 ppm. The hydrogen molecule concentration was below the detection limit.

【0027】このようにして作成した比較例1の試験片
に、実施例1の場合と同様の条件でArFエキシマレー
ザの照射試験を行い、屈折率上昇量を測定した。その結
果、比較例1の屈折率上昇量は8.5×10-6、密度上昇量
は4.3×10-5g/cm3と得られた。したがって、屈折率上
昇量は5×10-6以上であり、密度上昇量は3×10-5g/cm3
以上であるので、比較例1は不良であることがわかっ
た。
The test piece of Comparative Example 1 thus prepared was subjected to an ArF excimer laser irradiation test under the same conditions as in Example 1 to measure the amount of increase in refractive index. As a result, the amount of increase in refractive index of Comparative Example 1 was 8.5 × 10 −6 and the amount of increase in density was 4.3 × 10 −5 g / cm 3 . Therefore, the refractive index increase is 5 × 10 -6 or more, and the density increase is 3 × 10 -5 g / cm 3
From the above, Comparative Example 1 was found to be defective.

【0028】[0028]

【比較例2】比較例2の試験片はほぼ比較例1と同様の
工程で作製されるが、比較例1の工程と異なる点は、酸
素ガスと水素ガスの混合比率をO2/H2=0.4と設定したこ
とにある。比較例2の試験片のOH基濃度は960ppmであ
った。また、水素分子濃度は検出下限(5×1016molecul
es/cm3)以下であった。
[Comparative Example 2] While the test piece of Comparative Example 2 is prepared in substantially the Comparative Example 1 and the same process is different from the comparative example 1 step, the mixing ratio of oxygen gas and hydrogen gas O 2 / H 2 = 0.4 has been set. The OH group concentration of the test piece of Comparative Example 2 was 960 ppm. In addition, the hydrogen molecule concentration is the detection limit (5 × 10 16 molecul
es / cm 3 ) or less.

【0029】このようにして作成した比較例1の試験片
に、実施例1の場合と同様の条件でArFエキシマレー
ザの照射試験を行い、屈折率上昇量を測定した。その結
果、比較例2の屈折率上昇量は14×10-6、密度上昇量は
7×10-5g/cm3と得られた。したがって、屈折率上昇量
は5×10-6以上であり、密度上昇量は3×10-5g/cm3以上
であるので、比較例2は不良であることがわかった。
The test piece of Comparative Example 1 thus prepared was subjected to an ArF excimer laser irradiation test under the same conditions as in Example 1 to measure the amount of increase in refractive index. As a result, the amount of increase in refractive index of Comparative Example 2 was 14 × 10 −6 , and the amount of increase in density was
It was obtained as 7 × 10 −5 g / cm 3 . Therefore, since the refractive index increase amount is 5 × 10 −6 or more and the density increase amount is 3 × 10 −5 g / cm 3 or more, Comparative Example 2 was found to be defective.

【0030】以上のように実施例1、2、比較例1、2
に対するArFエキシマレーザ照射試験によって得られ
た結果を図1に示した。図1のように、ArFエキシマ
レーザ照射による屈折率上昇量はOH基濃度に強く依存
し、OH基濃度が200ppm以下であれば、屈折率上昇量は
5×10-6以下であり、非常に良好な結果が得られること
がわかった。なお、図1の縦軸の、例えば1E-05とは、1
×10-5を意味している。
As described above, Examples 1 and 2 and Comparative Examples 1 and 2
The results obtained by the ArF excimer laser irradiation test with respect to are shown in FIG. As shown in FIG. 1, the amount of increase in the refractive index due to ArF excimer laser irradiation strongly depends on the OH group concentration.
It was 5 × 10 −6 or less, and it was found that a very good result was obtained. Note that, for example, 1E-05 on the vertical axis of FIG. 1 is 1
It means × 10 -5 .

【0031】[0031]

【実施例3】実施例1の試験片に対して、100%の水素ガ
ス雰囲気下で500℃で60時間の加熱処理を行った。この
試験片を実施例3とした。その結果、実施例3の試験片
の水素分子濃度は2×1018molecules/cm3であった。OH
基濃度は熱処理前後で変化なかった。実施例3の試験片
に、実施例1の場合と同様の条件でArFエキシマレー
ザの照射試験を行い、屈折率上昇量を測定した。その結
果、実施例3の屈折率上昇量は1.9×10-6で、密度上昇
量は1.3×10-5g/cm3であった。実施例3の屈折率上昇
量は5×10-6以下であり、密度上昇量は3×10-5g/cm3
下であるので、非常に良好な結果が得られた。すなわ
ち、水素分子の存在により実施例1のときよりさらに緻
密化が抑制されることがわかった。
Example 3 The test piece of Example 1 was heat-treated at 500 ° C. for 60 hours in a 100% hydrogen gas atmosphere. This test piece was referred to as Example 3. As a result, the hydrogen molecule concentration of the test piece of Example 3 was 2 × 10 18 molecules / cm 3 . OH
The base concentration did not change before and after the heat treatment. The test piece of Example 3 was subjected to an ArF excimer laser irradiation test under the same conditions as in Example 1 to measure the amount of increase in refractive index. As a result, the amount of increase in refractive index of Example 3 was 1.9 × 10 −6 and the amount of increase in density was 1.3 × 10 −5 g / cm 3 . Since the amount of increase in the refractive index of Example 3 was 5 × 10 −6 or less and the amount of increase in density was 3 × 10 −5 g / cm 3 or less, very good results were obtained. That is, it was found that the presence of hydrogen molecules further suppressed the densification as compared with the case of Example 1.

【0032】[0032]

【実施例4】本発明の石英ガラス光学部材のうち、エキ
シマレーザ照射領域内での最大屈折率差が△n≦2×10
-6であり、最大複屈折率が2nm/cm以下の特性を有する部
材を用いて、ArFエキシマレーザステッパ投影レンズ
を作製した。そして、得られた投影光学系の解像度はラ
インアンドスペースで0.2μmを達成し、ArFエキシマ
レーザステッパとして良好な結像性能を得ることができ
た。
[Embodiment 4] In the silica glass optical member of the present invention, the maximum refractive index difference in the excimer laser irradiation region is Δn ≦ 2 × 10.
An ArF excimer laser stepper projection lens was produced using a member having a characteristic that the maximum birefringence was -6 and the maximum birefringence was 2 nm / cm or less. Then, the resolution of the obtained projection optical system reached 0.2 μm in line and space, and good imaging performance as an ArF excimer laser stepper could be obtained.

【0033】このように良好な結像性能が、ArFエキ
シマレーザステッパが稼働している期間保たれている必
要があるが、稼働期間は10年以上が想定されているの
で、実際の装置で確認することはできない。したがっ
て、光学設計段階で算出される投影光学系のレンズ部材
に要求される緻密化の許容量を、本発明の石英ガラス光
学部材が満たしているかどうかを検討した。
As described above, good image forming performance needs to be maintained while the ArF excimer laser stepper is in operation, but since the operation period is expected to be 10 years or longer, it is confirmed by an actual device. You cannot do it. Therefore, it was examined whether or not the silica glass optical member of the present invention satisfies the densification allowable amount required for the lens member of the projection optical system calculated in the optical design stage.

【0034】投影光学系のレンズ部材に照射されるAr
Fエキシマレーザ光のワンパルス当たりのエネルギー密
度は平均0.2mJ/cm2/pulseである。このエネルギー密度
で、ArFエキシマレーザステッパを実稼働時間に相当
するパルス数1×1011パルス稼働させたとき、屈折率の
変動が1×10-6以下であることが要求される。この許容
範囲内であれば、ArFエキシマレーザステッパの投影
光学系の結像性能に支障をきたさない。
Ar applied to the lens member of the projection optical system
The energy density per pulse of the F excimer laser light is 0.2 mJ / cm 2 / pulse on average. At this energy density, when the ArF excimer laser stepper is operated with a pulse number of 1 × 10 11 pulses corresponding to the actual operating time, the fluctuation of the refractive index is required to be 1 × 10 −6 or less. Within this allowable range, the imaging performance of the projection optical system of the ArF excimer laser stepper is not hindered.

【0035】実際に、本発明の石英ガラス光学部材の屈
折率が上記稼働条件でどの程度変動するかを調べるため
には、照射に伴う屈折率上昇量のパルスエネルギー密度
依存性およびパルス数依存性を調査する必要がある。そ
こで、本発明の石英ガラス光学部材に関して調査した結
果、照射に伴う屈折率上昇量はパルスエネルギー密度の
1.3乗に比例して増大することがわかった。また、照射
に伴う屈折率上昇量はパルス数の0.6乗に比例して増大
することがわかった。
In order to investigate how the refractive index of the silica glass optical member of the present invention actually fluctuates under the above operating conditions, pulse energy density dependency and pulse number dependency of the refractive index increase amount with irradiation. Need to investigate. Therefore, as a result of investigating the quartz glass optical member of the present invention, the amount of increase in the refractive index due to irradiation is
It was found to increase in proportion to the power of 1.3. It was also found that the increase in the refractive index with irradiation increases in proportion to the 0.6th power of the pulse number.

【0036】このデータを基に、本発明の石英ガラス光
学部材の、ArFエキシマレーザステッパ投影光学系の
実稼働条件での屈折率上昇量を予測した。まず、パルス
エネルギー密度に関して、実稼働条件での屈折率上昇量
は実施例1、2で行った照射試験条件での屈折率上昇量
より、 {(0.2mJ/cm2/pulse)/(200mJ/cm2/pulse)}1.3=1.25×10-4倍 となる。また、パルス数に関して、実稼働条件での屈折
率上昇量は実施例1、2で行った照射試験条件での屈折
率上昇量より、 {(1×1011パルス)/(6×105パルス)}0.6=1.4×103倍 となる。したがって、本発明の石英ガラス光学部材の実
稼働条件での屈折率上昇量は、 (5×10-6以下)×1.25×10-4×1.4×103=0.9×10-6以下 となり、ArFエキシマレーザステッパ投影光学系のレ
ンズ部材に要求される緻密化の許容量を満たしているこ
とがわかった。
Based on this data, the amount of increase in the refractive index of the silica glass optical member of the present invention under the actual operating conditions of the ArF excimer laser stepper projection optical system was predicted. First, regarding the pulse energy density, the amount of increase in the refractive index under the actual operating conditions was calculated from the amount of increase in the refractive index under the irradiation test conditions performed in Examples 1 and 2 as {(0.2 mJ / cm 2 / pulse) / (200 mJ / cm 2 / pulse)} 1.3 = 1.25 × 10 -4 times. Regarding the number of pulses, the amount of increase in the refractive index under the actual operating conditions was calculated from the amount of increase in the refractive index under the irradiation test conditions performed in Examples 1 and 2 as {(1 × 10 11 pulses) / (6 × 10 5 pulses) )} 0.6 = 1.4 × 10 3 times. Therefore, the amount of increase in the refractive index of the silica glass optical member of the present invention under actual operating conditions is (5 × 10 −6 or less) × 1.25 × 10 −4 × 1.4 × 10 3 = 0.9 × 10 −6 or less, and the ArF It has been found that the excimer laser stepper projection optical system satisfies the densification allowance required for the lens member.

【0037】[0037]

【発明の効果】本発明によれば、紫外線照射による石英
ガラス構造の緻密化を抑制して、短波長でかつ高出力の
紫外線やエキシマレーザ光を長期間照射によってもレン
ズの結像性能劣化させない石英ガラス光学部材を提供す
ることが可能になった。
According to the present invention, the densification of the quartz glass structure due to the irradiation of ultraviolet rays is suppressed, and the imaging performance of the lens is not deteriorated even by the irradiation of ultraviolet rays or excimer laser light of short wavelength and high output for a long period of time. It has become possible to provide a quartz glass optical member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ArFエキシマレーザ照射による屈折率上昇
量とOH基濃度との相関を示した図である。
FIG. 1 is a diagram showing a correlation between a refractive index increase amount by ArF excimer laser irradiation and an OH group concentration.

【図2】 ArFエキシマレーザ照射による屈折率上昇
量と最大歪量との相関を示した図である。
FIG. 2 is a diagram showing a correlation between a refractive index increase amount and a maximum strain amount due to ArF excimer laser irradiation.

【図3】 ArFエキシマレーザ照射による屈折率上昇
量と試料表面の凹み量との相関を示した図である。
FIG. 3 is a diagram showing a correlation between a refractive index increase amount by ArF excimer laser irradiation and a dent amount on a sample surface.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】OH基濃度が200ppm以下である石英ガラス
部材であって、400nm以下の特定波長領域の紫外線照射
による構造の緻密化が抑制されたことを特徴とする石英
ガラス光学部材。
1. A quartz glass optical member having an OH group concentration of 200 ppm or less, wherein the densification of the structure due to ultraviolet irradiation in a specific wavelength region of 400 nm or less is suppressed.
【請求項2】請求項1に記載の石英ガラス光学部材にお
いて、水素分子濃度が1×1017molecules/cm3以上であ
ることを特徴とする石英ガラス光学部材。
2. The quartz glass optical member according to claim 1, wherein the hydrogen molecule concentration is 1 × 10 17 molecules / cm 3 or more.
【請求項3】ArFエキシマレーザをワンパルスエネル
ギー密度200mJ/cm2で6×105パルス照射した後の密度と
照射前の密度との差が3×10-5g/cm3以下であることを
特徴とする石英ガラス光学部材。
3. The difference between the density after irradiation of 6 × 10 5 pulses of ArF excimer laser with one pulse energy density of 200 mJ / cm 2 and the density before irradiation is 3 × 10 −5 g / cm 3 or less. A quartz glass optical member characterized by.
【請求項4】請求項1または2または3に記載の石英ガ
ラス光学部材において、酸素欠乏型欠陥を実質的に含ま
ないことを特徴とする石英ガラス光学部材。
4. The quartz glass optical member according to claim 1, 2 or 3, which is substantially free of oxygen-deficient defects.
JP16403995A 1995-06-29 1995-06-29 Quartz glass member suppressed from becoming dense due to irradiation of uv ray Pending JPH0912323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16403995A JPH0912323A (en) 1995-06-29 1995-06-29 Quartz glass member suppressed from becoming dense due to irradiation of uv ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16403995A JPH0912323A (en) 1995-06-29 1995-06-29 Quartz glass member suppressed from becoming dense due to irradiation of uv ray

Publications (1)

Publication Number Publication Date
JPH0912323A true JPH0912323A (en) 1997-01-14

Family

ID=15785647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16403995A Pending JPH0912323A (en) 1995-06-29 1995-06-29 Quartz glass member suppressed from becoming dense due to irradiation of uv ray

Country Status (1)

Country Link
JP (1) JPH0912323A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000335927A (en) * 1999-03-25 2000-12-05 Asahi Glass Co Ltd Synthetic quartz glass for optical part, its production and use threof
EP1114802A1 (en) * 1999-04-21 2001-07-11 Nikon Corporation Quartz glass member, production method therefor, and projection aligner using it
JP2003515192A (en) * 1999-11-15 2003-04-22 コーニング インコーポレイテッド Photolithography method, photolithography mask blank and fabrication method
JP2008070730A (en) * 2006-09-15 2008-03-27 Sony Corp Mask blanks selection method, calculation method for birefringence index, lithographic method, mask blanks selecting device, birefringence index calculation device and program therefor
JP2008070729A (en) * 2006-09-15 2008-03-27 Sony Corp Mask pattern correction method, mask pattern correction device and program therefor
JP2010026398A (en) * 2008-07-23 2010-02-04 Sk Electronics:Kk Mask substrate, mask blank, exposure method, and method for manufacturing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000335927A (en) * 1999-03-25 2000-12-05 Asahi Glass Co Ltd Synthetic quartz glass for optical part, its production and use threof
EP1114802A1 (en) * 1999-04-21 2001-07-11 Nikon Corporation Quartz glass member, production method therefor, and projection aligner using it
EP1114802A4 (en) * 1999-04-21 2008-12-31 Nikon Corp Quartz glass member, production method therefor, and projection aligner using it
JP2003515192A (en) * 1999-11-15 2003-04-22 コーニング インコーポレイテッド Photolithography method, photolithography mask blank and fabrication method
JP2008070730A (en) * 2006-09-15 2008-03-27 Sony Corp Mask blanks selection method, calculation method for birefringence index, lithographic method, mask blanks selecting device, birefringence index calculation device and program therefor
JP2008070729A (en) * 2006-09-15 2008-03-27 Sony Corp Mask pattern correction method, mask pattern correction device and program therefor
JP2010026398A (en) * 2008-07-23 2010-02-04 Sk Electronics:Kk Mask substrate, mask blank, exposure method, and method for manufacturing device

Similar Documents

Publication Publication Date Title
KR100382776B1 (en) Quartz glass, optical member containing the same, and manufacturing method thereof
KR100392127B1 (en) Quartz glass for optical lithography, optical member containing the same, exposure apparatus using the same, and manufacturing method thereof
JP4304409B2 (en) Method for producing quartz glass member
EP0691312B1 (en) Method for producing silica glass for use with light in a vacuum ultraviolet wavelength range, and silica glass and optical member produced by the method
JP2859095B2 (en) Synthetic quartz mask substrate for excimer laser lithography
US20020013208A1 (en) Silica glass and its manufacturing method
EP0901989A1 (en) Silica glass and its manufacturing method
US6807823B2 (en) Fluorine-containing glass
JP2770224B2 (en) Quartz glass for optical lithography, optical member including the same, exposure apparatus using the same, and method of manufacturing the same
JPH0912323A (en) Quartz glass member suppressed from becoming dense due to irradiation of uv ray
EP1207141A1 (en) Synthetic quartz glass member, photolithography apparatus, and method for producing photolithography apparatus
JP2936138B2 (en) Quartz glass, optical member including the same, and method of manufacturing the same
JP3757476B2 (en) Quartz glass optical member, manufacturing method thereof, and projection exposure apparatus
JP2000239040A (en) Quartz glass material for optical member for f2 excimer laser, and optical member
JP3071362B2 (en) Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same
JPH1067526A (en) Optical quartz glass element
JPH11116248A (en) Synthetic quartz glass member
JP4228493B2 (en) Synthetic quartz glass
JPH10330120A (en) Production of quartz glass with improved resistance to excimer laser and quartz glass material
US6518210B1 (en) Exposure apparatus including silica glass and method for producing silica glass
JP2566151B2 (en) Method for manufacturing laser optical system base material
JP4674972B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2001089182A (en) Quartz glass and measurement of its co gas concentration
JPH0912324A (en) Quartz glass member in which strain due to irradiation of uv ray is suppressed
WO2004065315A1 (en) Synthetic quartz glass optical member and method for preparation thereof