JPH0626944A - Method for measuring stress of thin film, and method and device for manufacturing test piece for stress measurement - Google Patents

Method for measuring stress of thin film, and method and device for manufacturing test piece for stress measurement

Info

Publication number
JPH0626944A
JPH0626944A JP18071092A JP18071092A JPH0626944A JP H0626944 A JPH0626944 A JP H0626944A JP 18071092 A JP18071092 A JP 18071092A JP 18071092 A JP18071092 A JP 18071092A JP H0626944 A JPH0626944 A JP H0626944A
Authority
JP
Japan
Prior art keywords
thin film
stress
measuring
etching
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18071092A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ota
裕之 太田
Munetoshi Zen
宗利 善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18071092A priority Critical patent/JPH0626944A/en
Publication of JPH0626944A publication Critical patent/JPH0626944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To precisely measure the stress of a thin film having a thin film thickness by bringing an O-ring into contact with the surface or reverse side of a base, conducting etching to manufacture a test piece, anisotropically etching the base reverse side after forming a thin film, and then measuring warp. CONSTITUTION:A silicon base 4 to which a thin film 5 is adhered is enclosed by vessels 1, 2, and the reverse side of the base 4 is exposed to the surface to make contact with an etching solution 7. An O-ring 3 is arranged on the reverse side of the base 4 to prevent the etching solution 7 from making contact with the thin film 5 adhered to the surface of the base 4. The vessels 1, 2 are dipped in an outer vessel 6 filled with the etching solution 7, and the etching solution 7 is heated by a heater 10 to increase etching speed. The thin film can be thinned to have an uniform thickness by use of a solution of potassium hydroxide which is an etching solution highly anisotropic to the etching solution 7. Further, sealing is conducted by use of the ring 3, whereby the natural characteristic of the thin film 5 can be measured without corroding the thin film 5, and the stress of the extremely thin film 5 can be precisely measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に薄膜の機械的性質
の測定に最適な試験片の応力測定方法と応力測定用試験
片の作成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stress measuring method for a test piece and a method for producing a stress measuring test piece, which are most suitable for measuring the mechanical properties of a thin film.

【0002】[0002]

【従来の技術】これまで半導体や磁気記録媒体などに薄
膜材料が広く使われてきている。これらの薄膜応用製品
では、薄膜の持つ残留応力のために薄膜の割れや剥離が
発生して所定の性能が得られない、あるいは薄膜形成基
板への結晶欠陥導入などの悪影響が引き起こされる等の
事例が一般に報告されている。このため、材料物性の重
要なパラメータの一つとして薄膜の残留応力が広く測定
されるようになってきている。この薄膜の残留応力の測
定法として最も簡便なものが薄膜をつけた基板の弾性変
形量を測定するものである。これは応用物理1987年
第56巻第7号923ページから924ページに記載さ
れている様に、円板状や短冊状の基板に薄膜を形成して
そのそりから求めるもので、基板の曲率半径rから円板
状基板の場合、薄膜の残留応力σは、 σ=Et2/{6(1−ν)rd} …(数1) として求められる。ここでEは基板のヤング率、tは基
板の板厚、dは薄膜の厚さ、νはポアソン比である。な
お、数1はd≪t≪rの近似のもとに成り立っている。
2. Description of the Related Art Up to now, thin film materials have been widely used for semiconductors and magnetic recording media. In these thin film applied products, the residual stress of the thin film may cause cracking or peeling of the thin film to prevent the desired performance, or adverse effects such as the introduction of crystal defects into the thin film forming substrate. Is generally reported. Therefore, the residual stress of the thin film has been widely measured as one of the important parameters of the physical properties of materials. The simplest method for measuring the residual stress of this thin film is to measure the amount of elastic deformation of the substrate provided with the thin film. As described in Applied Physics, Vol. 56, No. 7, 1987, pages 923 to 924, this is a thin film formed on a disc-shaped or strip-shaped substrate, and is obtained from the warp thereof. From r, in the case of a disk-shaped substrate, the residual stress σ of the thin film is calculated as σ = Et 2 / {6 (1-ν) rd} (Equation 1). Here, E is the Young's modulus of the substrate, t is the thickness of the substrate, d is the thickness of the thin film, and ν is the Poisson's ratio. The expression 1 is based on the approximation of d << t << r.

【0003】[0003]

【発明が解決しようとする課題】一般に半導体製品等の
製造工程では円形の基板を用いているため、これに薄膜
を形成してそりを計測し、薄膜の応力を求めることが一
般に行われている。たとえば、フレクサス社製の薄膜ス
トレス測定装置ではシリコンウェハ上に形成された薄膜
の応力を測定できる様になっており、製造ラインにおけ
る薄膜の品質管理にも使用可能である。しかし、近年製
品の微細化によりごく薄い(1μm以下)薄膜の使用頻
度が高くなってきたが、このごく薄い薄膜の応力を測定
する場合にはその測定が困難となる場合がでてきた。例
えば、高集積半導体素子において用いられる薄膜の一層
の厚さは近年では0.1μm 以下のものがその大部分を
占めるようになっている。しかし、製造装置におけるウ
ェハハンドリングの関係から使用可能なウェハはその厚
さが限定されるばかりでなく、ウェハの大口径化の進行
と共に逆にその厚さが増す傾向にある。すると同じ応力
値を計測する場合にも、より微小なそりを計測せねばな
らなくなる。たとえば、シリコン基板厚さtが0.3mm
から0.5mmへ厚くなり、薄膜の厚さdが0.5μmから
0.1μmへ薄くなると数1から、同じ応力値を計測す
る場合には約14分の1のそり量を同様な精度で計測で
きなければならない。このため、そりの測定装置の計測
分解能以下となり測定が不可能となることがある。
Since a circular substrate is generally used in the manufacturing process of semiconductor products and the like, it is generally performed to form a thin film on the circular substrate and measure the warp to obtain the stress of the thin film. . For example, a thin film stress measuring device manufactured by Flexus Co., Ltd. can measure the stress of a thin film formed on a silicon wafer, and can be used for quality control of a thin film in a manufacturing line. However, in recent years, the frequency of use of a very thin (1 μm or less) thin film has increased due to the miniaturization of products, but when measuring the stress of this very thin thin film, the measurement may become difficult. For example, in recent years, most of thin layers used in highly integrated semiconductor devices have a thickness of 0.1 μm or less, and most of them have become thinner. However, the thickness of the usable wafer is not only limited due to the wafer handling in the manufacturing apparatus, but also the thickness thereof tends to increase as the diameter of the wafer increases. Then, even when measuring the same stress value, it becomes necessary to measure a smaller warp. For example, silicon substrate thickness t is 0.3 mm
From 0.5 to 0.5 mm, and the thin film thickness d from 0.5 μm to 0.1 μm decreases from Equation 1, and when measuring the same stress value, a warpage amount of about 1/14 is obtained with the same accuracy. It must be measurable. Therefore, the measurement resolution of the warpage measuring device becomes lower than the measurement resolution, and the measurement may be impossible.

【0004】[0004]

【課題を解決するための手段】上記の問題点を解決する
には、基板の板厚tを薄くすればよい。数1から、同じ
応力を測定する場合に曲率半径rは基板の板厚tの2乗
に比例するのでtを小さくすることでrが小さくなり、
よってそりは大きくなる。しかし、成膜装置内における
基板のハンドリングの関係より成膜時には基板は厚くな
ければならないので、成膜後に基板裏面より均一に削除
し、薄くする必要がある。また、この場合に基板の変形
の均一さを保つために、基板の板厚は均一でなければな
らない。このためには、異方性エッチング液を用いたエ
ッチングが有効であることがわかった。また、薄膜をエ
ッチング液による腐食から守るためにOリングによるシ
ールが必要であることがわかった。
In order to solve the above problems, the board thickness t of the substrate may be reduced. From Equation 1, when measuring the same stress, the radius of curvature r is proportional to the square of the plate thickness t of the substrate. Therefore, by reducing t, r becomes smaller,
Therefore, the sled becomes large. However, since the substrate must be thick during film formation due to the handling of the substrate in the film forming apparatus, it is necessary to uniformly remove the film from the back surface of the substrate and thin it after the film formation. Further, in this case, in order to keep the deformation of the substrate uniform, the plate thickness of the substrate must be uniform. It has been found that etching using an anisotropic etching solution is effective for this purpose. It was also found that an O-ring was necessary to protect the thin film from corrosion by the etching solution.

【0005】本発明のうち、代表的なものの概要をあら
ためて簡単に説明する。すなわち、 (1)薄膜の付いた基板のそりの測定から薄膜の残留応
力を求める薄膜の残留応力測定法において、該薄膜の成
膜後に基板裏面を異方性エッチングした後にそりを測定
することを特徴とする薄膜の応力測定法。
Of the present invention, typical ones will be briefly described again briefly. That is, (1) in the residual stress measuring method of a thin film for obtaining the residual stress of the thin film from the measurement of the warp of the substrate with the thin film, the warpage is measured after anisotropically etching the back surface of the substrate after forming the thin film. Characteristic thin film stress measurement method.

【0006】(2)薄膜の付いた基板のそりの測定から
薄膜の残留応力を求める薄膜の残留応力測定法におい
て、薄膜の成膜後に基板裏面を水酸化カリウム,水酸化
ナトリウム,水酸化セシウム,アンモニウムを含むアル
カリ水溶液、あるいはエチレンジアミン,ヒドラジン,
コリン,水酸化テトラメチルアンモニウム,水酸化テト
ラエチルアンモニウムなどを含む有機系の溶液によりエ
ッチングした後にそりを測定することを特徴とする薄膜
の応力測定法。
(2) Obtaining the residual stress of a thin film from the measurement of the warpage of a substrate with a thin film. In the method of measuring the residual stress of a thin film, after the thin film is formed, the back surface of the substrate is potassium hydroxide, sodium hydroxide, cesium hydroxide, Alkaline aqueous solution containing ammonium, ethylenediamine, hydrazine,
A method for measuring stress in a thin film, which comprises measuring warpage after etching with an organic solution containing choline, tetramethylammonium hydroxide, tetraethylammonium hydroxide, etc.

【0007】(3)薄膜の付いた基板のそりの測定から
薄膜の残留応力を求める薄膜の残留応力測定法におい
て、薄膜の成膜後に基板裏面を異方性エッチングした後
にそりを測定することを特徴とする薄膜の応力測定法。
(3) Obtaining the residual stress of a thin film from the measurement of the warp of a substrate with a thin film In the method of measuring the residual stress of a thin film, it is necessary to measure the warp after anisotropically etching the back surface of the substrate after forming the thin film. Characteristic thin film stress measurement method.

【0008】(4)上記(1)から(3)のいずれかに
記載の応力測定用試験片の作成方法において、基板表面
もしくは基板裏面にOリングを接触させてエッチングを
行うことを特徴とする応力測定用試験片の製造方法。
(4) In the method for producing a stress measuring test piece according to any one of (1) to (3) above, etching is performed by bringing an O-ring into contact with the front surface or the back surface of the substrate. Method of manufacturing test piece for stress measurement.

【0009】[0009]

【作用】数1から、たとえば薄膜の厚さdが0.5μm
から0.1μmへ薄くなった場合には、シリコン基板の
板厚tを0.3mmであったものを0.13mmに薄くすれば
薄膜の厚さdが0.5μm の場合と同じ精度が得られ
る。また、このようにシリコン基板の板厚を薄くした後
でもシリコン基板の変形が不均一となるため、その板厚
は均一でなくてはならない。そこで、シリコン基板の薄
膜の付いていない裏面をエッチングすることによってシ
リコン基板を薄くする場合に、このエッチング液に異方
性の強いエッチング液である水酸化カリウム,水酸化ナ
トリウム,水酸化セシウム,アンモニウムを含むアルカ
リ水溶液、あるいはエチレンジアミン,ヒドラジン,コ
リン,水酸化テトラメチルアンモニウム,水酸化テトラ
エチルアンモニウムなどを含む有機系の溶液を用いるこ
とで、エッチング後も基板の厚さが均一となるので測定
誤差が生じにくい。
From the formula 1, for example, the thickness d of the thin film is 0.5 μm.
From 0.1 to 0.1 μm, the same accuracy as when the thickness d of the thin film is 0.5 μm can be obtained by reducing the thickness t of the silicon substrate from 0.3 mm to 0.13 mm. To be In addition, since the deformation of the silicon substrate becomes non-uniform even after the plate thickness of the silicon substrate is thinned, the plate thickness must be uniform. Therefore, when the silicon substrate is thinned by etching the back surface of the silicon substrate without the thin film, potassium hydroxide, sodium hydroxide, cesium hydroxide, and ammonium hydroxide, which are highly anisotropic etchants to this etchant, are used. By using an alkaline aqueous solution containing ethylene or an organic solution containing ethylenediamine, hydrazine, choline, tetramethylammonium hydroxide, tetraethylammonium hydroxide, etc., the thickness of the substrate will be uniform even after etching, resulting in a measurement error. Hateful.

【0010】また、このエッチングの過程で薄膜の付着
している基板表面にエッチング液が接触すると薄膜自体
が腐食を受ける恐れがある。このため基板表面上あるい
は基板裏面上にOリングを置き、シールすることにより
基板表面の薄膜を腐食から守ることができる。よって薄
膜本来の特性が計測できるので、測定誤差を生じにく
い。
Further, when the etching solution comes into contact with the substrate surface to which the thin film is attached during the etching process, the thin film itself may be corroded. Therefore, by placing an O-ring on the front surface or the back surface of the substrate and sealing it, the thin film on the front surface of the substrate can be protected from corrosion. Therefore, since the original characteristics of the thin film can be measured, a measurement error is unlikely to occur.

【0011】[0011]

【実施例】図1に本発明の第一実施例である応力測定用
試験片の作成装置の説明図を示す。薄膜5の付着したシ
リコン基板4はテフロン製の容器(上)1および容器(下)
2によって囲まれており、シリコン基板の裏面はエッチ
ング液7に接触するべく表面に露出している。またOリ
ング3がシリコン基板の裏面上に配置され、シリコン基
板の表面に付着している薄膜5にエッチング液7が接触
することを防いでいる。また、容器1,容器2はエッチ
ング液7が満たされた外容器6に浸されており、エッチ
ング液7はエッチング速度を増すためにヒータ10によ
って加熱されている。
EXAMPLE FIG. 1 shows an explanatory view of an apparatus for producing a stress measuring test piece which is a first example of the present invention. The silicon substrate 4 with the thin film 5 attached is a Teflon container (top) 1 and a container (bottom)
It is surrounded by 2 and the back surface of the silicon substrate is exposed on the surface so as to come into contact with the etching liquid 7. Further, the O-ring 3 is arranged on the back surface of the silicon substrate to prevent the etching liquid 7 from coming into contact with the thin film 5 attached to the front surface of the silicon substrate. Further, the container 1 and the container 2 are immersed in the outer container 6 filled with the etching liquid 7, and the etching liquid 7 is heated by the heater 10 in order to increase the etching rate.

【0012】このエッチング液7に異方性の強いエッチ
ング液である水酸化カリウム,水酸化ナトリウム,水酸
化セシウム,アンモニウムを含むアルカリ水溶液、ある
いはエチレンジアミン,ヒドラジン,コリン,水酸化テ
トラメチルアンモニウム,水酸化テトラエチルアンモニ
ウムなどを含む有機系の溶液を用いることにより、シリ
コン基板が弗酸系の溶液を用いる場合に比べて、より均
一の厚さになるように薄くすることができた。例えば、
直径2インチ,厚さ550μmのシリコン基板4の裏面
をエッチングして200μmとするのに、弗酸:硝酸:
酢酸=3:5:3の溶液を用いた場合にはシリコン基板
の厚さが場所により10μm以上も異なったのに対し、
水酸化カリウム水溶液をエッチング液7に用いた場合に
は2μm以下であった。よって本発明によれば、薄膜付
き基板の変形が不均一になることがなく、ごく薄い薄膜
の応力を精度よく測定することが可能となる。
An alkaline aqueous solution containing potassium hydroxide, sodium hydroxide, cesium hydroxide or ammonium, which is a highly anisotropic etching solution, or ethylenediamine, hydrazine, choline, tetramethylammonium hydroxide, or hydroxide is used as the etching solution 7. By using an organic solution containing tetraethylammonium or the like, the silicon substrate could be thinned to have a more uniform thickness as compared with the case where a hydrofluoric acid solution was used. For example,
To etch the back surface of a silicon substrate 4 having a diameter of 2 inches and a thickness of 550 μm to 200 μm, hydrofluoric acid: nitric acid:
When the solution of acetic acid = 3: 5: 3 was used, the thickness of the silicon substrate varied by 10 μm or more depending on the location.
When an aqueous solution of potassium hydroxide was used as the etching solution 7, it was 2 μm or less. Therefore, according to the present invention, the deformation of the substrate with a thin film does not become non-uniform, and the stress of a very thin thin film can be accurately measured.

【0013】また、半導体の製造工程ではエッチングに
対するマスクにフォトレジストを用いる場合が多いが、
アルカリ系のエッチング液を用いた場合には耐アルカリ
性のあるゴム系のフォトレジストでも剥離するため使用
できないことがわかった。このためOリング3を用いて
シールを行い、試行実験を行った。その結果、エッチン
グ中にシリコン基板4に図2に示すような段差8ができ
るにもかかわらず、エッチング液を完全にシールできる
ことがわかった。よって本発明によれば、薄膜5を腐食
させることなく薄膜5本来の特性を計測できるので、ご
く薄い薄膜5の応力を精度よく測定することができる。
In the semiconductor manufacturing process, a photoresist is often used as a mask for etching.
It was found that when an alkali-based etching solution is used, even a rubber-based photoresist having alkali resistance is peeled off and cannot be used. Therefore, the O-ring 3 was used for sealing and a trial experiment was conducted. As a result, it was found that the etching liquid can be completely sealed even though the silicon substrate 4 has the step 8 as shown in FIG. 2 during the etching. Therefore, according to the present invention, since the original characteristics of the thin film 5 can be measured without corroding the thin film 5, the stress of the very thin thin film 5 can be accurately measured.

【0014】図3には本発明における第二の実施例を示
す。本実施例では容器1,容器2に向けて、エッチング
液7がシリコン基板4にシャワー9によって噴射される
ことでエッチングが進行する。また、エッチング液7は
ヒータ10によって加温されている。本発明ではエッチ
ング液7のよどみがなく、より均一にエッチングが進行
するのでさらにシリコン基板4の板厚が均一になり、薄
い薄膜5の応力を精度よく測定することができる。
FIG. 3 shows a second embodiment of the present invention. In the present embodiment, the etching solution 7 is sprayed onto the silicon substrate 4 by the shower 9 toward the container 1 and the container 2, whereby the etching proceeds. Further, the etching liquid 7 is heated by the heater 10. In the present invention, since the etching liquid 7 does not stagnate and the etching progresses more uniformly, the plate thickness of the silicon substrate 4 becomes more uniform, and the stress of the thin thin film 5 can be accurately measured.

【0015】[0015]

【発明の効果】本発明によれば、膜厚の薄い薄膜の応力
を精度よく測定することができる。
According to the present invention, the stress of a thin film can be accurately measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例である応力測定用試験片
の製造装置の説明図。
FIG. 1 is an explanatory view of a stress measuring test piece manufacturing apparatus according to a first embodiment of the present invention.

【図2】本発明の第一の実施例における効果の説明図。FIG. 2 is an explanatory diagram of an effect in the first embodiment of the present invention.

【図3】本発明の第二の実施例である応力測定用試験片
の製造装置の説明図。
FIG. 3 is an explanatory view of a stress measuring test piece manufacturing apparatus according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…容器(上)、2…容器(下)、3…Oリング、4…シリ
コン基板、5…薄膜、6…外容器、7…エッチング液、
8…段差、9…シャワー、10…ヒータ、11…ポン
プ。
1 ... Container (top), 2 ... Container (bottom), 3 ... O-ring, 4 ... Silicon substrate, 5 ... Thin film, 6 ... Outer container, 7 ... Etching liquid,
8 ... step, 9 ... shower, 10 ... heater, 11 ... pump.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】薄膜の付いた基板のそりの測定から前記薄
膜の残留応力を求める薄膜の残留応力測定法において、
前記薄膜の成膜後に基板裏面を異方性エッチングした後
にそりを測定することを特徴とする薄膜の応力測定法。
1. A method for measuring a residual stress of a thin film, wherein the residual stress of the thin film is obtained by measuring the warp of a substrate provided with the thin film.
A method for measuring the stress of a thin film, characterized in that after the thin film is formed, the back surface of the substrate is anisotropically etched and then the warpage is measured.
【請求項2】薄膜の付いた基板のそりの測定から前記薄
膜の残留応力を求める薄膜の残留応力測定法において、
前記薄膜の成膜後に基板裏面を水酸化カリウム,水酸化
ナトリウム,水酸化セシウム,アンモニウムを含むアル
カリ水溶液、あるいはエチレンジアミン,ヒドラジン,
コリン,水酸化テトラメチルアンモニウム,水酸化テト
ラエチルアンモニウムなどを含む有機系の溶液によりエ
ッチングした後にそりを測定することを特徴とする薄膜
の応力測定法。
2. A method for measuring a residual stress of a thin film, wherein the residual stress of the thin film is obtained by measuring the warp of a substrate provided with the thin film.
After forming the thin film, an alkaline aqueous solution containing potassium hydroxide, sodium hydroxide, cesium hydroxide, or ammonium on the back surface of the substrate, or ethylenediamine, hydrazine,
A method for measuring stress in a thin film, which comprises measuring warpage after etching with an organic solution containing choline, tetramethylammonium hydroxide, tetraethylammonium hydroxide, etc.
【請求項3】薄膜の付いた基板のそりの測定から前記薄
膜の残留応力を求める薄膜の残留応力測定法において、
前記薄膜の成膜後に基板裏面を異方性エッチングした後
にそりを測定することを特徴とする薄膜の応力測定法。
3. A method for measuring a residual stress of a thin film, wherein the residual stress of the thin film is obtained by measuring the warp of a substrate provided with the thin film.
A method for measuring the stress of a thin film, characterized in that after the thin film is formed, the back surface of the substrate is anisotropically etched and then the warpage is measured.
【請求項4】請求項1,2または3において、基板表面
もしくは基板裏面にOリングを接触させてエッチングを
行う応力測定用試験片の製造方法。
4. The method for manufacturing a stress measuring test piece according to claim 1, wherein the O-ring is brought into contact with the front surface or the back surface of the substrate for etching.
JP18071092A 1992-07-08 1992-07-08 Method for measuring stress of thin film, and method and device for manufacturing test piece for stress measurement Pending JPH0626944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18071092A JPH0626944A (en) 1992-07-08 1992-07-08 Method for measuring stress of thin film, and method and device for manufacturing test piece for stress measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18071092A JPH0626944A (en) 1992-07-08 1992-07-08 Method for measuring stress of thin film, and method and device for manufacturing test piece for stress measurement

Publications (1)

Publication Number Publication Date
JPH0626944A true JPH0626944A (en) 1994-02-04

Family

ID=16087963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18071092A Pending JPH0626944A (en) 1992-07-08 1992-07-08 Method for measuring stress of thin film, and method and device for manufacturing test piece for stress measurement

Country Status (1)

Country Link
JP (1) JPH0626944A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112394029A (en) * 2019-08-13 2021-02-23 宝山钢铁股份有限公司 Simulation liquid for evaluating film binding force on surface of coated iron and evaluation method thereof
CN114414595A (en) * 2021-12-24 2022-04-29 昆明冶金研究院有限公司北京分公司 Method for evaluating stress distribution of thin metal plate strip
CN116952438A (en) * 2023-09-19 2023-10-27 中铝材料应用研究院有限公司 Method and test device for evaluating residual stress of thin plate based on etching deformation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112394029A (en) * 2019-08-13 2021-02-23 宝山钢铁股份有限公司 Simulation liquid for evaluating film binding force on surface of coated iron and evaluation method thereof
CN112394029B (en) * 2019-08-13 2023-03-17 宝山钢铁股份有限公司 Simulation liquid for evaluating film binding force on surface of coated iron and evaluation method thereof
CN114414595A (en) * 2021-12-24 2022-04-29 昆明冶金研究院有限公司北京分公司 Method for evaluating stress distribution of thin metal plate strip
CN116952438A (en) * 2023-09-19 2023-10-27 中铝材料应用研究院有限公司 Method and test device for evaluating residual stress of thin plate based on etching deformation
CN116952438B (en) * 2023-09-19 2023-12-12 中铝材料应用研究院有限公司 Method and test device for evaluating residual stress of thin plate based on etching deformation

Similar Documents

Publication Publication Date Title
US5199298A (en) Wall shear stress sensor
US6197209B1 (en) Method of fabricating a substrate
US20030016116A1 (en) Method of depositing a thin metallic film and related apparatus
JPS63954B2 (en)
US5129982A (en) Selective electrochemical etching
EP0510965B1 (en) Wet etching process, applied to a rotating semiconductor substrate
JPH0626944A (en) Method for measuring stress of thin film, and method and device for manufacturing test piece for stress measurement
JPS58130529A (en) Semiconductor etching method
JPS62283678A (en) Manufacture of semiconductor device
EP0990267B1 (en) Etching method
US4671850A (en) Mask using polyimide to support a patterned x-ray opaque layer
US6855640B2 (en) Apparatus and process for bulk wet etch with leakage protection
JPS592192B2 (en) handoutaiatsuriyokuhenkansouchi
JP3724431B2 (en) Semiconductor substrate etching method
JP2802438B2 (en) Back etching equipment for X-ray mask
JPS5664471A (en) Detector for pressure of semiconductor
JPH11111671A (en) Semiconductor treatment equipment and manufacture of semiconductor device
JPH04148546A (en) Beam dimension measurement element and its manufacture
TW202030365A (en) Etching method including a preparation step, an etching step, and a sensing step
JP2000340483A (en) X ray exposure mask and manufacture thereof
RU1450553C (en) Process of manufacture of strain-gauge
CN114955980A (en) Flexible heart sound sensor based on PDMS-silicon nano-film and preparation method thereof
KR100198601B1 (en) Metal dot mask
JP3123254B2 (en) Back etching equipment
JPS5688391A (en) Manufacture of semiconductor element