JPH1187808A - Manufacture of optical element for arf excimer laser - Google Patents

Manufacture of optical element for arf excimer laser

Info

Publication number
JPH1187808A
JPH1187808A JP9281998A JP28199897A JPH1187808A JP H1187808 A JPH1187808 A JP H1187808A JP 9281998 A JP9281998 A JP 9281998A JP 28199897 A JP28199897 A JP 28199897A JP H1187808 A JPH1187808 A JP H1187808A
Authority
JP
Japan
Prior art keywords
optical
excimer laser
optical element
arf excimer
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9281998A
Other languages
Japanese (ja)
Inventor
Takeshi Shirai
健 白井
Akiko Moriya
明子 守屋
Mitsuyoshi Ichijo
弥栄 一条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9281998A priority Critical patent/JPH1187808A/en
Publication of JPH1187808A publication Critical patent/JPH1187808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To set a quantity of light loss due to absorption and scattering to 2% or less, by polishing the surface of an optical element to a specific roughness, by performing ultraviolet ray washing, and by forming an optical thin film for transmitting an ArF excimer laser beam to the optical element being subjected ultraviolet ray washing. SOLUTION: A crucible for upbringing, where fluorine calcium being synthesized and purified is used as a raw material and is filled with a fluorination agent, is placed in a vacuum electric oven, temperature in the vacuum electric oven is gradually increased, the raw material is allowed to react with the fluorination agent. Furthermore, the temperature is slowly increased up to 1,370-1,450 deg.C, and the raw material is dissolved and is gradually crystallized from the lower part of a crucible for upbringing for obtaining fluorite. The fluorite is used as an optical material and the surface is polished by an abrasive using diamond powder so that the surface roughness becomes 5 Å or less, and the polished surface of the optical material is subjected to ultraviolet ray washing. An optical thin film for transmitting ArF excimer laser beam is formed at the optical element being subjected to ultraviolet ray washing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高パルスレーザーを
光源とする光学系に用いられる光学素子の製造方法に関
する。
The present invention relates to a method for manufacturing an optical element used in an optical system using a high-pulse laser as a light source.

【0002】[0002]

【従来の技術】従来、シリコン等のウエハ上に集積回路
の微細パターンを露光・転写する光リソグラフィー技術
においては、ステッパと呼ばれる露光装置が用いられ
る。このステッパの光源は、近年のLSIの高集積化に
伴ってg線からi線へと短波長化が進められている。そ
して、さらなるLSIの高集積化に伴い、ステッパの光
源はKrFエキシマレーザー(λ=248nm)やAr
Fエキシマレーザー(λ=193nm)へと移行してい
る。このようなエキシマレーザーステッパの光学系に
は、もはや一般光学ガラスは使用できず、短波長での光
透過率の高い石英ガラスや蛍石などの素材に限定され
る。
2. Description of the Related Art Conventionally, in an optical lithography technique for exposing and transferring a fine pattern of an integrated circuit on a wafer such as silicon, an exposure apparatus called a stepper is used. The light source of this stepper has been shortened in wavelength from g-line to i-line with the recent high integration of LSI. As LSIs become more highly integrated, stepper light sources include KrF excimer laser (λ = 248 nm) and Ar
It has shifted to an F excimer laser (λ = 193 nm). General optical glass can no longer be used for the optical system of such an excimer laser stepper, and is limited to materials such as quartz glass and fluorite having high light transmittance at short wavelengths.

【0003】特に、ステッパにおいては、例えばφ20
0mm×t20mmなどの大口径で厚さのあるレンズを多数
用いて光学系が構成されるため光路長が非常に長く、従
ってステッパの光学系全体での光透過率を高めるには、
個々のレンズの透過率を高めることが要求される。エキ
シマレーザーステッパの光学系に用いられる石英ガラ
ス、蛍石においては、その内部透過率は99.8%/c
m好ましくは99.9%/cm以上(内部吸収0.2%
/cm、あるいは0.1%/cm以下)が要求される。
従って、紫外光領域での上記光学素材の高透過率化を目
指した開発が進められている。
[0003] In particular, in the case of a stepper, for example, φ20
Since the optical system is configured by using a large number of lenses having a large diameter such as 0 mm × t20 mm and having a large thickness, the optical path length is very long. Therefore, to increase the light transmittance of the entire optical system of the stepper,
It is required to increase the transmittance of each lens. The internal transmittance of silica glass and fluorite used in the optical system of an excimer laser stepper is 99.8% / c.
m preferably 99.9% / cm or more (internal absorption 0.2%
/ Cm, or 0.1% / cm or less).
Therefore, developments aimed at increasing the transmittance of the optical material in the ultraviolet light region are being pursued.

【0004】プリズム、レンズ、反射鏡等の光学素子
は、前記光学素材に所望の光学特性を保持させるために
様々な構成の光学薄膜を形成している。反射防止膜は光
学素材の表面反射による光量損失やフレア・ゴースト等
を低減するために形成される。これに対して反射膜は入
射光を光学素材の表面で効率よく反射させるために形成
する。また、膜物質は光源であるKrFエキシマレーザ
ーやArFエキシマレーザーに対して吸収による光量損
失、吸収発熱による基板面変化や膜破壊等を起こし難い
低吸収・高耐レーザー性を有しているものが望ましい。
すなわち前記エキシマレーザー波長にて使用できる膜物
質は主にフッ化マグネシウム(MgF2)のようなフッ
素化合物や一部の酸化物に種類が限定される。従来はこ
れらの膜物質を組み合わせて、光源波長における膜自体
の光吸収等による光量損失が0%の膜設計を行い、その
薄膜を光学素材に成膜する。
Optical elements such as prisms, lenses, and reflecting mirrors form optical thin films of various structures in order to maintain desired optical characteristics on the optical material. The anti-reflection film is formed in order to reduce loss of light amount, flare, ghost, and the like due to surface reflection of the optical material. On the other hand, the reflection film is formed to efficiently reflect the incident light on the surface of the optical material. In addition, the film material has a low absorption and high laser resistance which is less likely to cause a loss of light amount due to absorption, a change in a substrate surface due to absorption heat generation, and a film destruction with respect to a KrF excimer laser or an ArF excimer laser as a light source. desirable.
That is, the types of film materials that can be used at the wavelength of the excimer laser are mainly limited to fluorine compounds such as magnesium fluoride (MgF 2 ) and some oxides. Conventionally, a combination of these film materials is used to design a film in which the light amount loss due to light absorption of the film itself at the light source wavelength is 0%, and the thin film is formed on an optical material.

【0005】[0005]

【発明が解決すべき課題】しかしながら、内部透過率が
良く、膜自体の光量損失が0%と予想される反射防止膜
を成膜しても、実際の製造工程により製造した光学素子
の透過率が、設計値を下回るという問題があった。そこ
で、本発明は、上記問題点を解決し、吸収及び散乱によ
る光損失量が2.0%以下であるArFエキシマレーザ
用光学素子の製造方法を提供することを目的とする。
However, even if an antireflection film having a good internal transmittance and a loss of light amount of the film itself expected to be 0% is formed, the transmittance of an optical element manufactured by an actual manufacturing process is increased. However, there was a problem that the value was lower than the design value. Therefore, an object of the present invention is to solve the above problems and to provide a method for manufacturing an optical element for an ArF excimer laser in which the light loss due to absorption and scattering is 2.0% or less.

【0006】[0006]

【課題を解決する手段】ArFエキシマレーザー用光学
素子において、一般に光量損失の原因としては、光学素
材自体の内部吸収、成膜後の表面損失(吸収、反射、散
乱)などが考えられている。しかしながら上述したよう
に、実際には、内部透過率が高い素材に光量損失ゼロに
設計された薄膜を成膜したとしても、所望の高透過率が
得られていない。
In an optical element for an ArF excimer laser, it is generally considered that the light quantity loss is caused by internal absorption of the optical material itself, surface loss (absorption, reflection, scattering) after film formation. However, as described above, even if a thin film designed to have zero light loss is actually formed on a material having a high internal transmittance, a desired high transmittance is not obtained.

【0007】そこで、本発明者らは、光学素子を製造す
る工程をさらに検討した結果、まず薄膜を成膜する前の
光学素子の表面を表面粗さ5Å以下に研磨することが、
光学素子の高透過率を達成するために必須であることを
見いだした。光学素材の表面粗さが5Åより大きいと、
素材表面の損失による透過率の低下のみならず、その上
に形成される膜の光学性能が、設計値どおりに発揮でき
ないという問題が生ずる。
The inventors of the present invention have further examined the process of manufacturing an optical element. As a result, the surface of the optical element before forming a thin film is polished to a surface roughness of 5 ° or less.
It has been found that it is essential to achieve high transmittance of the optical element. If the surface roughness of the optical material is larger than 5 mm,
Not only does the transmittance decrease due to the loss of the material surface, but also the optical performance of the film formed thereon cannot be exhibited as designed.

【0008】さらに、表面粗さを5Å以下に研磨した後
の工程においては、研磨剤の除去のために洗浄が行われ
るが、特に洗浄水除去のための乾燥工程において用いら
れた有機溶剤が素材表面に残留したまま成膜が行われ、
これが透過率に影響を及ぼすことを見いだした。そこ
で、本発明においては、研磨工程の後、特に研磨後の湿
式洗浄工程の後に紫外線洗浄を行い、有機物を除去する
ことにより光学素子の高透過率を達成する。
[0008] Further, in the step after polishing to a surface roughness of 5 mm or less, washing is carried out to remove the abrasive. In particular, the organic solvent used in the drying step for removing the washing water is a raw material. The film is formed while remaining on the surface,
It has been found that this affects the transmittance. Therefore, in the present invention, high transmittance of the optical element is achieved by performing ultraviolet cleaning after the polishing step, particularly after the wet cleaning step after polishing to remove organic substances.

【0009】このように、本発明は、ArFエキシマレ
ーザーを光源とする光学系に用いられる光学素子の製造
方法において、光学素材の表面を表面粗さ5Å以下とな
るように研磨する工程と、前記研磨された光学素材表面
を紫外線洗浄する工程と、前記紫外線洗浄された光学素
子に、ArFエキシマレーザー光を透過する光学薄膜を
成膜する工程と、からなることを特徴とするArFエキ
シマレーザー用光学素子の製造方法を提供するものであ
る。
As described above, the present invention provides a method of manufacturing an optical element used in an optical system using an ArF excimer laser as a light source, wherein the step of polishing the surface of the optical material to a surface roughness of 5 ° or less; An optical system for an ArF excimer laser, comprising: a step of cleaning the polished optical material surface with ultraviolet light; and a step of forming an optical thin film that transmits ArF excimer laser light on the optical element cleaned with ultraviolet light. It is intended to provide a method for manufacturing an element.

【0010】[0010]

【発明の実施の形態】本発明において用いられる光学素
材は、内部吸収のないもの、例えば内部透過率が99.
8%/cm以上のものが好ましい。光学素材の内部吸収
の要因は光学素材の構成組成以外に含まれる不純物ある
いは構造的な欠陥である。そこで、不純物や構造欠陥の
少ない石英ガラスを製造する方法として、原料ガスとな
るSi化合物ガスとSi化合物ガスを送るキャリアガ
ス、および燃焼・加熱のためのガス(例えば、H2、O2
ガス等)をバーナーから噴出し、火炎内で石英ガラスを
ターゲットに堆積させる火炎加水分解法が一般的に用い
られている。
BEST MODE FOR CARRYING OUT THE INVENTION An optical material used in the present invention has no internal absorption.
It is preferably 8% / cm or more. The factor of the internal absorption of the optical material is an impurity or a structural defect contained other than the constituent composition of the optical material. Therefore, as a method for producing quartz glass with few impurities and structural defects, a Si compound gas as a raw material gas and a carrier gas for sending the Si compound gas, and a gas for combustion and heating (for example, H 2 , O 2)
Gas or the like is ejected from a burner, and a quartz hydrolysis method of depositing quartz glass on a target in a flame is generally used.

【0011】また、蛍石を製造する方法として、ブリッ
ジマン法と呼ばれる方法が用いられる。この方法は、合
成、精製されたフッ化カルシウムを原料とし、これをP
bF 2等のフッ素化剤とともに充填した育成用ルツボを
真空電気炉(育成装置)内に置き、育成装置内の温度を
徐々に上げ原料と弗素化剤を反応させた後、さらに蛍石
の融点以上(1370℃〜1450℃)まで徐々に昇温
し、原料を溶融する。結晶成長段階では、0.1〜5m
m/H程度の速度で育成用ルツボを引き下げることによ
り、ルツボの下部から徐々に結晶化させ蛍石を得る。
As a method for producing fluorite, bridging is used.
A method called the Ziman method is used. This method
Using purified and purified calcium fluoride as raw material,
bF TwoGrowth crucible filled with a fluorinating agent such as
Place in a vacuum electric furnace (growing device) and adjust the temperature inside the growing device.
After gradually raising the raw material and reacting with the fluorinating agent,
The temperature gradually rises to above the melting point (1370 ° C to 1450 ° C)
And melt the raw material. 0.1-5 m at the crystal growth stage
By lowering the growing crucible at a speed of about m / H
The fluorite is gradually crystallized from the lower part of the crucible to obtain fluorite.

【0012】この様な製造方法に依れば、内部吸収の要
因となる含有金属不純物を、石英ガラスにおいてはT
i,Cr,Fe,Ni,Cu,Zn,CoおよびMnを
誘導結合プラズマ発光分光法の定量分析の結果でそれぞ
れの濃度を20ppb以下、蛍石においてはFe,Mn
のそれぞれの濃度を1ppm以下にすることができる。
このようにして得られた合成石英ガラスおよび蛍石は、
切断、加工され、所望の形状の光学素材となる。
According to such a manufacturing method, contained metal impurities which cause internal absorption are reduced to T in quartz glass.
As a result of quantitative analysis of i, Cr, Fe, Ni, Cu, Zn, Co, and Mn by inductively coupled plasma emission spectroscopy, the respective concentrations were 20 ppb or less.
Can be 1 ppm or less.
The synthetic quartz glass and fluorite thus obtained are
It is cut and processed to obtain an optical material having a desired shape.

【0013】次に、光学素材の表面を研磨する工程が行
われる。研磨工程は、通常、研削(球面研削)→スムー
ジング(砂かけ)→研磨の順に行われる。スムージング
での素材表面の除去量(除去深さ)は20〜200μm
程度、研磨では数μm程度である。一般に研磨剤として
石英ガラスにはCeO2、蛍石にはダイヤモンド粉が用
いられる。
Next, a step of polishing the surface of the optical material is performed. The polishing step is usually performed in the order of grinding (spherical grinding) → smoothing (sanding) → polishing. The removal amount (removal depth) of the material surface during smoothing is 20 to 200 μm
And about several μm for polishing. Generally, CeO 2 is used for quartz glass and diamond powder is used for fluorite as an abrasive.

【0014】このような研磨工程により、表面粗さ5Å
以下の光学素材を得る。表面粗さを5Å以下とした理由
は、以下のとおりである。表面損失量は光学素材の表面
粗さに起因すると考えられる。一般に表面散乱量から表
面粗さの数値を算出する式は次式で表される。Rrms
は表面粗さ(Roughness)の表示法で、二乗平
均粗さを表す。
By such a polishing step, the surface roughness is 5Å.
Obtain the following optical material. The reason for setting the surface roughness to 5 ° or less is as follows. It is considered that the surface loss is caused by the surface roughness of the optical material. In general, the equation for calculating the numerical value of the surface roughness from the amount of surface scattering is represented by the following equation. R rms is a notation of surface roughness (Roughness), and represents root-mean-square roughness.

【0015】[0015]

【数1】 (Equation 1)

【0016】従って、λ=248nmにおいて、表面粗
さによる光損失量(Total Integrated Scattering:T
IS)を0.1%以下を達成するための表面粗さRrms
=6.2 以下であり、λ=193nmにおいては、表
面粗さRrmsをおよそ5Å以下にする必要があることが
分かる。以上のような製造方法による光学素材を光源波
長に応じた表面粗さに研磨加工することで各波長におけ
る光学素材の理論透過率に近い分光透過率を得ることが
可能となる。
Therefore, at λ = 248 nm, the amount of light loss due to surface roughness (Total Integrated Scattering: T
IS) 0.1% or less of surface roughness R rms
= 6.2 or less, and it can be seen that at λ = 193 nm, the surface roughness R rms needs to be about 5 ° or less. By polishing the optical material according to the above-described manufacturing method to a surface roughness corresponding to the wavelength of the light source, a spectral transmittance close to the theoretical transmittance of the optical material at each wavelength can be obtained.

【0017】一般に、多重反射を考慮した分光透過率は
以下のようになる。
Generally, the spectral transmittance in consideration of multiple reflection is as follows.

【0018】[0018]

【数2】 (Equation 2)

【0019】(a:吸収係数、t:試料の厚み) ここで、Rは光がガラス表面に対して垂直に入射したと
きの反射率である。
(A: absorption coefficient, t: thickness of sample) Here, R is the reflectance when light is incident perpendicularly to the glass surface.

【0020】[0020]

【数3】 (Equation 3)

【0021】(ng:試料の屈折率、n0:空気の屈折
率、kg:試料の消衰係数) 理論透過率とは、(2),(3)式で定義される分光透
過率において反射損失のみ存在する場合、すなわち、内
部吸収係数が0の場合の分光透過率の計算値、あるいは
試料厚みが無限に小さい場合の分光透過率の計算値のこ
とであり、a=0として算出できる。石英ガラスおよび
蛍石の各波長における屈折率は最小偏角法により測定し
た。また、空気の屈折率は国際分光学会議で採択された
式より計算して求めた。それぞれを表1に示す。
[0021] (n g: the refractive index of the sample, n 0: refractive index of air, k g: extinction coefficient of the sample) The theoretical transmittance, (2), the spectral transmittance as defined in (3) Where only the reflection loss exists, that is, the calculated value of the spectral transmittance when the internal absorption coefficient is 0, or the calculated value of the spectral transmittance when the sample thickness is infinitely small, and is calculated as a = 0. it can. The refractive index at each wavelength of quartz glass and fluorite was measured by the minimum declination method. The refractive index of air was calculated by the formula adopted at the International Conference on Spectroscopy. Each is shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】従って、上記より石英ガラスの理論透過率
は248nmで92.12%、193nmで90.87
%であり、蛍石では248nmで93.06%、193
nmで92.27%と求められる。研磨工程により研磨
された光学素材の表面には、研磨剤が残留している。研
磨剤であるCeO2の吸収端は約400nm、ダイヤモ
ンドの吸収端は約250nmにあるため手拭き、あるい
は超音波洗浄等の湿式洗浄により、研磨剤を充分に除去
する必要がある。手拭きは光学面を全く侵食しない有機
溶剤で作業することができ、潜傷を発生しやすい光学素
材に対して特に有効であるが熟練を要し、作業性が悪い
欠点がある。そこで超音波自動洗浄が主流となってい
る。以下に、代表的な超音波自動洗浄工程を図2に示
す。 (a)脱脂工程は溶剤にパークロルエチレンを用い研磨
加工で使用された接着剤、研削液などの油脂類を溶解除
去する工程、(b)乳化工程は前工程のパークロルエチ
レンと乳化剤により、油分や汚れを剥離して乳化する工
程、(c)洗浄工程は洗剤により水溶性の汚染物質を溶
解除去する工程、(d)水洗工程はあらゆる汚染物を除
去する工程、(e)純水洗浄工程は水中不純物の汚染物
を除去する工程、(f)脱水および乾燥工程は洗浄した
光学面の維持と光学表面の水分の除去を目的とする工
程、から成る。乾燥剤としてはアルコール等の有機溶剤
が用いられる。代表的な乾燥剤であるアセトン、エタノ
ール、イソプロピルアルコール(IPA)と水の分光透
過率チャートを図3に示す。測定装置は市販の高精度分
光透過率測定器を用いた。この測定装置はダブルビーム
方式であり、リファレンスに空のガラスセルを挿入し、
ガラスセルによる反射損失を除去して測定した。また、
190〜400nmの波長範囲の光を連続的に透過させ
て測定を行った測定精度は±0.1%である。
Therefore, from the above, the theoretical transmittance of quartz glass is 92.12% at 248 nm, and 90.87% at 193 nm.
% For fluorite, 93.06% at 248 nm, 193
It is determined to be 92.27% in nm. An abrasive remains on the surface of the optical material polished in the polishing step. Since the absorption edge of CeO 2 which is an abrasive is about 400 nm and the absorption edge of diamond is about 250 nm, it is necessary to sufficiently remove the abrasive by hand wiping or wet cleaning such as ultrasonic cleaning. Hand wiping can be performed with an organic solvent that does not erode the optical surface at all, and is particularly effective for optical materials that are liable to cause latent damage, but has the disadvantage of requiring skill and poor workability. Therefore, ultrasonic automatic cleaning has become mainstream. FIG. 2 shows a typical ultrasonic automatic cleaning process. (A) The degreasing step is a step of dissolving and removing the oils and fats such as an adhesive and a grinding fluid used in the polishing process using perchlorethylene as a solvent, and (b) the emulsifying step is performed using perchlorethylene and an emulsifier in the previous step. (C) a washing step for dissolving and removing water-soluble contaminants with a detergent; (d) a washing step for removing any contaminants; (e) pure water washing. The step comprises removing contaminants of underwater impurities, and (f) the dehydration and drying step comprises steps for maintaining the cleaned optical surface and removing moisture from the optical surface. As a drying agent, an organic solvent such as alcohol is used. FIG. 3 shows a spectral transmittance chart of acetone, ethanol, isopropyl alcohol (IPA) and water, which are typical drying agents. The measuring device used was a commercially available high-precision spectral transmittance meter. This measuring device is a double beam method, inserts an empty glass cell into the reference,
The measurement was performed after removing the reflection loss due to the glass cell. Also,
The measurement accuracy obtained by continuously transmitting light in the wavelength range of 190 to 400 nm is ± 0.1%.

【0024】アセトンを除き、およそ250nmより長
波長で使用される光学部材においては脱水および乾燥工
程で使用した乾燥剤が光学素材の表面に残留しても光量
損失への寄与は小さいがそれより短波長に行くに従い寄
与が大きくなることが考えられる。そこで、本発明にお
いては、超音波洗浄の各工程の後、紫外線洗浄を行う。
Except for acetone, in an optical member used at a wavelength longer than about 250 nm, even if the desiccant used in the dehydration and drying steps remains on the surface of the optical material, the contribution to the light quantity loss is small but shorter. It is conceivable that the contribution increases as the wavelength increases. Therefore, in the present invention, ultraviolet cleaning is performed after each step of ultrasonic cleaning.

【0025】一般的な紫外線洗浄の方法としては、光源
に合成石英ガラス製の低圧水銀ランプを用いた方法が知
られている。この光源は、185nmと254nmの紫
外線を放射する。そのエネルギーは、多くの有機化合物
の結合エネルギーよりも大きいため、有機物に吸収され
ると化学結合を切断し、ラジカルや励起状態の分子の生
成が可能である。一方、185nmの紫外線は酸素分子
に吸収され、O3を発生させる。O3は254nmの紫外
線を吸収して活性酸素を生成し、これが前述の有機物の
ラジカルや励起状態の分子と反応し、こうして有機物が
分解される。
As a general ultraviolet cleaning method, a method using a low-pressure mercury lamp made of synthetic quartz glass as a light source is known. This light source emits 185 nm and 254 nm ultraviolet light. Since its energy is larger than the binding energy of many organic compounds, when absorbed by an organic substance, it breaks a chemical bond and can generate radicals and molecules in an excited state. On the other hand, ultraviolet light of 185 nm is absorbed by oxygen molecules to generate O 3 . O 3 absorbs ultraviolet light having a wavelength of 254 nm to generate active oxygen, which reacts with radicals of the organic substance and molecules in an excited state, thereby decomposing the organic substance.

【0026】本発明者らは、乾燥剤の除去に有用な紫外
線(UV−O3)洗浄を用いて、乾燥剤の除去効果によ
る透過率変化を検証した。横軸に紫外線洗浄時間、縦軸
に透過率の変化を取り、測定した結果を図4〜6に示
す。図4は測定波長をKrFレーザー248nmとした
場合で、図5は測定波長をArFレーザー193nmと
した場合の紫外線洗浄時間と石英ガラスの透過率の経時
変化を示す図である。図6は測定波長をArFレーザー
193nmとした場合の紫外線洗浄時間と蛍石の透過率
の経時変化を示す図である。
The present inventors have examined the change in transmittance due to the effect of removing the desiccant by using ultraviolet (UV-O 3 ) cleaning useful for removing the desiccant. The horizontal axis indicates the UV cleaning time and the vertical axis indicates the change in transmittance, and the measurement results are shown in FIGS. FIG. 4 is a graph showing the change with time of the ultraviolet ray cleaning time and the transmittance of quartz glass when the measurement wavelength is set to 248 nm and the ArF laser is set to 193 nm. FIG. 6 is a diagram showing a time-dependent change in ultraviolet light cleaning time and fluorite transmittance when the measurement wavelength is 193 nm for an ArF laser.

【0027】なお、乾燥剤の除去を目的とする乾式の洗
浄方法としてはイオン、プラズマおよび電子線照射等が
あるが、なかでも紫外線洗浄が工業的に優れ、有用な方
法であるため、この方法を採用した。石英ガラスおよび
蛍石の透過率の測定には、溶液測定の場合と同一の測定
装置を用いた。測定サンプルは表面の光量損失を評価す
るために内部吸収の影響を除去する必要がある。そこ
で、あらかじめ厚みの異なるサンプルを複数枚用意し
て、248および193nmの各分光透過率を測定し、
それぞれの波長においてサンプルの厚さに依存して透過
率が変化する内部吸収量(傾き)とサンプルの厚さが0
の場合(切片)の透過率を求める。この切片の透過率と
理論透過率の差が表面における光損失量であるため、表
面による光損失量が充分に評価できる厚さおよび品質の
光学材料を用いて測定サンプルを作製した。透過率の測
定精度は248nmで±0.02%、193nmで±
0.1%である。
Dry cleaning methods for removing the desiccant include ion, plasma, and electron beam irradiation. Among them, ultraviolet cleaning is industrially excellent and is a useful method. It was adopted. For the measurement of the transmittance of quartz glass and fluorite, the same measuring device as in the case of the solution measurement was used. The measurement sample needs to remove the influence of internal absorption in order to evaluate the light loss on the surface. Therefore, a plurality of samples having different thicknesses are prepared in advance, and the respective spectral transmittances at 248 and 193 nm are measured.
At each wavelength, the internal absorption (slope) at which the transmittance changes depending on the sample thickness and the sample thickness are 0
In the case of (section), the transmittance is determined. Since the difference between the transmittance of the section and the theoretical transmittance is the amount of light loss on the surface, a measurement sample was prepared using an optical material having a thickness and quality that can sufficiently evaluate the amount of light loss on the surface. The measurement accuracy of the transmittance is ± 0.02% at 248 nm and ± 0.02% at 193 nm.
0.1%.

【0028】測定用試料を紫外線洗浄前に混合比1:1
のエタノールとアセトン溶液で手拭き脱脂した際の透過
率を横軸の左端の値、IPAベーパ乾燥を施した際の透
過率を横軸0の値として示した。また、紫外線洗浄によ
る透過率の上昇量(%)を表2にまとめて示す。
The sample for measurement was mixed at a mixing ratio of 1: 1 before washing with ultraviolet light.
The value at the left end of the horizontal axis is the transmittance when the degreasing is performed by hand wiping with an ethanol and acetone solution, and the value at the horizontal axis is 0 when the IPA vapor drying is performed. In addition, Table 2 shows the amount of increase (%) in transmittance due to ultraviolet cleaning.

【0029】[0029]

【表2】 [Table 2]

【0030】以上の結果より、より短波長で使用する光
学部材の洗浄には従来のIPAベーパ乾燥の洗浄に加
え、紫外線洗浄が有用であることがわかった。また、光
学素材の紫外線洗浄時間は少なくとも5分以上行うこと
が充分な透過率を得るために好ましく、10分以上の照
射であれば、なお充分であることがわかった。本発明の
実施例においては、光学素材として石英ガラスおよび蛍
石を用い、表面研磨後、超音波自動洗浄を行い、その後
約10分間の紫外線洗浄を行った。紫外線洗浄機は市販
のUVドライプロセッサー((株)オーク製作所製、V
UM−3073−B)を用いた。
From the above results, it was found that ultraviolet cleaning was effective in cleaning optical members used at shorter wavelengths in addition to the conventional IPA vapor drying cleaning. Further, it was found that it is preferable to carry out the ultraviolet ray cleaning time of the optical material for at least 5 minutes or more in order to obtain a sufficient transmittance, and that the irradiation time of 10 minutes or more is still sufficient. In Examples of the present invention, quartz glass and fluorite were used as optical materials, and after surface polishing, automatic ultrasonic cleaning was performed, and then ultraviolet cleaning was performed for about 10 minutes. The UV cleaner is a commercially available UV dry processor (Oak Co., Ltd., V
UM-3073-B) was used.

【0031】紫外線洗浄工程の後は、成膜工程が行われ
る。以下に、簡易な反射防止膜を成膜した実施例を示す
が、本発明において成膜される薄膜は、下記の反射防止
膜の他、波長選択膜などの光学素子の特性向上のために
設けられるあらゆる薄膜とすることが可能である。成膜
方法についても特に限定されず、例えば真空蒸着法、ス
パッタリング法、イオンプレーティング法など、任意の
成膜方法を用いる。
After the ultraviolet cleaning step, a film forming step is performed. Hereinafter, an example in which a simple anti-reflection film is formed is shown. In addition to the following anti-reflection film, the thin film formed in the present invention is provided for improving the characteristics of an optical element such as a wavelength selection film. It can be any thin film that can be used. There is no particular limitation on a film formation method, and an arbitrary film formation method such as a vacuum evaporation method, a sputtering method, or an ion plating method is used.

【0032】上記で得られた紫外線洗浄された光学素子
に、反射防止膜として光学素材に対して高屈折率の物質
(LaF3)を素材上に堆積し、次に素材に対して低屈
折率の物質(MgF2)を堆積させた2層反射防止膜を
基板の両面に形成した。図1に、素材洗浄終了から成膜
までの放置時間と193nmにおける透過率の関係を示
す。参考として素材を紫外線洗浄しないで成膜した際の
透過率も測定した(未洗浄)。紫外線洗浄を施した光学
素材であっても、大気に放置することで汚染されてしま
う。特に紫外線洗浄により活性化された表面は汚染され
やすい状態となっているため、洗浄に続いてすぐに成膜
することが好ましい。
On the optical element thus obtained, which has been washed with ultraviolet light, a substance (LaF 3 ) having a high refractive index with respect to the optical material is deposited on the material as an antireflection film, and then a low refractive index is applied to the material. (MgF 2 ) was deposited on both surfaces of the substrate. FIG. 1 shows the relationship between the standing time from the end of material cleaning to film formation and the transmittance at 193 nm. As a reference, the transmittance when the material was formed without UV cleaning was also measured (not cleaned). Even optical materials that have been cleaned with ultraviolet light are contaminated by leaving them in the air. In particular, since the surface activated by ultraviolet cleaning is easily contaminated, it is preferable to form a film immediately after cleaning.

【0033】以上のようにArFエキシマレーザー用光
学部材の製造方法において成膜の前工程として紫外線洗
浄をすることが所望の膜特性を得るために重要であり、
表面粗さ略5Å以下の光学素材を紫外線洗浄後、略19
3nmにおける膜設計の薄膜を成膜することで吸収によ
る光損失量が2.0%以下であるArFエキシマレーザ
ー用光学部材の製造が可能となった。この製造方法は特
に透過型の光学素子(レンズ、プリズム等)に有効であ
り、ハーフミラーにおいても有効である。
As described above, in the method of manufacturing an optical member for an ArF excimer laser, it is important to perform ultraviolet cleaning as a pre-process of film formation in order to obtain desired film characteristics.
After cleaning an optical material having a surface roughness of approximately 5 mm or less with ultraviolet light, approximately 19
By forming a thin film having a film design at 3 nm, an optical member for an ArF excimer laser having an optical loss of 2.0% or less due to absorption can be manufactured. This manufacturing method is particularly effective for transmission type optical elements (lenses, prisms, etc.), and is also effective for half mirrors.

【0034】[0034]

【発明の効果】以上のように、本発明によれば、光学素
材の表面粗さを5Å以下とする研磨工程の後、紫外線洗
浄を行い、その後所望の光学薄膜を成膜することによ
り、光損失量が2.0%以下であるArFエキシマレー
ザー用光学部材の製造が可能となった。
As described above, according to the present invention, after the polishing step for reducing the surface roughness of the optical material to 5 ° or less, ultraviolet cleaning is performed, and then, a desired optical thin film is formed. It has become possible to manufacture an optical member for an ArF excimer laser having a loss of 2.0% or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】紫外線洗浄後の基板放置時間と膜特性(分光透
過率)の経時変化を示す図。
FIG. 1 is a diagram showing a time-dependent change of a substrate standing time and a film characteristic (spectral transmittance) after ultraviolet cleaning.

【図2】代表的な超音波自動洗浄工程を示す図。FIG. 2 is a view showing a typical ultrasonic automatic cleaning step.

【図3】代表的な乾燥剤と水の分光透過率チャート。FIG. 3 is a spectral transmittance chart of a representative drying agent and water.

【図4】紫外線洗浄時間と248nmにおける石英ガラ
スの透過率の経時変化を示す図。
FIG. 4 is a diagram showing a time-dependent change in ultraviolet light cleaning time and transmittance of quartz glass at 248 nm.

【図5】紫外線洗浄時間と193nmにおける石英ガラ
スの透過率の経時変化を示す図。
FIG. 5 is a diagram showing a time-dependent change in ultraviolet light cleaning time and transmittance of quartz glass at 193 nm.

【図6】紫外線洗浄時間と193nmにおける蛍石の透
過率の経時変化を示す図。
FIG. 6 is a graph showing a time-dependent change in ultraviolet light cleaning time and transmittance of fluorite at 193 nm.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ArFエキシマレーザーを光源とする光学
系に用いられる光学素子の製造方法において、光学素材
の表面を表面粗さ5Å以下となるように研磨する工程
と、前記研磨された光学素材表面を紫外線洗浄する工程
と、前記紫外線洗浄された光学素子に、ArFエキシマ
レーザー光を透過する光学薄膜を成膜する工程と、から
なることを特徴とするArFエキシマレーザー用光学素
子の製造方法。
1. A method of manufacturing an optical element used in an optical system using an ArF excimer laser as a light source, wherein the step of polishing the surface of the optical material so as to have a surface roughness of 5 ° or less; And a step of forming an optical thin film, which transmits ArF excimer laser light, on the optical element cleaned with ultraviolet light, thereby producing an optical element for ArF excimer laser.
【請求項2】請求項1に記載のArFエキシマレーザー
用光学素子の製造方法において、前記光学素材の波長1
93nmにおける内部透過率が99.8%/cm以上で
あることを特徴とするArFエキシマレーザー用光学素
子の製造方法。
2. The method for manufacturing an optical element for an ArF excimer laser according to claim 1, wherein the wavelength of the optical material is 1
A method for producing an optical element for an ArF excimer laser, wherein the internal transmittance at 93 nm is 99.8% / cm or more.
【請求項3】請求項1または請求項2に記載のArFエ
キシマレーザー用光学素子の製造方法において、前記紫
外線洗浄が、合成石英ガラス製低圧水銀ランプを用いた
ものであることを特徴とするArFエキシマレーザー用
光学素子の製造方法。
3. The method for manufacturing an optical element for an ArF excimer laser according to claim 1, wherein the ultraviolet cleaning is performed by using a low-pressure mercury lamp made of synthetic quartz glass. A method for manufacturing an optical element for an excimer laser.
【請求項4】請求項1または請求項2または請求項3に
記載のArFエキシマレーザー用光学素子の製造方法に
おいて、前記表面研磨と前記紫外線洗浄の間に、湿式洗
浄工程を有することを特徴とするArFエキシマレーザ
ー用光学素子の製造方法。
4. The method of manufacturing an optical element for an ArF excimer laser according to claim 1, wherein a wet cleaning step is provided between said surface polishing and said ultraviolet cleaning. Of manufacturing an optical element for an ArF excimer laser.
【請求項5】請求項1から請求項4のいずれかの方法に
よって得られた、光損失量が2.0%以下であることを
特徴とするArFエキシマレーザー用光学素子。
5. An optical element for an ArF excimer laser, wherein the optical loss obtained by the method according to claim 1 is 2.0% or less.
JP9281998A 1997-07-07 1997-10-15 Manufacture of optical element for arf excimer laser Pending JPH1187808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9281998A JPH1187808A (en) 1997-07-07 1997-10-15 Manufacture of optical element for arf excimer laser

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-181221 1997-07-07
JP18122197 1997-07-07
JP9281998A JPH1187808A (en) 1997-07-07 1997-10-15 Manufacture of optical element for arf excimer laser

Publications (1)

Publication Number Publication Date
JPH1187808A true JPH1187808A (en) 1999-03-30

Family

ID=26500482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9281998A Pending JPH1187808A (en) 1997-07-07 1997-10-15 Manufacture of optical element for arf excimer laser

Country Status (1)

Country Link
JP (1) JPH1187808A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000907A1 (en) * 1999-06-25 2001-01-04 Corning Incorporated Polishing of fluoride crystal optical lenses and preforms using cerium oxide for microlithography
JP2001201608A (en) * 1999-11-08 2001-07-27 Nikon Corp Method for forming optical thin film, optical element and exposure system
US6309461B1 (en) 1999-06-07 2001-10-30 Sandia Corporation Crystal growth and annealing method and apparatus
US6350310B1 (en) 1999-06-07 2002-02-26 Sandia Corporation Crystal growth and annealing for minimized residual stress
US6595834B2 (en) 1999-06-25 2003-07-22 Corning Incorporated Method of making <200nm light transmitting optical fluoride crystals for transmitting less than 200nm light
JP2021148902A (en) * 2020-03-18 2021-09-27 信越化学工業株式会社 Synthetic quartz glass substrate with antireflection film, window material, lid for optical element package, optical element package, and light irradiation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309461B1 (en) 1999-06-07 2001-10-30 Sandia Corporation Crystal growth and annealing method and apparatus
US6350310B1 (en) 1999-06-07 2002-02-26 Sandia Corporation Crystal growth and annealing for minimized residual stress
WO2001000907A1 (en) * 1999-06-25 2001-01-04 Corning Incorporated Polishing of fluoride crystal optical lenses and preforms using cerium oxide for microlithography
US6375551B1 (en) 1999-06-25 2002-04-23 Corning Incorporated Angstrom polishing of calcium fluoride optical VUV microlithography lens elements and preforms
US6595834B2 (en) 1999-06-25 2003-07-22 Corning Incorporated Method of making <200nm light transmitting optical fluoride crystals for transmitting less than 200nm light
JP2001201608A (en) * 1999-11-08 2001-07-27 Nikon Corp Method for forming optical thin film, optical element and exposure system
JP2021148902A (en) * 2020-03-18 2021-09-27 信越化学工業株式会社 Synthetic quartz glass substrate with antireflection film, window material, lid for optical element package, optical element package, and light irradiation device

Similar Documents

Publication Publication Date Title
KR100392127B1 (en) Quartz glass for optical lithography, optical member containing the same, exposure apparatus using the same, and manufacturing method thereof
EP1022614A1 (en) Photomask blank, photomask, methods of manufacturing the same, and method of forming micropattern
US7635544B2 (en) Transparent substrate for mask blank and mask blank
JPH08220304A (en) Optical product, exposure device or optical system using same, and production thereof
EP0837345B1 (en) Method for manufacturing optical components for use in the ultraviolet region
WO2001037052A1 (en) Photolithography method, photolithography mask blanks, and method of making
JP2003221245A (en) SYNTHETIC QUARTZ GLASS MATERIAL FOR ArF PHOTOLITHOGRAPHY DEVICE
JPH0875649A (en) Sample for measuring transmittance, and preparing method thereof
JPH1187808A (en) Manufacture of optical element for arf excimer laser
KR20010052399A (en) Synthetic quartz glass for optical member, process for producing the same, and method of using the same
EP1050754B1 (en) Method of measuring the transmittance of optical members for ultraviolet use
EP1207141A1 (en) Synthetic quartz glass member, photolithography apparatus, and method for producing photolithography apparatus
TWI451189B (en) Half-tone phase shift blankmask, half-tone phase shift photomask and manufacturing method thereof
JPH10279322A (en) Heat treatment of quartz glass and heat treating apparatus therefor
CN106067652B (en) Dual-wavelength antireflection film for excimer laser and optical film thickness monitoring system
JP3823408B2 (en) Optical element manufacturing method and optical element cleaning method
JP4032462B2 (en) UV optics
JPH10330120A (en) Production of quartz glass with improved resistance to excimer laser and quartz glass material
JP4650460B2 (en) Method for manufacturing ultraviolet optical element
JP4701469B2 (en) Method for producing synthetic quartz glass for optical member
JP3572425B2 (en) Sample for measuring transmittance, method for preparing the sample, and method for measuring transmittance
JP2001342041A (en) Optical part and its cleansing method
JP3408574B2 (en) Measurement method of absorption coefficient of synthetic quartz glass
WO2003080525A1 (en) Synthetic quartz glass member and process for producing the same
JP2000121801A (en) Optical parts and optical device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819