JPH06269189A - Current controller for pwm inverter - Google Patents

Current controller for pwm inverter

Info

Publication number
JPH06269189A
JPH06269189A JP5051165A JP5116593A JPH06269189A JP H06269189 A JPH06269189 A JP H06269189A JP 5051165 A JP5051165 A JP 5051165A JP 5116593 A JP5116593 A JP 5116593A JP H06269189 A JPH06269189 A JP H06269189A
Authority
JP
Japan
Prior art keywords
voltage
current control
coordinate
pwm inverter
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5051165A
Other languages
Japanese (ja)
Other versions
JP3156427B2 (en
Inventor
Yasuhiro Yamamoto
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP05116593A priority Critical patent/JP3156427B2/en
Publication of JPH06269189A publication Critical patent/JPH06269189A/en
Application granted granted Critical
Publication of JP3156427B2 publication Critical patent/JP3156427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To increase current control operating speed by employing a speed type current control operating section and a model voltage operating section and performing two axes/three-phase coordinate conversion by adding an output from a first coordinate converting section for determining a previous value. CONSTITUTION:Current control operating sections 3A, 4A are configured into speed type in place of conventional position type. Similarly, a model voltage operating section 5A is configured to determine the difference and add the difference to a speed type PI operating section. A switch circuit 12 is provided at the output stage in order to bring the difference of feed forward voltage forcibly to zero at the time of starting an induction motor 1. Output voltages V1d-oi, V1q-pi from the current control operating sections 3A, 4A are added to outputs from the model voltage operating section 5A and a first coordinate converting section 13, respectively. Addition results are passed through a second coordinate converting section 14 for converting two axes of a rotary coordinate into three-phase PWM voltage component on a fixed coordinate using a circle tracking method and converted into a three-phase voltage control signal for a PWM inverter 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディジタル演算による
電流制御系を持つPWMインバータの電流制御装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a PWM inverter current control device having a digital control current control system.

【0002】[0002]

【従来の技術】誘導電動機を可変速駆動にはPWM電圧
形インバータが多く採用され、制御系にはベクトル制御
方式を採用し、また高速応答のために電流制御系を設け
るものが多い。
2. Description of the Related Art In many cases, a PWM voltage type inverter is adopted for variable speed driving of an induction motor, a vector control system is adopted for a control system, and a current control system is provided for high speed response.

【0003】さらに、CPUやDSP(ディジタルシグ
ナルプロセッサ)の高性能化により、従来アナログ回路
で構成していた電流制御系をディジタル演算で実行でき
るようになって来ている。
Further, due to the high performance of CPUs and DSPs (digital signal processors), it has become possible to execute a current control system conventionally composed of analog circuits by digital operation.

【0004】また、インバータの主回路スイッチには従
来のバイポーラトランジスタに較べてスイッチング周波
数を高めることができるIGBT等が実用化され、電流
制御系を高速化することにより電流応答性を一層向上す
る。
Further, an IGBT or the like has been put into practical use for the main circuit switch of the inverter, which can increase the switching frequency as compared with the conventional bipolar transistor, and the current response is further improved by speeding up the current control system.

【0005】しかし、近年では磁束オブザーバやパラメ
ータ変動補償などの適用により、高速性だけでなく、イ
ンバータ出力電圧,電流精度の向上や演算時間の短縮な
どが要求されている。
However, in recent years, not only high speed but also improvement of inverter output voltage and current accuracy and shortening of calculation time have been demanded by applying magnetic flux observer and parameter fluctuation compensation.

【0006】これら課題の解決を図るものとして、本願
発明者等は「PWM同期電流サンプルによる誘導電動機
のディジタル電流制御方法、電気学会論文誌D,112
巻7号,平成4年,第613頁〜622頁」を既に提案
している。
As a solution to these problems, the inventors of the present application have described, "A digital current control method for an induction motor by PWM synchronous current sampling, IEEJ Transactions D, 112.
Vol. 7, 1992, pp. 613-622 "has already been proposed.

【0007】この電流制御方法は図5に示す簡略ブロッ
ク構成になる。ベクトル非干渉演算による回転座標系の
誘導電動機1の励磁電流指令Id*とこれに直交するト
ルク電流指令Iq*の二軸成分に対し、誘導電動機1の
固定座標系の3相電流検出信号iu,iv,iwから固定
3相−回転2軸電流Ib,Iqに座標変換する座標変換回
路2によって対応する電流id,iqを得、これら電流指
令と検出電流の偏差は夫々位置形電流制御演算部3,4
によって比例積分(PI)演算される。
This current control method has a simplified block configuration shown in FIG. Three-phase current detection signal in the fixed coordinate system of the induction motor 1 with respect to the biaxial components of the exciting current command I d * of the induction motor 1 of the rotating coordinate system and the torque current command I q * orthogonal thereto by vector non-interference calculation. The corresponding currents i d and i q are obtained by the coordinate conversion circuit 2 that performs coordinate conversion from i u , iv , and i w into fixed three-phase-rotation two-axis currents I b and I q , and the deviation between these current commands and detected current Are position type current control calculation units 3 and 4, respectively.
Is calculated by proportional integral (PI).

【0008】一方、電流指令Id*,Iq*からベクトル
制御条件成立時の理想電圧をフィードフォワード項とし
てモデル電圧演算部5に求める。この演算結果になる電
圧v1d-m,v1q-mは、電圧制御演算部3,4からの出力
1d-pi,v1q-piを加算することにより、過渡応答に必
要な電圧成分や外乱,電動機定数誤差による誤差電流成
分を抑制する電流制御出力を得ている。
On the other hand, the ideal voltage when the vector control condition is satisfied is obtained from the current commands I d *, I q * as a feedforward term in the model voltage calculation unit 5. The voltages v 1d-m and v 1q-m that are the result of this calculation are obtained by adding the outputs v 1d-pi and v 1q-pi from the voltage control calculation units 3 and 4, and A current control output that suppresses error current components due to disturbances and motor constant errors is obtained.

【0009】この電流制御出力はリミッタ回路6,7に
よって夫々飽和抑制した電圧指令とされ、座標変換回路
8によって2軸回転座標から回転極座標に変換され、こ
の大きさRと位相φiは座標変換回路9によって極座標
から円軌跡法によるPWM演算によって固定3相成分
U,V,W相電圧に変換され、夫々リミッタ回路1
U,10V,10Wを経てPWM電圧形インバータ11
の電圧制御信号にされ、誘導電動機1の一次電圧を発生
している。
This current control output is converted into a voltage command whose saturation is suppressed by limiter circuits 6 and 7, respectively, and is converted from biaxial rotation coordinates to rotation polar coordinates by a coordinate conversion circuit 8. The magnitude R and the phase φ i are coordinate converted. The circuit 9 converts the polar coordinates into fixed three-phase components U, V, and W-phase voltages by PWM calculation by the circular locus method, and the limiter circuit 1 respectively.
PWM voltage source inverter 11 through 0 U , 10 V , 10 W
To generate the primary voltage of the induction motor 1.

【0010】[0010]

【発明が解決しようとする課題】従来の方法は、以下の
4つの特徴を有する。
The conventional method has the following four characteristics.

【0011】(1)電流制御演算部3,4を位置形で構
成する。
(1) The current control calculation units 3 and 4 are constructed in position type.

【0012】(2)モデル電圧演算部5の出力をフィー
ドフォワードとして電流制御演算部3,4の出力に加算
する。
(2) The output of the model voltage calculator 5 is added to the outputs of the current control calculators 3 and 4 as feedforward.

【0013】(3)回転座標系においてモデル電圧と電
流制御演算部の加算値にリミッタをかける。
(3) A limiter is applied to the added value of the model voltage and current control calculation unit in the rotating coordinate system.

【0014】(4)円軌跡法によりPWM演算をする。(4) PWM calculation is performed by the circle locus method.

【0015】上記の特徴点について、以下の問題があ
る。
Regarding the above characteristic points, there are the following problems.

【0016】まず、(2)項については、誘導電動機が
高速で回転している場合の予備励磁開始時に磁束及び励
磁電流指令を零から設定値に急変させると電動機の磁束
が零であるため逆起電圧も零であるのに対し、フィード
フォワード電圧は磁束が存在するときの電圧を急激に与
える。
First, regarding the item (2), when the magnetic flux and the exciting current command are suddenly changed from zero to a set value at the start of pre-excitation when the induction motor is rotating at a high speed, the magnetic flux of the electric motor is zero, which is the reverse. The electromotive voltage is also zero, whereas the feedforward voltage rapidly gives a voltage in the presence of magnetic flux.

【0017】この結果、電動機には過電流が発生し、過
電流停止や故障の原因になる。この対策として励磁電流
指令を零からクッション特性を有して徐々に上昇させる
と、フィードフォワード電圧もそのクッション時間分だ
け遅れ、磁束の確立が遅れてしまう。
As a result, an overcurrent is generated in the electric motor, which causes overcurrent stoppage or failure. If the exciting current command is gradually increased from zero with a cushion characteristic as a countermeasure against this, the feedforward voltage is also delayed by the cushion time, and the establishment of the magnetic flux is delayed.

【0018】次に、(3)項について、回転座標上の2
軸成分にリミッタ回路6,7によりリミッタをかける
と、図6に示すように各軸が飽和したときにリミット幅
dL,VqLの21/2倍の2軸合成値となり、所期の制限
値が得られない。実際にはU,V,W相の3相電圧に対
する出力限界があり、同図の範囲と異なる。
Next, regarding the item (3), 2 on the rotational coordinate
When limiters are applied to the axis components by limiter circuits 6 and 7, as shown in FIG. 6, when each axis is saturated, the limit widths V dL and V qL are 2 1/2 times the two-axis composite value, and the desired value is obtained. No limit value can be obtained. Actually, there is an output limit for three-phase voltages of U, V, and W phases, which is different from the range shown in FIG.

【0019】この対策として、図5中に破線で示すよう
2軸成分を極座標変換した後に振幅値にリミットをか
け、円状の飽和リミッタで近似することがある。この場
合、極座標変換分だけ演算が多くなる。
As a countermeasure against this, there is a case where the biaxial component is converted into polar coordinates as shown by a broken line in FIG. 5 and then the amplitude value is limited and approximated by a circular saturation limiter. In this case, the number of calculations is increased by the polar coordinate conversion.

【0020】次に、(4)項について、円軌跡法は一般
に電圧振幅と位相の指令を用いて演算する。このため、
2軸成分を一旦極座標変換する必要があり、演算速度を
低下させる一因となっている。
Next, with respect to the item (4), the circular locus method is generally calculated by using commands of voltage amplitude and phase. For this reason,
It is necessary to temporarily convert the two-axis components into polar coordinates, which is one of the causes of lowering the calculation speed.

【0021】本発明の目的は、前記課題を解決した電流
制御装置を提供することにある。
An object of the present invention is to provide a current control device which solves the above problems.

【0022】[0022]

【課題を解決するための手段】本発明は、前記課題を解
決するため、ベクトル制御されるPWMインバータの回
転座標系の励磁電流指令とトルク電流指令と夫々の検出
値との偏差に対して速度形の比例積分演算をする電流制
御演算部(3A,4A)と、前記励磁電流指令とトルク
電流指令からベクトル制御条件成立時の理想電圧をフィ
ードフォワード項として求める速度形のモデル電圧演算
部5Aと、前記PWMインバータの三相電圧指令を回転
座標系の励磁電流分とトルク電流分の二軸成分に逆変換
する第1の座標変換部(13)と、前記座標変換部と前
記モデル電圧演算部及び電流制御演算部の対応する二軸
成分を夫々加算した値を固定座標の三相成分に変換し、
リミッタ手段を有して前記PWMインバータの三相電圧
指令とする第2の座標変換部(14)と、を備えたこと
を特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a speed with respect to a deviation between an excitation current command and a torque current command of a rotating coordinate system of a vector-controlled PWM inverter and respective detected values. A current control calculation unit (3A, 4A) for performing a proportional proportional integration calculation, and a speed type model voltage calculation unit 5A for obtaining an ideal voltage when a vector control condition is satisfied as a feedforward term from the excitation current command and the torque current command. A first coordinate conversion unit (13) for inversely converting a three-phase voltage command of the PWM inverter into biaxial components of an exciting current component and a torque current component of a rotating coordinate system, the coordinate transforming unit, and the model voltage computing unit. And a value obtained by adding the corresponding two-axis components of the current control calculation unit to a three-phase component of fixed coordinates,
A second coordinate conversion unit (14) having limiter means for giving a three-phase voltage command of the PWM inverter.

【0023】また、本発明はモデル電圧演算部は、PW
Mインバータの負荷となる誘導電動機の起動時からその
二次時定数に相当する時間だけ出力を零に強制するスイ
ッチ手段を備えた構成を特徴とする。
Further, according to the present invention, the model voltage calculation unit is a PW.
The present invention is characterized in that the induction motor serving as a load of the M inverter is provided with a switch means for forcing the output to zero for a time corresponding to the secondary time constant of the induction motor.

【0024】[0024]

【作用】電流制御演算及びモデル電圧演算には位置形に
代えて速度形(差分形)とすることにより電流制御演算
速度を高くし、電流の応答性を高める。これを以下に説
明する1入力1出力系の電流制御方式を離散値系で構成
すると、位置形は図1の(a)に示すようになり、速度
形は図1の(b)に示すようになる。これらの電流制御
演算部の出力vkは以下の式で与えられる。(1)式は
位置形、(2)式は速度形になる。
In the current control calculation and the model voltage calculation, the speed type (differential type) is used instead of the position type to increase the current control calculation speed and enhance the current responsiveness. When the current control method of the 1-input 1-output system described below is configured by the discrete value system, the position type is as shown in FIG. 1A, and the velocity type is as shown in FIG. 1B. become. The output v k of these current control calculation units is given by the following equation. Equation (1) is a position type, and equation (2) is a velocity type.

【0025】[0025]

【数1】 [Equation 1]

【0026】 ik*;電流指令(時刻k) ik;電流検出値(時刻k) Z-1;1サンプル遅延 KP;比例ゲイン Ti;積分時定数 △T;演算時間 上記(1),(2)式から明らかなように、位置形では
積分項とリミッタが分離されており、出力リミット時で
も積分が進行するためリミッタ動作時には図1にさらに
積分を停止するなどの演算を加える必要がある。これに
対して、速度形は積分値とリミッタ値は等しいため積分
値の追加操作は不要であり、演算数が少なくなり、また
飽和時から復帰する際にも応答が速くなる。
I k *; current command (time k) i k ; current detection value (time k) Z -1 ; 1 sample delay K P ; proportional gain T i ; integral time constant ΔT; calculation time (1) , As is clear from the equation (2), the integral term and the limiter are separated in the position type, and the integration progresses even at the output limit, so that it is necessary to add an operation such as further stopping the integration in FIG. 1 when the limiter operates. There is. On the other hand, in the velocity type, since the integral value and the limiter value are equal, no additional operation of the integral value is necessary, the number of calculations is small, and the response is quick even when returning from saturation.

【0027】この速度形になる電流制御演算によって境
界Aより前段では回転座標系の二軸座標で演算し、モデ
ル電圧演算にも速度形の演算によってフィードフォワー
ド項を求める。
By the current control calculation for the velocity type, the feedforward term is obtained by the velocity type calculation in the biaxial coordinates of the rotating coordinate system before the boundary A.

【0028】次に、境界Aの後段は固定座標系の3相座
標で演算する。このため、境界A部に前回の値を求める
ための第1の座標変換部と二軸/三相変換のための第2
の座標変換部を設ける。そして、リミッタは三相電圧成
分で行い、このリミッタ後の値を二軸に逆変換して電流
制御演算に対するリミット値とすることにより電圧飽和
リミッタと出力電圧を一致させる。
Next, the subsequent stage of the boundary A is calculated by three-phase coordinates in a fixed coordinate system. For this reason, the first coordinate conversion unit for obtaining the previous value at the boundary A and the second coordinate conversion unit for the two-axis / three-phase conversion
The coordinate conversion unit of is provided. Then, the limiter performs the three-phase voltage component, and the value after the limiter is inversely converted into two axes to be the limit value for the current control calculation so that the voltage saturation limiter and the output voltage match.

【0029】また、本発明はモデル電圧演算部にスイッ
チ手段を設けることにより、予備励磁開始時にフィード
フォワード電圧の差分成分を一時的に零にした起動を行
い、起動後にフィードフォワード電圧の差分成分を積分
器前に加算する。この加算時には電流制御演算部の積分
項にはモデル電圧成分相当がフィードバックにより含ま
れており、これにフィードフォワードを追加することに
なる。
Further, according to the present invention, the model voltage calculation unit is provided with the switch means, so that the differential component of the feedforward voltage is temporarily set to zero at the start of pre-excitation, and the differential component of the feedforward voltage is set after the activation. Add before integrator. At the time of this addition, the model voltage component equivalent is included in the integral term of the current control calculation unit by feedback, and feedforward is added to this.

【0030】これにより、起動時の過電流を防止しなが
らクッション特性による遅れを伴うことなくフィードフ
ォワード電圧を印加する。
As a result, the feedforward voltage is applied without the delay due to the cushion characteristic while preventing the overcurrent at the time of starting.

【0031】[0031]

【実施例】図2は本発明の一実施例を示すブロック図で
ある。同図において、電流制御演算部3A,4Aは従来
の位置形に代えて速度形に構成される。同様に、モデル
電圧演算部5Aは差分を求めて速度形PI演算部に加算
する出力を行う構成にされ、その出力段にはスイッチ回
路12が設けられ誘導電動機1の起動時にフィードフォ
ワード電圧の差分成分をを零に強制する。
FIG. 2 is a block diagram showing an embodiment of the present invention. In the figure, the current control calculation units 3A and 4A are speed type instead of the conventional position type. Similarly, the model voltage calculation unit 5A is configured to obtain a difference and perform an output to be added to the speed type PI calculation unit. A switch circuit 12 is provided at the output stage of the model voltage calculation unit 5A and the difference in the feedforward voltage when the induction motor 1 is started. Force the components to zero.

【0032】電流制御演算部3A,4Aの出力電圧v
1d-pi,v1q-piは夫々モデル電圧演算部5Aの出力及び
第1の座標変換部13の出力と加算され、この加算結果
は回転座標の二軸から円軌跡法などを用いて固定座標の
三相PWM電圧成分に座標変換する第2の座標変換部1
4を経てPWMインバータ11の三相電圧制御信号にさ
れる。
Output voltage v of the current control arithmetic units 3A and 4A
1d-pi and v 1q-pi are added to the output of the model voltage calculation unit 5A and the output of the first coordinate conversion unit 13, respectively, and the addition result is a fixed coordinate from the two axes of the rotating coordinate using the circular locus method or the like. Second coordinate conversion unit 1 for performing coordinate conversion into the three-phase PWM voltage component
After that, it is converted into a three-phase voltage control signal for the PWM inverter 11 via the signal.

【0033】座標変換部13は三相電圧制御信号から回
転座標の二軸座標に逆変換する変換回路13Aと変換係
数部13B,13Cを含む。
The coordinate conversion unit 13 includes a conversion circuit 13A for reversely converting the three-phase voltage control signal into the biaxial coordinates of the rotating coordinates and the conversion coefficient units 13B and 13C.

【0034】座標変換部14は、二軸/三相の変換回路
14Aと、電圧とPWM指令との変換係数部14B,1
4Cの他に、三相の各成分毎のリミッタ回路14D,1
4E,14Fより構成される。
The coordinate conversion section 14 includes a biaxial / three-phase conversion circuit 14A and voltage and PWM command conversion coefficient sections 14B and 1B.
4C, limiter circuits 14D, 1 for each of the three-phase components
It is composed of 4E and 14F.

【0035】本実施例によれば、電流制御演算部3A,
4A及びモデル電圧演算部5Aを速度形とした高速演算
を得る。また、これらの演算結果を座標変換部14で三
相固定座標に変換して零相電圧補正や出力電圧リミッタ
演算した後に座標変換部13で二軸に逆変換することに
より、従来各座標上で実行していた複数種類のリミッタ
演算が一種類で良くなり、さらに電流制御演算での飽和
量が実出力電圧と一致を得て飽和レベルからの戻りに応
答遅れを無くすことができる。
According to this embodiment, the current control arithmetic unit 3A,
4A and the model voltage calculation unit 5A are speed type and high speed calculation is obtained. Further, by converting these calculation results into three-phase fixed coordinates by the coordinate conversion unit 14 and performing zero-phase voltage correction and output voltage limiter calculation, the coordinate conversion unit 13 inversely converts them into two axes. A plurality of types of limiter calculations that have been executed can be improved by one type, and the saturation amount in the current control calculation can be matched with the actual output voltage to eliminate a response delay in returning from the saturation level.

【0036】また、モデル電圧演算をスイッチ回路12
を持つ速度形にすることにより、起動時の出力電圧過大
になるのを防止できる等の効果がある。これを以下に説
明する。
The model voltage calculation is performed by the switch circuit 12
By adopting a speed type having, it is possible to prevent the output voltage from becoming excessive at startup. This will be explained below.

【0037】図3には電動機が回転中にモデル電圧を初
めから加算する場合の励磁開始時の各部応答波形例を示
す。インバータの運転開始と同時に励磁電流指令id
が設定され、モデル電圧v1dm,v1qmは定常時の電圧を
出力する。このとき、電動機1の二次磁束が確立してい
ないにも拘らず、定常時の二次磁束が存在する場合の電
圧を出力してしまう。
FIG. 3 shows an example of response waveforms at each part at the start of excitation when the model voltage is added from the beginning while the motor is rotating. Exciting current command i d * at the same time when the inverter starts operating
There is set, the model voltage v 1dm, v 1qm outputs a voltage in a steady state. At this time, although the secondary magnetic flux of the electric motor 1 is not established, the voltage when the secondary magnetic flux in the steady state exists is output.

【0038】この結果、モデル電圧v1qm方向にモデル
電圧が出力されるため、q軸電流iqが増加する。本
来、q軸電流指令i1q*=0であるため、フィードバッ
ク項になる電流制御演算部4Aがモデル電圧を打消す方
向に働き、またd軸電流idはモデル電圧によっては増
加量が行くなく、やはりフィードバック項になる電流制
御演算部3Aにより励磁電流を流そうとする。
As a result, since the model voltage is output in the model voltage v 1qm direction, the q-axis current i q increases. Originally, since the q-axis current command i 1q * = 0, the current control calculation unit 4A that serves as a feedback term works in the direction of canceling the model voltage, and the d-axis current i d does not increase depending on the model voltage. , The current control arithmetic unit 3A, which also serves as a feedback term, tries to flow an exciting current.

【0039】このように、起動時にモデル電圧を印加す
ると、モデルの磁束と実際の電動機の磁束とが一致しな
い期間では電動機電流には通常のフィードバック時より
も逆に応答性が悪く、過電流が発生することがある。こ
のため、破線で示すように、電流指令iq*にクッショ
ンを持たせ、フィードフォワード電圧が急に出力される
のを抑制することもある。
As described above, when the model voltage is applied at the time of start-up, in the period in which the model magnetic flux and the actual magnetic flux of the electric motor do not coincide with each other, the electric current of the motor has a poorer responsiveness than that at the time of normal feedback and an overcurrent is generated. May occur. Therefore, as shown by the broken line, the current command i q * may be provided with a cushion to suppress sudden output of the feedforward voltage.

【0040】本実施例では、起動時にはモデル電圧をオ
フにしておき、q軸電流の過大を抑制する。このモデル
電圧のオフ期間は電動機の二次時定数に相当する時間に
し、電動機の励磁確立を持つ。また、励磁確立後のモデ
ル電圧のオン時にはモデル電圧がステップ状に加えられ
ると電流波形に乱れが発生するため、本実施例ではモデ
ル電圧成分の差分を積分項の前に加えることにより電流
制御演算部の積分項にはモデルフィードフォワード開始
からのモデルの変化分のみが加算される。
In this embodiment, the model voltage is turned off at the time of start-up to prevent the q-axis current from becoming excessive. The off period of this model voltage is set to a time corresponding to the secondary time constant of the electric motor, and the excitation of the electric motor is established. In addition, when the model voltage is turned on after the excitation is established, the current waveform is disturbed when the model voltage is applied stepwise. Therefore, in the present embodiment, the current control calculation is performed by adding the difference of the model voltage component before the integral term. Only the change in the model from the start of model feedforward is added to the integral term in the section.

【0041】この補正は図4に示すようになる。モデル
電圧は前サンプル時のモデル電圧との差分の形で発生す
るが、起動時の差分v1dm(k)−v1dm(k-1),v1qm(k)
1qm(k-1)はスイッチ回路12によって削除しておく。
その直後、電動機1の磁束が確立した後にモデル電圧を
加算するようスイッチ回路12を切り換える。このと
き、トルク電流指令iq*を急変させるもモデル電圧の
印加によって実際のトルク電流iqを高速かつ安定した
応答を得ることができる。
This correction is as shown in FIG. Model voltage is generated in the form of the difference between the model voltage at the time of the previous sample, but the start-up of the difference v 1dm (k) -v 1dm ( k-1), v 1qm (k) -
v 1qm (k-1) is deleted by the switch circuit 12.
Immediately thereafter, the switch circuit 12 is switched to add the model voltage after the magnetic flux of the electric motor 1 is established. At this time, although the torque current command i q * is suddenly changed, a fast and stable response of the actual torque current i q can be obtained by applying the model voltage.

【0042】このように、モデル電圧演算も速度形で取
り扱うことにより、モデル電圧のオン・オフの切換えが
スムーズに行うことができ、スイッチのオン・オフ制御
も簡単になる。
As described above, since the model voltage calculation is also handled in the speed form, the model voltage can be smoothly switched on and off, and the switch on / off control can be simplified.

【0043】また、図3のように、モデル電圧の演算に
磁束の確立を持つために一次遅れ(クッション)で近似
して出力する方法もあるが、この場合には瞬時停電等で
一瞬ゲートしゃ断が発生した直後(電動機に残留磁束が
存在している)に再始動すると、実際には磁束が存在す
るのにモデル電圧が零から増加することになり、電流応
答に乱れが発生する。
As shown in FIG. 3, there is a method of approximating with a first-order lag (cushion) in order to establish the magnetic flux in the calculation of the model voltage, but in this case, the gate is cut off for a moment due to a momentary power failure or the like. If the engine is restarted immediately after the occurrence of (the residual magnetic flux exists in the motor), the model voltage will increase from zero even though the magnetic flux actually exists, and the current response will be disturbed.

【0044】即ち、電動機の磁束は二次時定数によって
変化するため、この期間中はモデル電圧を発生しない本
実施例の構成とすることにより、出力電流は安定した応
答を得ることができる。そして、途中からモデル電圧を
印加するには本実施例の速度形が好適となる。
That is, since the magnetic flux of the electric motor changes according to the secondary time constant, the output current can obtain a stable response by adopting the configuration of this embodiment in which the model voltage is not generated during this period. Then, in order to apply the model voltage midway, the velocity type of this embodiment is suitable.

【0045】[0045]

【発明の効果】以上のとおり、本発明によれば、電流制
御演算部とモデル電圧演算部を速度形にし、前回値を求
める第1の座標変換部の出力とを加算して二軸/三相の
座標変換を行うようにしたため以下の効果がある。
As described above, according to the present invention, the current control calculation unit and the model voltage calculation unit are set to the speed type, and the output of the first coordinate conversion unit for obtaining the previous value is added to add two axes / three axes. Since the phase coordinate conversion is performed, the following effects are obtained.

【0046】(1)従来、各座標上で実行していた複数
種類のリミッタが三相成分での一種類のリミッタで良
く、また電流制御演算での飽和量が実出力電圧と一致さ
せ得るため出力電圧飽和から戻りの応答遅れがなくな
る。
(1) Conventionally, a plurality of types of limiters executed on each coordinate may be one type of three-phase component, and the saturation amount in the current control calculation can be matched with the actual output voltage. The response delay of returning from the output voltage saturation is eliminated.

【0047】(2)モデル電圧演算を差分して速度形に
て積分器に加算することにより、モデル電圧のフィード
フォワードの削除・印加が簡単になり、しかも出力電流
に外乱を与えることが無い。
(2) By subtracting the model voltage calculation and adding it to the integrator in the speed form, the feedforward of the model voltage can be deleted and applied easily, and no disturbance is given to the output current.

【0048】(3)座標変換を簡単にでき、電流制御演
算等を速度形にして各部の演算処理を簡単にして高速演
算による高速応答を得ることができる。
(3) The coordinate conversion can be easily performed, and the current control calculation and the like can be speed-typed to simplify the calculation processing of each part and obtain a high-speed response by high-speed calculation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を原理的に説明するためのブロック図。FIG. 1 is a block diagram for explaining the principle of the present invention.

【図2】本発明の一実施例を示すブロック図。FIG. 2 is a block diagram showing an embodiment of the present invention.

【図3】従来の起動時の各部波形図。FIG. 3 is a waveform chart of each part at the time of conventional startup.

【図4】実施例の起動時の各部波形図。FIG. 4 is a waveform diagram of each part at the time of startup of the embodiment.

【図5】従来のブロック図。FIG. 5 is a conventional block diagram.

【図6】従来のリミッタ特性図。FIG. 6 is a conventional limiter characteristic diagram.

【符号の説明】[Explanation of symbols]

3A,4A…電流制御演算部 5A…モデル電圧演算部 12…スイッチ回路 13…座標変換部 14…座標変換部。 3A, 4A ... Current control arithmetic unit 5A ... Model voltage arithmetic unit 12 ... Switch circuit 13 ... Coordinate conversion unit 14 ... Coordinate conversion unit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ベクトル制御されるPWMインバータの
回転座標系の励磁電流指令とトルク電流指令と夫々の検
出値との偏差に対して速度形の比例積分演算をする電流
制御演算部(3A,4A)と、 前記励磁電流指令とトルク電流指令からベクトル制御条
件成立時の理想電圧をフィードフォワード項として求め
る速度形のモデル電圧演算部(5A)と、 前記PWMインバータの三相電圧指令を回転座標系の励
磁電流分とトルク電流分の二軸成分に逆変換する第1の
座標変換部(13)と、 前記座標変換部と前記モデル電圧演算部及び電流制御演
算部の対応する二軸成分を夫々加算した値を固定座標の
三相成分に変換し、リミッタ手段を有して前記PWMイ
ンバータの三相電圧指令とする第2の座標変換部(1
4)と、 を備えたことを特徴とするPWMインバータの電流制御
装置。
1. A current control calculation unit (3A, 4A) for performing speed-type proportional integral calculation with respect to a deviation between an excitation current command and a torque current command in a rotating coordinate system of a vector-controlled PWM inverter and respective detected values. ), A speed type model voltage calculation unit (5A) for obtaining an ideal voltage when a vector control condition is satisfied as a feedforward term from the excitation current command and the torque current command, and a three-phase voltage command of the PWM inverter for a rotating coordinate system. A first coordinate transformation unit (13) for inversely transforming the biaxial components of the exciting current component and the torque current component, and the corresponding biaxial components of the coordinate transformation unit, the model voltage computing unit and the current control computing unit, respectively. A second coordinate conversion unit (1) which converts the added value into a three-phase component having a fixed coordinate and has a limiter means to generate a three-phase voltage command of the PWM inverter.
4) and a current control device for a PWM inverter.
【請求項2】 前記モデル電圧演算部は、PWMインバ
ータの負荷となる誘導電動機の起動時からその二次時定
数に相当する時間だけ出力を零に強制するスイッチ手段
を備えた請求項1記載のPWMインバータの電流制御装
置。
2. The model voltage calculation unit comprises a switch means for forcing the output to zero for a time corresponding to the secondary time constant of the induction motor, which is a load of the PWM inverter, from the start-up time. Current control device for PWM inverter.
JP05116593A 1993-03-12 1993-03-12 Current control device for PWM inverter Expired - Fee Related JP3156427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05116593A JP3156427B2 (en) 1993-03-12 1993-03-12 Current control device for PWM inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05116593A JP3156427B2 (en) 1993-03-12 1993-03-12 Current control device for PWM inverter

Publications (2)

Publication Number Publication Date
JPH06269189A true JPH06269189A (en) 1994-09-22
JP3156427B2 JP3156427B2 (en) 2001-04-16

Family

ID=12879217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05116593A Expired - Fee Related JP3156427B2 (en) 1993-03-12 1993-03-12 Current control device for PWM inverter

Country Status (1)

Country Link
JP (1) JP3156427B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136196A (en) * 2000-10-30 2002-05-10 Fuji Electric Co Ltd Method and apparatus for controlling induction motor
JP2010213548A (en) * 2009-03-12 2010-09-24 Jtekt Corp Motor controller
JP2013027126A (en) * 2011-07-20 2013-02-04 Hitachi Ltd Ac power supply device and control device for the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497095B1 (en) 2002-12-26 2005-06-28 엘지.필립스 엘시디 주식회사 Array substrate for dual panel type electroluminescent device and method for fabricating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002136196A (en) * 2000-10-30 2002-05-10 Fuji Electric Co Ltd Method and apparatus for controlling induction motor
JP2010213548A (en) * 2009-03-12 2010-09-24 Jtekt Corp Motor controller
JP2013027126A (en) * 2011-07-20 2013-02-04 Hitachi Ltd Ac power supply device and control device for the same

Also Published As

Publication number Publication date
JP3156427B2 (en) 2001-04-16

Similar Documents

Publication Publication Date Title
US4767976A (en) Control system for PWM inverter
WO2011145334A1 (en) Control device without a rotation sensor
US5247237A (en) Control device of induction motor
JPH08182398A (en) Driving device for permanent magnet-type synchronous motor
JP2001339998A (en) Method and device for controlling induction motor
JP3684793B2 (en) Inverter device
JPH11299297A (en) Controller for permanent magnet synchronous motor
JP3607960B2 (en) Motor control device and control method
JPH11187699A (en) Speed control method for induction motor
JP3156427B2 (en) Current control device for PWM inverter
JP2000312497A (en) Control method for alternating current motor
JPH0880098A (en) Vector controller of motor
JP3351244B2 (en) Induction motor speed control method
JPH09140187A (en) Power converter
JP3173022B2 (en) Control device for brushless DC motor
JP2808709B2 (en) Method of picking up sensorless ASR control circuit
JP3752804B2 (en) AC machine control device
JP2002325498A (en) Ac motor controller
JPH10225196A (en) Controller for induction motor
JPH08126400A (en) Vector controller for induction motor
JP4325090B2 (en) Vector controller for induction linear motor
JPH01198292A (en) Variable speed controller for induction motor
JPH11122931A (en) Method for controlling converter
JP2003111498A (en) Controller without speed sensor for induction motor
JP2001245499A (en) Motor control apparatus and control apparatus of electric rolling stock

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees