JPH06268263A - Manufacture of thermoelectric element material - Google Patents

Manufacture of thermoelectric element material

Info

Publication number
JPH06268263A
JPH06268263A JP5050772A JP5077293A JPH06268263A JP H06268263 A JPH06268263 A JP H06268263A JP 5050772 A JP5050772 A JP 5050772A JP 5077293 A JP5077293 A JP 5077293A JP H06268263 A JPH06268263 A JP H06268263A
Authority
JP
Japan
Prior art keywords
particles
sige
thermoelectric element
sintered body
microcapsule powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5050772A
Other languages
Japanese (ja)
Inventor
Masayuki Kato
雅之 加藤
Toshikazu Takeda
敏和 竹田
Shigeo Takita
茂生 瀧田
Eiji Okumura
英二 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP5050772A priority Critical patent/JPH06268263A/en
Publication of JPH06268263A publication Critical patent/JPH06268263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PURPOSE:To obtain a thermoelectric element nearly equal in conversion characteristics to a conventional one farmed of only SiGe by a method wherein the thermoelectric element is formed of SiGe encapsulated in FeSi2. CONSTITUTION:Slave particles 2 of FeSi2 are formed and attached around a mother particle 1 of SiGe to form a micro capsule particle 3. Thereafter, the micro capsule particles 1 are gathered into a body of prescribed shape. The body of SiGe and FeSi2 is sintered by plasma into a sintered body used for a thermoelectric device material. Mother particles 1 are linked together and kept in point contact with each other, and the slave particles 2 are uniformly attached around the mother particles and uniformly interposed among the mother particles 1 in the above sintered body. The sintered body is thermally treated into a thermoelectric element. By this setup, a thermoelectric element high in resistance to corrosion and heat and excellent in conversion efficiency can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱電対などを形成するた
めの熱発電素子材料の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoelectric generator material for forming a thermocouple or the like.

【0002】[0002]

【従来の技術】従来、熱電対や電子冷凍素子等の熱発電
素子の典型的な製造方法としては、スタンプミル、ガス
アトマイズ法等によって得られた材料粉末を、所定形状
に集合させてホットプレス、放電焼結、プラズマ焼結等
を用いて固形化した後、これを所定の温度で熱処理して
金属相(α相)から半導体相(β相)に相転移させ、そ
の後、その端部等にリード線や電極等をろう付けあるい
はハンダ付けしてなる方法が知られている。
2. Description of the Related Art Conventionally, as a typical method for producing a thermoelectric generator such as a thermocouple or an electronic refrigeration element, a material powder obtained by a stamp mill, a gas atomizing method or the like is collected into a predetermined shape and hot pressed, After solidification using discharge sintering, plasma sintering, etc., this is heat-treated at a predetermined temperature to transform the metal phase (α phase) to the semiconductor phase (β phase), and then to the end etc. A method is known in which lead wires, electrodes, etc. are brazed or soldered.

【0003】また、これら熱発電素子の材料としては主
にFeSi2 やSiGe等が多く用いられている。特
に、このFeSi2 は耐蝕耐熱性に優れた熱電材料であ
るため、大気中、高温下で使用することができるといっ
た特性を有している。一方、SiGeはFeSi2 に比
較して約2〜3倍の高い変換効率を発揮するといった特
性を有しているため、最近では、このFeSi2 に代っ
て熱電材料の主流となりつつある。
FeSi 2 and SiGe are mainly used as materials for these thermoelectric generators. In particular, since this FeSi 2 is a thermoelectric material having excellent corrosion resistance and heat resistance, it has the property that it can be used in the air at high temperature. On the other hand, SiGe has a characteristic that it exhibits a conversion efficiency about 2-3 times higher than that of FeSi 2, and therefore, it has recently become the mainstream of thermoelectric materials in place of FeSi 2 .

【0004】[0004]

【発明が解決しようとする課題】ところで、上述したよ
うに、このSiGeはFeSi2 に比較して高い変換効
率を発揮するといった特性を有しているが、その反面、
高温使用時に昇華しやすく、また、機械的強度も低いと
いった欠点があり、実用範囲が狭いものであった。
By the way, as described above, this SiGe has the characteristic of exhibiting a higher conversion efficiency than FeSi 2 , but on the other hand,
It has a drawback that it is easily sublimated when used at high temperatures and has low mechanical strength, and its practical range is narrow.

【0005】そこで、本発明はこの問題点を有効に解決
するために案出されたものであり、その目的は耐蝕耐熱
性に優れ、かつ高い機械的強度を備えた新規な熱発電素
子材料の製造方法を提供するものである。
Therefore, the present invention has been devised to effectively solve this problem, and its purpose is to provide a novel thermoelectric power generation element material having excellent corrosion resistance and heat resistance and high mechanical strength. A manufacturing method is provided.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に第一の発明はSiGeからなる母粒子の周囲に、Fe
Si2 からなる子粒子を付着させてマイクロカプセル粉
末を形成し、該マイクロカプセル粉末を所定形状に集合
させた後、焼結してなるものであり、また、第二の発明
は上記マイクロカプセル粉末の周囲に、さらにCuOか
らなる孫粒子を付着させて複合マイクロカプセル粉末を
形成し、該複合マイクロカプセル粉末を所定形状に集合
させた後、焼結してなるものである。
In order to solve the above-mentioned problems, the first invention is to provide Fe around a mother particle made of SiGe.
A microcapsule powder is formed by adhering child particles made of Si 2 , and the microcapsule powder is assembled into a predetermined shape and then sintered, and the second invention is the above microcapsule powder. Further, grandchild particles made of CuO are further attached to the periphery of the to form a composite microcapsule powder, and the composite microcapsule powder is assembled into a predetermined shape and then sintered.

【0007】以下、本発明について補足説明をする。先
ず、本発明で用いる母粒子の粒径としては特に限定され
るものではないが、10〜100μmでかつ均一なもの
が望ましい。すなわち、緻密な焼結体を得るとの点から
考えると母粒子の粒径は小さいほど熱伝導度が低下して
熱電特性が向上するため、粒径は小さいものが好ましい
が、上述したように、この母粒子の周囲にはさらに粒径
の小さい子粒子あるいは孫粒子を付着させるため、粒子
の製造限度から考慮してある程度の大きさが必要である
からである。従って、子粒子の粒径は1〜10μm程度
で少なくとも母粒子より小さいものであれば良く、さら
に、孫粒子の粒径は1μm以下であって子粒子より小さ
いものであれば良い。
The present invention will be supplementarily described below. First, the particle size of the mother particles used in the present invention is not particularly limited, but it is desirable that the particle size is 10 to 100 μm and uniform. That is, from the viewpoint of obtaining a dense sintered body, the smaller the particle size of the mother particles, the lower the thermal conductivity and the improved thermoelectric properties. Therefore, it is preferable that the particle size is small, but as described above. This is because, in order to attach child particles or grandchild particles having a smaller particle size around the mother particles, a certain size is required in view of the particle production limit. Therefore, the particle size of the child particles may be about 1 to 10 μm and at least smaller than the mother particles, and the particle size of the grandchild particles may be 1 μm or less and smaller than the child particles.

【0008】また、マイクロカプセル粉末及び複合マイ
クロカプセル粉末の製造方法としては特に新たな方法を
用いる必要はなく、静電付着法、機械的衝撃法等の従来
から周知のマイクロカプセル化法を用いることができ
る。また、これら母粒子、子粒子、孫粒子を得る方法と
してはインゴット状の金属体をバンバリミキサ等の機械
的方法で得ることもできるが、希望のサイズの粉末を容
易にできる点でガスアトマイズ法が優れている。また、
焼結はホットプレス法、冷間プレス法等の一般的な方法
でも製造可能であるが、短時間に作るにはプラズマ焼結
法が最も優れている。すなわち、プラズマ焼結によれば
プラズマ放電により、粉体の表面が活性化させられ、低
温度、短時間で焼結が完了するため、結晶粒の成長を抑
制でき、粒界による熱伝導を低下させられるので、熱電
特性も向上するからである。
Further, it is not necessary to use a new method as a method for producing the microcapsule powder and the composite microcapsule powder, and a conventionally well-known microencapsulation method such as an electrostatic adhesion method or a mechanical impact method is used. You can Further, as a method for obtaining these mother particles, child particles, and grandchild particles, an ingot-shaped metal body can be obtained by a mechanical method such as a Banbury mixer, but the gas atomizing method is excellent in that powder of a desired size can be easily obtained. ing. Also,
Sintering can be performed by a general method such as a hot pressing method or a cold pressing method, but the plasma sintering method is the most excellent for producing in a short time. That is, according to the plasma sintering, the surface of the powder is activated by the plasma discharge, and the sintering is completed at a low temperature in a short time, so that the growth of crystal grains can be suppressed and the heat conduction due to the grain boundaries is reduced. This is because the thermoelectric properties are also improved.

【0009】CuOを添加する理由としては強度及び高
温における材料の信頼性向上のためである。そして、そ
の添加量は全体の2〜20wt%の範囲が望ましい。2
wt%以下では強度及び高温における材料の信頼性向上
がみられず、また、20wt%を越えると熱電素子とし
ての特性が著しく低下してしまうからである。
The reason for adding CuO is to improve the strength and reliability of the material at high temperatures. And, the addition amount is preferably in the range of 2 to 20 wt% of the whole. Two
If it is less than wt%, the strength and the reliability of the material at high temperature are not improved, and if it exceeds 20 wt%, the characteristics as a thermoelectric element are remarkably deteriorated.

【0010】[0010]

【作用】第一の発明は上述したように、SiGeをFe
Si2 でカプセル化することにより、耐蝕耐熱性を有す
るFeSi2 がSiGeをコーティングするように介在
することになり、SiGeの昇華が防止され、しかも、
SiGeが高い変換効率を発揮することになる。また、
焼結に際して、カプセル化が完全なものであれば、常に
SiGeの母粒子間にFeSi2 の子粒子が介在してS
iGe同志が結合することができなくなることが憂慮さ
れるが、完全なカプセル粉末を得ることは不可能であ
り、SiGeがFeSi2 にコートされていない部分が
わずかながら必ず存在するため、FeSi2 より抵抗の
低いSiGeに優先的に電流が流れて点接触的にSiG
eが繋がることになり、良好な焼結体が得られる。
In the first aspect of the invention, as described above, SiGe is replaced with Fe.
By encapsulating with Si 2 , FeSi 2 having corrosion resistance and heat resistance intervenes so as to coat SiGe, and sublimation of SiGe is prevented.
SiGe will exhibit high conversion efficiency. Also,
When sintering, if the encapsulation is perfect, FeSi 2 child particles are always present between SiGe mother particles and S
It is concerned that iGe each other is no longer able to bind, it is impossible to obtain a complete capsule powders, since a portion where SiGe is not coated on FeSi 2 always exists slightly, from FeSi 2 Electric current preferentially flows in SiGe having low resistance, and SiG is formed in a point contact manner.
Therefore, a good sintered body can be obtained.

【0011】また、第二の発明では子粒子をさらにCu
Oからなる孫粒子でカプセル化したため、CuOが焼結
体内に均一に介在することによって焼結体の機械的強度
が向上することになる。すなわち、母粒子となるSiG
eは親銅性を有しているため、このCuOが焼結の際に
溶融し、母粒子同志の接着剤の働きをなすからである。
また、CuOによるカプセル化は強度向上以外にFeS
2 の復元性を発生することになる。これを詳述する
と、FeSi2 は980℃以下においては熱電特性を示
す結晶構造であるβ相(半導体相)だが、それ以上の温
度になると熱電特性を示さない結晶構造であるα相(金
属相)になり、機能を発揮しなくなるが、CuO(C
u,CuO2 でも可)を微量(約2wt%)添加するこ
とによって、980℃以上でα相に転移した後でも、8
30℃まで降温させると再びβ相に戻り、特性を回復す
るようになる。これに比較してCuOを添加しない焼結
体は980℃以上で一端α相に転移したならば、その後
降温させてもβ相に戻らないため、使用することができ
ない。従って、従来のCuOを添加しない焼結体の場
合、理論的には980℃まで使用することが可能である
が、一端それ以上の温度になってしまうと使用不可とな
ってしまうことから、現実的な使用限界温度は約800
℃程度に設定されているが、本発明ではCuOを添加さ
せることによって、980℃以上となってしまっても8
30℃まで降温させると再びβ相に戻ってその特性を発
揮するため、使用限界温度は最上限の980℃に設定す
ることができる。
In the second invention, the child particles are further made of Cu.
Since the particles are encapsulated with the O-based grandchild particles, CuO is uniformly present in the sintered body, so that the mechanical strength of the sintered body is improved. That is, SiG as a mother particle
Since e has copper affinity, this CuO melts at the time of sintering and acts as an adhesive for the mother particles.
Also, encapsulation with CuO is not only for improving the strength, but FeS.
i 2 will be restored. To explain this in detail, FeSi 2 has a β phase (semiconductor phase) that has a thermoelectric property at 980 ° C. or lower, but an α phase (metal phase that does not have a thermoelectric property at higher temperatures). ), And the function is not exhibited, but CuO (C
By adding a small amount (about 2 wt%) of u or CuO 2 ), even after the transition to the α phase at 980 ° C. or higher, 8
When the temperature is lowered to 30 ° C., the β phase is restored and the characteristics are restored. On the other hand, the sintered body to which CuO is not added cannot be used because once it is transformed into α phase at 980 ° C. or higher, it is not returned to β phase even if the temperature is lowered thereafter. Therefore, in the case of the conventional sintered body to which CuO is not added, it is theoretically possible to use up to 980 ° C., but once it becomes higher than that, it becomes unusable. Limit temperature is about 800
The temperature is set to about ℃, but in the present invention, by adding CuO, even if it becomes 980 ℃ or higher, 8
When the temperature is lowered to 30 ° C., it returns to the β phase again and exhibits its characteristics. Therefore, the use limit temperature can be set to the upper limit of 980 ° C.

【0012】[0012]

【実施例】以下、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0013】(実施例1)図4に示すようなガスアトマ
イズ装置を用いて、図1に示すように、粒径が20〜3
0μm程度のSiGeからなる母粒子1と、粒径が2〜
3μm程度のFeSi2 からなる子粒子2を形成し、こ
れを母粒子1の周囲に付着させてマイクロカプセル粉末
3を形成し、その後、これを所定形状に集合させてプラ
ズマ焼結してSiGeとFeSi2 からなる熱電素子材
料となる焼結体を得た。そして、この焼結体を任意の部
分で切断し、その切断面を顕微鏡で観察した結果、図2
に示すように、母粒子1同志が点接触状態に繋がると共
に、その周囲及び隙間に子粒子2が均一に介在している
のが確認された。また、この焼結体を熱処理して熱電素
子を形成し、この特性を調べた結果、SiGeのみから
なる熱電素子に近い変換特性を発揮し、また、高温時の
昇華は殆ど見られなかった。
(Embodiment 1) Using a gas atomizing apparatus as shown in FIG. 4, a particle size of 20 to 3 is obtained as shown in FIG.
A mother particle 1 made of SiGe having a diameter of about 0 μm and a particle size of 2 to
The child particles 2 of about 3 μm made of FeSi 2 are formed and adhered to the periphery of the mother particles 1 to form the microcapsule powder 3. After that, the microcapsule powder 3 is collected into a predetermined shape and plasma-sintered to form SiGe A sintered body, which is a thermoelectric element material made of FeSi 2 , was obtained. Then, the sintered body was cut at an arbitrary portion, and the cut surface was observed with a microscope.
It was confirmed that the mother particles 1 were connected to each other in a point contact state, and the child particles 2 were uniformly present around and around the mother particles 1 as shown in FIG. Further, the sintered body was heat-treated to form a thermoelectric element, and its characteristics were examined. As a result, conversion characteristics similar to those of a thermoelectric element made of only SiGe were exhibited, and sublimation at high temperature was hardly observed.

【0014】(実施例2)実施例1と同様にガスアトマ
イズ装置を用いて、図4に示すように、さらに粒径が
0.1〜0.5μm程度のCuOからなる孫粒子4を形
成し、この孫粒子5を全体の2wt%の割合で、上記カ
プセル粉末3の周囲に付着させて複合マイクロカプセル
粉末6を形成し、実施例1と同様に焼結体を得た。そし
て、この焼結体の強度を調べた結果、実施例1と比較し
た強度が約22%向上することが確認された。
(Example 2) Using the gas atomizing apparatus in the same manner as in Example 1, as shown in FIG. 4, grandchild particles 4 made of CuO having a particle size of about 0.1 to 0.5 μm are further formed. The grandchild particles 5 were attached to the periphery of the capsule powder 3 at a ratio of 2 wt% of the whole to form a composite microcapsule powder 6, and a sintered body was obtained in the same manner as in Example 1. As a result of examining the strength of this sintered body, it was confirmed that the strength compared with Example 1 was improved by about 22%.

【0015】また、この焼結体から熱電素子を形成し、
その熱影響による発生起電力を調べた結果、CuOを添
加した本実施例の熱電素子では図5(A)に示すよう
に、温度の上昇と共に起電力が上昇し、980℃を越え
ると急激に低下してその特性を失ってしまうが、降温す
ると830℃において再び特性を回復することが確認さ
れた。これに対し、CuOを添加しない実施例1の焼結
体から得られた熱電素子は図5(B)に示すように、一
端980℃を越えると、その後降温しても特性を回復す
ることはなかった。
A thermoelectric element is formed from this sintered body,
As a result of investigating the electromotive force generated by the heat effect, as shown in FIG. 5 (A), the electromotive force of the thermoelectric element containing CuO increased with the temperature rise, and suddenly exceeded 980 ° C. It was confirmed that although the characteristics were lowered and the characteristics were lost, the characteristics were recovered again at 830 ° C. when the temperature was lowered. On the other hand, as shown in FIG. 5B, when the thermoelectric element obtained from the sintered body of Example 1 to which CuO was not added, once the temperature exceeded 980 ° C., the characteristics were not recovered even after the temperature was lowered. There wasn't.

【0016】[0016]

【発明の効果】以上要するに本発明によれば、SiG
eをFeSi2 でカプセル化することにより、耐蝕耐熱
性と高い変換効率を発揮することができる。また、こ
れにCuOを添加することにより強度が向上すると共
に、また、高温における材料の信頼性が向上するため、
変換効率の向上にもつながる等といった優れた効果を発
揮する。
In summary, according to the present invention, SiG
By encapsulating e with FeSi 2 , corrosion resistance and high conversion efficiency can be exhibited. Further, addition of CuO to this improves the strength and also improves the reliability of the material at high temperatures.
It has excellent effects such as improvement of conversion efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】マイクロカプセル粉体の一実施例を示す拡大断
面図である。
FIG. 1 is an enlarged sectional view showing an example of microcapsule powder.

【図2】マイクロカプセル粉体からなる焼結体の部分拡
大断面図である。
FIG. 2 is a partially enlarged sectional view of a sintered body made of microcapsule powder.

【図3】複合マイクロカプセル粉体及びそのA部の拡大
断面図である。
FIG. 3 is an enlarged cross-sectional view of a composite microcapsule powder and part A thereof.

【図4】ガスアトマイズ装置の一実施例を示す概略図で
ある。
FIG. 4 is a schematic view showing an embodiment of a gas atomizing apparatus.

【図5】CuOを添加した場合(A)とCuOを添加し
ない場合(B)の熱電素子特性を示すグラフ図である。
FIG. 5 is a graph showing the thermoelectric element characteristics when CuO is added (A) and when CuO is not added (B).

【符号の説明】[Explanation of symbols]

1 母粒子(SiGe) 2 子粒子(FeSi2 ) 3 マイクロカプセル粉末 4 孫粒子(CuO) 5 複合マイクロカプセル粉末1 mother particle (SiGe) 2 child particle (FeSi 2 ) 3 microcapsule powder 4 grandchild particle (CuO) 5 composite microcapsule powder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥村 英二 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiji Okumura 8 Isabi, Fujisawa, Kanagawa Prefecture, Isuzu Central Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 SiGeからなる母粒子の周囲に、Fe
Si2 からなる子粒子を付着させてマイクロカプセル粉
末を形成し、該マイクロカプセル粉末を所定形状に集合
させた後、焼結してなることを特徴とする熱発電素子材
料の製造方法。
1. Fe is formed around a mother particle made of SiGe.
A method for producing a thermoelectric power generation element material, characterized in that microcapsule powder is formed by adhering child particles made of Si 2 , and the microcapsule powder is collected into a predetermined shape and then sintered.
【請求項2】 上記マイクロカプセル粉末の周囲に、さ
らにCuOからなる孫粒子を付着させて複合マイクロカ
プセル粉末を形成し、該複合マイクロカプセル粉末を所
定形状に集合させた後、焼結してなることを特徴とする
請求項1記載の熱発電素子材料の製造方法。
2. A composite microcapsule powder is formed by further adhering grandchild particles made of CuO around the microcapsule powder, and the composite microcapsule powder is assembled into a predetermined shape and then sintered. The method for producing a thermoelectric generator element material according to claim 1, wherein
JP5050772A 1993-03-11 1993-03-11 Manufacture of thermoelectric element material Pending JPH06268263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5050772A JPH06268263A (en) 1993-03-11 1993-03-11 Manufacture of thermoelectric element material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5050772A JPH06268263A (en) 1993-03-11 1993-03-11 Manufacture of thermoelectric element material

Publications (1)

Publication Number Publication Date
JPH06268263A true JPH06268263A (en) 1994-09-22

Family

ID=12868129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5050772A Pending JPH06268263A (en) 1993-03-11 1993-03-11 Manufacture of thermoelectric element material

Country Status (1)

Country Link
JP (1) JPH06268263A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478391B1 (en) * 1999-06-25 2005-03-23 마츠시다 덴코 가부시키가이샤 Method of producing sintered body of material for thermoelectric element
JP2010225719A (en) * 2009-03-23 2010-10-07 Ishikawa Prefecture Thermoelectric conversion element, thermoelectric conversion module, and manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478391B1 (en) * 1999-06-25 2005-03-23 마츠시다 덴코 가부시키가이샤 Method of producing sintered body of material for thermoelectric element
JP2010225719A (en) * 2009-03-23 2010-10-07 Ishikawa Prefecture Thermoelectric conversion element, thermoelectric conversion module, and manufacturing method

Similar Documents

Publication Publication Date Title
KR20110052225A (en) Nanocomposite thermoelectric material, and thermoelectric device and thermoelectric module comprising same
US5763293A (en) Process of fabricating a thermoelectric module formed of V-VI group compound semiconductor including the steps of rapid cooling and hot pressing
JP2018516457A (en) Thermoelectric material, thermoelectric element and thermoelectric module including the same
JP4285665B2 (en) Thermoelectric conversion element
Birkholz et al. Polycrystalline iron disilicide as a thermoelectric generator material
JP2010118632A (en) Thermoelectric material for lower and medium temperature
JP7310871B2 (en) Thermoelectric conversion material, thermoelectric conversion element, and method for producing thermoelectric conversion material
US20140174492A1 (en) Thermoelectric material and method for manufacturing the same
JPH06268263A (en) Manufacture of thermoelectric element material
KR20170067457A (en) Bi-Sb-Te based thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
US5981863A (en) Process of manufacturing thermoelectric refrigerator alloy having large figure of merit
JPH06144825A (en) Production of thermoelectric element
JP3185429B2 (en) Manufacturing method of thermoelectric generator
JP2510158B2 (en) Thermoelectric element and manufacturing method thereof
JPH08186294A (en) Thermoelectric material
JP3404804B2 (en) Manufacturing method of thermoelectric material
JP2005183528A (en) Thermoelectric conversion element and its manufacturing method
JPH0645661A (en) Manufacture of thermal electric generation material
KR102336650B1 (en) Composite thermoelectric material and method for preparing the same
KR102670992B1 (en) Themoelectric material and manufacturing method thereof
JPH11103098A (en) Thermoelectric conversion material
KR102632573B1 (en) Metal paste for manufacturing thermoelectric module and thermoelectric module manufactured using the same
JPH0936437A (en) Production of thermoelectric conversion module
KR102241257B1 (en) A thermoelectric material and process for preparing the same
JPH06204571A (en) Manufacture of composite thermoelectric material