JPH0936437A - Production of thermoelectric conversion module - Google Patents

Production of thermoelectric conversion module

Info

Publication number
JPH0936437A
JPH0936437A JP7178310A JP17831095A JPH0936437A JP H0936437 A JPH0936437 A JP H0936437A JP 7178310 A JP7178310 A JP 7178310A JP 17831095 A JP17831095 A JP 17831095A JP H0936437 A JPH0936437 A JP H0936437A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
electrode
conversion module
metal particles
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7178310A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Yoda
浩好 余田
Noboru Hashimoto
登 橋本
Takusane Ueda
卓実 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7178310A priority Critical patent/JPH0936437A/en
Publication of JPH0936437A publication Critical patent/JPH0936437A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method for producing a thermoelectric conversion module employing a high strength thermoelectric conversion element excellent in thermoelectric conversion performance. SOLUTION: In the method for producing a thermoelectric conversion module comprising a thermoelectric conversion element obtained by firing a thermoelectric conversion material containing more than one kind of element selected from a group of Bi, Te, Se and Sb and electrodes, metal particles having mean particle size in the range of 10-200μm are bonded to the surface of electrode by fusing a part of metal particle to the electrode through heat treatment at a temperature lower than the melting point of metal particle. More specifically, powder of thermoelectric conversion material having mean particle size smaller than that of metal particle is formed on the electrode having enhanced surface roughness and then it is fired.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ペルチエ効果を利
用した熱電変換モジュールの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion module manufacturing method utilizing the Peltier effect.

【0002】[0002]

【従来の技術】ペルチエ効果を利用した熱電変換モジュ
ールは、熱電変換素子であるP型半導体素子とN型半導
体素子とを交互に2枚の絶縁層の間に並べて電気的に直
列に接続したペルチエ素子群に直流電圧を印加すること
によって、絶縁層の表面に発熱又は吸熱を生じさせるも
のであり、熱電発電及び熱電冷却における種々の分野に
おいて幅広く利用されている。
2. Description of the Related Art A thermoelectric conversion module utilizing the Peltier effect is a Peltier device in which P-type semiconductor elements and N-type semiconductor elements which are thermoelectric conversion elements are alternately arranged between two insulating layers and electrically connected in series. By applying a DC voltage to the element group, heat or heat is generated on the surface of the insulating layer, and it is widely used in various fields in thermoelectric power generation and thermoelectric cooling.

【0003】この熱電変換素子を製造する方法としては
一般に、特開平1−202343号公報に開示されてい
るように、原料粉末を溶解させた後ゾーンメルト法によ
り単結晶に近い棒状インゴットを成長させる単結晶法
や、特開平1−106478号公報に開示されているよ
うに、原料粉末を焼成時に高圧を必要とするHIP法
や、ホットプレスによりインゴットを作製するホットプ
レス法(HP法)を用いて、バルク状の熱電変換材料イ
ンゴットを作製し、これを用途に応じて切断し、小さな
熱電変換素子とし、絶縁基板状にP型半導体素子とN型
半導体素子とを交互にハンダを用いて直列に接続させ
て、熱電変換モジュールを作製していた。
As a method of manufacturing this thermoelectric conversion element, generally, as disclosed in JP-A-1-202343, a rod-shaped ingot which is close to a single crystal is grown by melting a raw material powder and then by a zone melting method. A single crystal method, a HIP method that requires a high pressure when firing a raw material powder, or a hot pressing method (HP method) that produces an ingot by hot pressing, as disclosed in JP-A-1-106478. Then, a bulk thermoelectric conversion material ingot is produced, cut into small thermoelectric conversion elements according to the application, and a P-type semiconductor element and an N-type semiconductor element are alternately arranged in series on the insulating substrate using solder. To produce a thermoelectric conversion module.

【0004】したがって、前述のような製造方法では、
熱電変換素子を得るために、高価な焼成装置を必要とし
たり、用途に応じた熱電変換素子切断工程で、切りしろ
による材料ロスが多く、1mm平方の熱電変換素子を作
製するためには約50%以上の材料ロスが発生してい
た。また、材料が脆いため切断時に割れやチッピング等
の問題が生じ、熱電変換素子の歩留りが悪いという問題
が生じていた。しかも、最近の熱電変換モジュールの小
型化に伴い、熱電変換素子も薄型化及び小型化されてい
く傾向にあり、切断工程を伴う熱電変換素子の製造方法
では、割れやチッピング等の問題に対して十分対応でき
る段階に至っていなかった。さらに、自動化や省力化が
不可能な多くの作業工程を必要としていた。また、前記
のような焼成操作を行わない場合、緻密化を達成するこ
とは非常に難しく、そのために熱電変換素子の強度が非
常に低くなり、信頼性も損なわれるのが現状であった。
Therefore, in the manufacturing method as described above,
In order to obtain a thermoelectric conversion element, an expensive firing device is required, and in the thermoelectric conversion element cutting step depending on the application, there is a lot of material loss due to a cutting margin, and it is necessary to produce about 1 mm square thermoelectric conversion element. % Or more material loss has occurred. In addition, since the material is brittle, problems such as cracking and chipping occur during cutting, and the yield of thermoelectric conversion elements is poor. Moreover, with the recent miniaturization of thermoelectric conversion modules, thermoelectric conversion elements tend to be thinned and downsized, and in a method of manufacturing a thermoelectric conversion element that involves a cutting step, problems such as cracking and chipping are solved. We have not reached the stage where we can fully respond. Furthermore, many work processes that cannot be automated or labor-saving were required. Further, it is very difficult to achieve the densification when the above-mentioned firing operation is not carried out, so that the strength of the thermoelectric conversion element becomes very low, and the reliability is impaired.

【0005】以上のことが、熱電変換モジュール製造コ
ストを押し上げ、高強度な熱電変換モジュールを得るこ
とが非常に難しいという大きな要因となっていた。ま
た、石英ガラス等を添加して焼成する方法が、特開昭3
9−10374号公報に開示されているが、十分な特性
は得られていない。常圧で焼成することによって熱電変
換モジュール製造コストを下げるといった検討も試みら
れているが、未だ十分な結果が得られていない。そこ
で、特別な焼成操作を伴わず、高強度で、熱電変換性能
に優れた熱電変換モジュールが得られる熱電変換モジュ
ールの製造方法の開発が望まれている。
The above is a major factor in increasing the manufacturing cost of the thermoelectric conversion module and making it very difficult to obtain a high-strength thermoelectric conversion module. Further, a method of adding quartz glass or the like and firing is disclosed in JP-A-3
Although disclosed in JP-A-9-10374, sufficient characteristics have not been obtained. Attempts have been made to reduce the manufacturing cost of thermoelectric conversion modules by firing at atmospheric pressure, but sufficient results have not yet been obtained. Therefore, it has been desired to develop a method for manufacturing a thermoelectric conversion module that can obtain a thermoelectric conversion module having high strength and excellent thermoelectric conversion performance without a special firing operation.

【0006】[0006]

【発明が解決しようとする課題】本発明は前記の事実に
鑑みてなされたもので、その目的とするところは、高強
度で、熱電変換性能に優れた熱電変換素子が得られる熱
電変換モジュールの製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above facts, and an object of the present invention is to provide a thermoelectric conversion module having a high strength and a thermoelectric conversion element excellent in thermoelectric conversion performance. It is to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1に係る
熱電変換モジュールの製造方法は、Bi、Te、Se及
びSb元素からなる群より選択される少なくとも2種類
の元素を含有した熱電変換材料を焼成した熱電変換素子
と電極とを備えた熱電変換モジュールの製造方法におい
て、前記電極の表面に平均粒径10〜200μmの金属
粒子を、この金属粒子の融点より低い温度で熱処理を行
い、金属粒子の一部と電極とを融着させて接合させるこ
とにより、表面粗度を高めた電極上に、前記金属粒子の
平均粒径より小さい平均粒径の前記熱電変換材料の粉末
を用いて成形し、焼成することを特徴とする。
The method of manufacturing a thermoelectric conversion module according to claim 1 of the present invention is a thermoelectric conversion containing at least two elements selected from the group consisting of Bi, Te, Se and Sb elements. In a method for producing a thermoelectric conversion module including a thermoelectric conversion element and an electrode, which are obtained by firing a material, metal particles having an average particle size of 10 to 200 μm are heat-treated at a temperature lower than the melting point of the metal particles on the surface of the electrode, By fusing and bonding a part of the metal particles and the electrode, on the electrode having an increased surface roughness, using a powder of the thermoelectric conversion material having an average particle size smaller than the average particle size of the metal particles. It is characterized by being molded and fired.

【0008】本発明の請求項2に係る熱電変換モジュー
ルの製造方法は、前記金属粒子の平均粒径が20〜15
0μmであることを特徴とする。
In the method of manufacturing a thermoelectric conversion module according to claim 2 of the present invention, the average particle size of the metal particles is 20 to 15.
0 μm.

【0009】本発明の請求項3に係る熱電変換モジュー
ルの製造方法は、前記熱電変換材料の粉末の平均粒径が
5〜100μmであることを特徴とする。
The method for manufacturing a thermoelectric conversion module according to a third aspect of the present invention is characterized in that the powder of the thermoelectric conversion material has an average particle size of 5 to 100 μm.

【0010】本発明の請求項4に係る熱電変換モジュー
ルの製造方法は、前記金属粒子がCu、Ni及びAl元
素からなる群より選択される少なくとも1種類であるこ
とを特徴とする。
A method of manufacturing a thermoelectric conversion module according to a fourth aspect of the present invention is characterized in that the metal particles are at least one selected from the group consisting of Cu, Ni and Al elements.

【0011】本発明の請求項5に係る熱電変換モジュー
ルの製造方法は、前記金属粒子を電極表面に接合させる
雰囲気が、減圧雰囲気、不活性雰囲気又は水素を含む還
元雰囲気であることを特徴とする。
The method for manufacturing a thermoelectric conversion module according to a fifth aspect of the present invention is characterized in that the atmosphere for bonding the metal particles to the electrode surface is a reduced pressure atmosphere, an inert atmosphere or a reducing atmosphere containing hydrogen. .

【0012】本発明の請求項6に係る熱電変換モジュー
ルの製造方法は、前記金属粒子を電極表面に接合させる
方法が、金属粒子の溶射であることを特徴とする。
The method for manufacturing a thermoelectric conversion module according to claim 6 of the present invention is characterized in that the method for bonding the metal particles to the electrode surface is thermal spraying of the metal particles.

【0013】本発明の請求項7に係る熱電変換モジュー
ルの製造方法は、前記熱電変換材料の粉末を用いて電極
上に成形する前に、前記表面粗度を高めた電極の表面
に、Ni、Al、W及びMo元素からなる群より選択さ
れる少なくとも1種類を被覆することを特徴とする。
In a method for manufacturing a thermoelectric conversion module according to a seventh aspect of the present invention, before forming the electrode using the powder of the thermoelectric conversion material, Ni, Ni, It is characterized by coating at least one kind selected from the group consisting of Al, W and Mo elements.

【0014】[0014]

【発明の実施の形態】以下、本発明を詳述する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.

【0015】本発明に係る熱電変換モジュールを構成す
る熱電変換素子は、P型半導体素子とN型半導体素子と
を交互に2枚の絶縁層の間に並べて銅電極等の電極によ
り電気的に直列に接続したペルチエ素子群に直流電圧を
印加することによって、いわゆるペルチエ効果で一方の
絶縁層が発熱されるとともに、他方の絶縁層が吸熱され
る熱電変換モジュールに用いられるP型半導体素子又は
N型半導体素子である。
In the thermoelectric conversion element constituting the thermoelectric conversion module according to the present invention, P-type semiconductor elements and N-type semiconductor elements are alternately arranged between two insulating layers and electrically connected in series by electrodes such as copper electrodes. A P-type semiconductor element or N-type used in a thermoelectric conversion module in which one insulating layer is heated by the so-called Peltier effect and the other insulating layer is absorbed by applying a DC voltage to the Peltier element group connected to the It is a semiconductor device.

【0016】本発明に係る熱電変換素子の構成元素とし
ては、少なくとも、ビスマス(Bi)、テルル(T
e)、セレン(Se)又はアンチモン(Sb)元素のう
ち、2種類以上の元素が必要である。これらの構成元素
を含んだ原料に、N型半導体又はP型半導体の熱電変換
素子になるように微量のドーパントを加え、十分に混合
及び/又は必要に応じて溶融した後、粉砕して熱電変換
材料の粉末を得る。熱電変換材料としては、例えば、B
i−Te合金、Bi−Sb合金、Bi−Te−Sb合
金、Bi−Te−Se合金又はBi−Te−Sb−Se
合金等を用いることができるが、上記組み合わせに限定
されるものではない。
The constituent elements of the thermoelectric conversion element according to the present invention are at least bismuth (Bi) and tellurium (T).
e), selenium (Se) or antimony (Sb) element, two or more kinds of elements are required. A small amount of a dopant is added to a raw material containing these constituent elements so as to be a thermoelectric conversion element of an N-type semiconductor or a P-type semiconductor, sufficiently mixed and / or melted if necessary, and then pulverized for thermoelectric conversion. Obtain a powder of material. As the thermoelectric conversion material, for example, B
i-Te alloy, Bi-Sb alloy, Bi-Te-Sb alloy, Bi-Te-Se alloy or Bi-Te-Sb-Se
An alloy or the like can be used, but the combination is not limited to the above.

【0017】本発明に係る熱電変換モジュールは、前記
電極の表面に平均粒径10〜200μmの金属粒子を接
合させることにより表面粗度を高めることが必要であ
る。すなわち、金属粒子の平均粒径が10μm未満の場
合には、熱電変換材料の粉末との間でアンカー効果を発
揮できず、200μmを越える場合には、熱電変換素子
の成形性が悪くなってしまう。この表面粗度を高めた電
極上に、前記金属粒子の平均粒径より小さい平均粒径の
前記熱電変換材料の粉末を用いて成形し、焼成すること
が必要である。
In the thermoelectric conversion module according to the present invention, it is necessary to increase the surface roughness by bonding metal particles having an average particle size of 10 to 200 μm to the surface of the electrode. That is, when the average particle size of the metal particles is less than 10 μm, the anchor effect cannot be exhibited with the powder of the thermoelectric conversion material, and when it exceeds 200 μm, the formability of the thermoelectric conversion element is deteriorated. . It is necessary to form and fire on the electrode having the increased surface roughness, using the powder of the thermoelectric conversion material having an average particle size smaller than the average particle size of the metal particles.

【0018】前記金属粒子の平均粒径は、20〜150
μmであることが、より好ましく、前記熱電変換材料の
粉末の平均粒径は、5〜100μmであることが好まし
い。ここで、粒径100μm以上の熱電変換材料の粉末
に100μm以下の微粉末を配合してもなんら差し支え
ない。前記金属粒子は、銅(Cu)、ニッケル(Ni)
及びアルミニウム(Al)元素からなる群より選択され
る少なくとも1種類であることが好ましく、この中で
も、Cuが、その高電気伝導度、高熱伝導度、低価格、
取扱い容易性の点で、最も適している。前記電極とし
て、例えば、Cu板を用いて、次に示す2つの方法で、
表面を粗化する。
The average particle size of the metal particles is 20 to 150.
More preferably, the average particle diameter of the powder of the thermoelectric conversion material is 5 to 100 μm. Here, fine powder of 100 μm or less may be blended with powder of the thermoelectric conversion material having a particle size of 100 μm or more. The metal particles are copper (Cu), nickel (Ni)
And at least one selected from the group consisting of aluminum (Al) element, and among them, Cu has high electrical conductivity, high thermal conductivity, low price,
Most suitable in terms of ease of handling. As the electrode, for example, using a Cu plate, the following two methods,
Roughen the surface.

【0019】(1)融着法 Cu電極表面に塊にならないようにCu粉末を散布す
る。均一に散布することができれば、その方法は特に指
定されない。例えば、溶剤中に分散させたCu粒子を、
刷毛によりCu板表面に塗布してもよい。さらにCu粒
子をメッシュのようなものを用いて、Cu板状に均一に
散布してもよい。塗布量が少な過ぎると、熱電変換素子
とのアンカー効果が小さく、多過ぎると、電極と熱電変
換素子との間に空間が生じてしまうため、好ましくな
い。ここで、Cu粒子が単分散に近い状態でCu板上を
覆っている状態が好ましい。すなわち、Cu粒子の厚み
は20〜150μm程度が好ましい。前記金属粒子を電
極表面に接合させる方法が、Cu電極上に金属粒子を配
置した後、Cuの融点より低い温度で熱処理を行い、金
属粒子の一部と電極とを融着させることが好ましい。前
記金属粒子を電極表面に接合させる雰囲気が、減圧雰囲
気、不活性雰囲気又は水素を含む還元雰囲気であること
が好ましい。例えば、4〜10torrの減圧下で、1
000℃、20分間熱処理をして、Cu粒子がCu板表
面に融着したCu電極を得る。Cu粒子に代えて、Ni
粒子、Al粒子等も用いることができる。
(1) Fusion method Cu powder is sprinkled on the surface of the Cu electrode so as not to form lumps. The method is not particularly specified as long as it can be applied uniformly. For example, Cu particles dispersed in a solvent,
It may be applied to the surface of the Cu plate with a brush. Further, Cu particles may be uniformly dispersed in a Cu plate shape by using a mesh-like material. If the coating amount is too small, the anchor effect with the thermoelectric conversion element is small, and if it is too large, a space is generated between the electrode and the thermoelectric conversion element, which is not preferable. Here, it is preferable that the Cu particles cover the Cu plate in a nearly monodispersed state. That is, the thickness of the Cu particles is preferably about 20 to 150 μm. In the method of bonding the metal particles to the electrode surface, it is preferable that after the metal particles are arranged on the Cu electrode, heat treatment is performed at a temperature lower than the melting point of Cu to fuse a part of the metal particles and the electrode. The atmosphere for bonding the metal particles to the electrode surface is preferably a reduced pressure atmosphere, an inert atmosphere or a reducing atmosphere containing hydrogen. For example, under reduced pressure of 4 to 10 torr, 1
Heat treatment is performed at 000 ° C. for 20 minutes to obtain a Cu electrode in which Cu particles are fused on the surface of the Cu plate. Ni instead of Cu particles
Particles, Al particles and the like can also be used.

【0020】(2)溶射法 前記金属粒子を電極表面に接合させる方法が、金属粒子
の溶射であることが好ましい。例えば、平均粒径50μ
mのCu粉末を、必要に応じ、洗浄し、十分に乾燥した
Cu板表面に熱溶射した後、還元雰囲気又は減圧下で、
500〜900℃で、熱処理を行う。
(2) Thermal Spraying Method The method of joining the metal particles to the electrode surface is preferably thermal spraying of metal particles. For example, average particle size 50μ
m Cu powder, if necessary, washed and thermally sprayed on a sufficiently dried Cu plate surface, then under a reducing atmosphere or under reduced pressure,
Heat treatment is performed at 500 to 900 ° C.

【0021】前記熱電変換材料の粉末を用いて電極上に
成形する前に、前記表面粗度を高めた電極の表面に、N
i、Al、W及びMo元素からなる群より選択される少
なくとも1種類を被覆することが好ましい。すなわち、
例えば、熱電変換素子と接合するCu電極の面を、必要
に応じて通常のスパッタ法によりアルミニウム(A
l)、ニッケル(Ni)、タングステン(W)、モリブ
デン(Mo)等の元素をコーティングする。Al、N
i、W、Mo元素は、Cu及び熱電変換素子元素と反応
し、さらに良好な接合強度を生じる。
Before molding the powder of the thermoelectric conversion material onto the electrode, N is formed on the surface of the electrode having the increased surface roughness.
It is preferable to coat at least one selected from the group consisting of i, Al, W and Mo elements. That is,
For example, the surface of the Cu electrode that is joined to the thermoelectric conversion element may be aluminum (A
l), nickel (Ni), tungsten (W), molybdenum (Mo) and other elements are coated. Al, N
The i, W, and Mo elements react with Cu and the thermoelectric conversion element elements to generate further good bonding strength.

【0022】(成形方法)前記熱電変換材料の粉末を、
得られた表面粗化電極上に、必要とする形状に成形す
る。必要とする形状への仮成形方法は、特に限定されな
い。例えば、金型を用いて、一軸プレス成形による成形
方法等が使用できる。また、アクリル系バインダーや溶
剤等を用い、上記熱電変換材料の粉末をペースト状にし
た後、必要とする形状を、通常のスクリーン印刷方法等
で塗布印刷して、作製してもよい。あるいは、ペースト
状の熱電変換材料をドクターブレード法により、シート
状に成形した後、必要とする形状に加工してもよい。さ
らには、ハイド状の熱電変換材料を通常の押し出し法、
射出成形方法によって成形することも可能である。
(Molding method) The powder of the thermoelectric conversion material is
The surface-roughened electrode thus obtained is molded into a required shape. The method of temporary molding into the required shape is not particularly limited. For example, a molding method such as uniaxial press molding using a mold can be used. Alternatively, the powder of the thermoelectric conversion material may be made into a paste using an acrylic binder, a solvent or the like, and then a desired shape may be applied and printed by a usual screen printing method or the like. Alternatively, the paste thermoelectric conversion material may be formed into a sheet by the doctor blade method and then processed into a required shape. Furthermore, a normal extruding method for a hide-like thermoelectric conversion material,
It is also possible to mold by an injection molding method.

【0023】前記に示した方法で作製した成形体を、必
要に応じバインダーを加熱除去した後、本焼成を行う。
本焼成雰囲気としては、N2 、Ar、N2 +Ar、さら
にはこれらの不活性ガスとH2 ガスとの混合ガスであれ
ば、材料の酸化を抑え、さらには還元作用も得られるた
めに、さらに好ましい。すなわち、熱電変換材料の粉末
表面で化学吸着している不純物酸素を、水素により還元
し、拡散を防ぐことによって、熱電変換素子の熱電特性
が向上する。本焼成温度としては410〜590℃が好
ましい。
The molded body produced by the above-mentioned method is subjected to main firing after the binder is heated and removed if necessary.
As the main firing atmosphere, if N 2 , Ar, N 2 + Ar, or a mixed gas of these inert gas and H 2 gas is used, oxidation of the material can be suppressed, and further, a reducing action can be obtained. More preferable. That is, the impurity oxygen chemically adsorbed on the surface of the powder of the thermoelectric conversion material is reduced by hydrogen to prevent diffusion, so that the thermoelectric characteristics of the thermoelectric conversion element are improved. The main firing temperature is preferably 410 to 590 ° C.

【0024】以上のように、本発明に係る熱電変換モジ
ュールの製造方法によると、高強度で信頼性の高い熱電
変換モジュールが得られる。
As described above, according to the method of manufacturing a thermoelectric conversion module of the present invention, a thermoelectric conversion module having high strength and high reliability can be obtained.

【0025】[0025]

【実施例】以下、本発明を実施例及び比較例によって具
体的に説明する。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples.

【0026】(粉末作製)微量のSbI3 等のドーパン
トを添加した、N型−Bi2 Te2.85Se0.15の組成を
持つ熱電変換材料のインゴットを作製した。このインゴ
ットを、ボールミルを用いて粉砕し、熱電変換材料の粉
末とした。得られた粉末の平均粒径は約15μmであっ
た。
(Powder Preparation) A small amount of a dopant such as SbI 3 was added to prepare an ingot of a thermoelectric conversion material having a composition of N-type —Bi 2 Te 2.85 Se 0.15 . This ingot was crushed using a ball mill to obtain a thermoelectric conversion material powder. The average particle size of the obtained powder was about 15 μm.

【0027】(実施例1)純度99.9重量%、平均粒
径約35μm(250メッシュアンダー)のCu粒子を
アセトン溶媒中に分散させた。このCu粒子を沈降しな
いように撹拌しながら、純度99.9重量%の無酸素C
u板上に噴霧し、乾燥し、Cu粒子を表面に分散させた
Cu板を作製した。このCu板を、4〜10torrの
減圧状態で、Cuの融点(1083℃)より低い温度9
80℃で、20分間熱処理を行うことによって、表面粗
化されたCu電極を得た。表面をSEMにより観察した
結果、Cu粒子の層の厚みは、40μm程度であり、C
u電極表面にCu粒子が単分散層に分散しており、良好
に接合されていることが確認できた。この表面粗化され
たCu電極上に、前記平均粒径が約15μmの熱電変換
材料の粉末を一軸プレス法で、φ10mm×10mmの
大きさに成形した後、静水圧プレスを用いて、2ton
/cm2 で加圧成形して成形体を得た。さらにこの成形
体と電極とをAr雰囲気中450℃で5時間焼成するこ
とにより、電極接合された熱電変換モジュールを得た。
焼成後の熱電変換素子と電極との密着強度は、JIS
H8504の密着性試験方法に準じて測定し、その結果
を表1に示した。
Example 1 Cu particles having a purity of 99.9% by weight and an average particle size of about 35 μm (250 mesh under) were dispersed in an acetone solvent. While stirring the Cu particles so as not to settle, oxygen-free C having a purity of 99.9% by weight
A u plate was sprayed and dried to prepare a Cu plate in which Cu particles were dispersed on the surface. This Cu plate was heated at a temperature lower than the melting point of Cu (1083 ° C.) under a reduced pressure of 4 to 10 torr.
By heat-treating at 80 ° C. for 20 minutes, a surface-roughened Cu electrode was obtained. As a result of observing the surface by SEM, the thickness of the layer of Cu particles is about 40 μm, and C
It was confirmed that Cu particles were dispersed in the mono-dispersed layer on the surface of the u electrode and that they were well bonded. On the surface-roughened Cu electrode, a powder of the thermoelectric conversion material having an average particle diameter of about 15 μm was formed into a size of φ10 mm × 10 mm by a uniaxial pressing method, and then 2 ton was obtained using a hydrostatic pressing.
/ Cm 2 was pressure-molded to obtain a molded body. Further, the molded body and the electrode were fired in an Ar atmosphere at 450 ° C. for 5 hours to obtain an electrode-bonded thermoelectric conversion module.
The adhesion strength between the thermoelectric conversion element and the electrode after firing is JIS
It measured according to the adhesion test method of H8504, and the result was shown in Table 1.

【0028】(実施例2)実施例1において、使用した
金属粉末をCu粒子に代えて、純度99.9重量%、平
均粒径約40μm(200メッシュアンダー)のNi粒
子(Niの融点は1455℃)を用いた以外は、実施例
1と同様に焼成し、熱電変換モジュールを得て、焼成後
の密着強度を測定し、その結果を表1に示した。
Example 2 In Example 1, the metal powder used was replaced by Cu particles, and Ni particles having a purity of 99.9% by weight and an average particle size of about 40 μm (200 mesh under) (the melting point of Ni was 1455). The same procedure as in Example 1 was carried out to obtain a thermoelectric conversion module, and the adhesion strength after firing was measured. The results are shown in Table 1.

【0029】(実施例3)実施例1において、使用した
金属粉末をCu粒子に代えて、純度99.9重量%、平
均粒径約40μm(200メッシュアンダー)のAl粒
子を用い、焼成温度をAlの融点(660℃)より低い
温度630℃とした以外は、実施例1と同様に焼成し、
熱電変換モジュールを得て、焼成後の密着強度を測定
し、その結果を表1に示した。
(Example 3) The metal powder used in Example 1 was replaced with Cu particles, and Al particles having a purity of 99.9% by weight and an average particle size of about 40 μm (200 mesh under) were used. Firing was performed in the same manner as in Example 1 except that the temperature was 630 ° C. lower than the melting point (660 ° C.) of Al,
A thermoelectric conversion module was obtained and the adhesion strength after firing was measured, and the results are shown in Table 1.

【0030】(実施例4)純度99.99重量%の無酸
素Cu板を塩酸、純水により表面を洗浄後、純度99.
9重量%、平均粒径約35μm(250メッシュアンダ
ー)のCu粒子を、通常のプラズマ溶射装置により溶射
して被覆した。プラズマガスとしては、20リットル/
分のArを使用した。このようにして得られた表面粗化
Cu電極上に実施例1と同様に熱電変換材料の粉末を成
形し、焼成して熱電変換モジュールを得て、焼成後の密
着強度を測定し、その結果を表1に示した。
Example 4 An oxygen-free Cu plate having a purity of 99.99% by weight was washed with hydrochloric acid and pure water to clean the surface, and then the purity was 99.
Cu particles having 9 wt% and an average particle diameter of about 35 μm (250 mesh under) were sprayed and coated by a normal plasma spraying device. As plasma gas, 20 liters /
Minutes of Ar were used. On the surface-roughened Cu electrode thus obtained, a powder of thermoelectric conversion material was molded in the same manner as in Example 1 and fired to obtain a thermoelectric conversion module, and the adhesion strength after firing was measured. Is shown in Table 1.

【0031】(実施例5)実施例4において、使用した
金属粉末をCu粒子に代えて、純度99.9重量%、平
均粒径約40μm(200メッシュアンダー)のNi粒
子を用いた以外は、実施例4と同様に焼成し、熱電変換
モジュールを得て、焼成後の密着強度を測定し、その結
果を表1に示した。
(Example 5) In Example 4, except that the metal powder used was replaced by Cu particles, and Ni particles having a purity of 99.9% by weight and an average particle size of about 40 μm (200 mesh under) were used. Firing was performed in the same manner as in Example 4 to obtain a thermoelectric conversion module, and the adhesion strength after firing was measured. The results are shown in Table 1.

【0032】(実施例6)実施例1において、表面粗化
Cu電極を作製した後、マグネトロンスパッタ法で、1
μmの厚みにAlを蒸着させた他は実施例1と同様に焼
成し、熱電変換モジュールを得て、焼成後の密着強度を
測定し、その結果を表1に示した。
(Example 6) In Example 1, after the surface-roughened Cu electrode was produced, 1 was formed by the magnetron sputtering method.
A thermoelectric conversion module was obtained by firing in the same manner as in Example 1 except that Al was evaporated to a thickness of μm, and the adhesion strength after firing was measured. The results are shown in Table 1.

【0033】(実施例7)実施例6において、Alに代
えて、Wを蒸着させた以外は、実施例6と同様に焼成
し、熱電変換モジュールを得て、焼成後の密着強度を測
定し、その結果を表1に示した。
(Example 7) In Example 6, except that W was vapor-deposited instead of Al, firing was performed in the same manner as in Example 6 to obtain a thermoelectric conversion module, and the adhesion strength after firing was measured. The results are shown in Table 1.

【0034】(実施例8)実施例6において、Alに代
えて、Moを蒸着させた以外は、実施例6と同様に焼成
し、熱電変換モジュールを得て、焼成後の密着強度を測
定し、その結果を表1に示した。
(Example 8) In Example 6, except that Mo was vapor-deposited instead of Al, firing was performed in the same manner as in Example 6 to obtain a thermoelectric conversion module, and the adhesion strength after firing was measured. The results are shown in Table 1.

【0035】以上のような、N型の熱電変換材料に限ら
ず、P型の熱電変換材料についても略同様の結果を得
た。
Not only the N-type thermoelectric conversion material as described above, but also the P-type thermoelectric conversion material, the substantially similar results were obtained.

【0036】(比較例1)実施例1において、表面粗化
されたCu電極に代えて、表面粗化していないCu電極
を用いた以外は、実施例1と同様に焼成し、熱電変換モ
ジュールを得た。得られた熱電変換素子と電極とは十分
な密着強度を有しておらず、容易に剥がれた。
(Comparative Example 1) The thermoelectric conversion module was fired in the same manner as in Example 1 except that the surface-roughened Cu electrode was replaced with a non-surface-roughened Cu electrode. Obtained. The obtained thermoelectric conversion element and the electrode did not have sufficient adhesion strength and were easily peeled off.

【0037】(比較例2)実施例1において、Cu粒子
を表面に分散させたCu板をCuの融点(1083℃)
以上の温度である1100℃で熱処理を行うことによっ
て、Cu電極表面にCu粒子を接合した以外は、実施例
1と同様に焼成し、熱電変換モジュールを得た。得られ
た熱電変換素子と電極とは十分な密着強度を有しておら
ず、容易に剥がれた。
(Comparative Example 2) In Example 1, a Cu plate having Cu particles dispersed on its surface was used as the melting point of Cu (1083 ° C.).
The thermoelectric conversion module was obtained by firing in the same manner as in Example 1 except that Cu particles were bonded to the surface of the Cu electrode by performing heat treatment at the above temperature of 1100 ° C. The obtained thermoelectric conversion element and the electrode did not have sufficient adhesion strength and were easily peeled off.

【0038】(比較例3)実施例1において、平均粒径
約35μmのCu粒子に代えて、熱電変換材料の粉末の
平均粒径よりも小さな平均粒径10μmのCu粒子を用
いた以外は、実施例1と同様に焼成し、熱電変換モジュ
ールを得た。得られた熱電変換素子と電極とは十分な密
着強度を有しておらず、容易に剥がれた。
(Comparative Example 3) In Example 1, the Cu particles having an average particle diameter of about 35 μm were replaced with Cu particles having an average particle diameter of 10 μm smaller than the average particle diameter of the powder of the thermoelectric conversion material. Firing was performed in the same manner as in Example 1 to obtain a thermoelectric conversion module. The obtained thermoelectric conversion element and the electrode did not have sufficient adhesion strength and were easily peeled off.

【0039】(比較例4)実施例4において、平均粒径
約35μmのCu粒子に代えて、熱電変換材料の粉末の
平均粒径よりも小さな平均粒径10μmのCu粒子を用
いた以外は、実施例4と同様に焼成し、熱電変換モジュ
ールを得た。得られた熱電変換素子と電極とは十分な密
着強度を有しておらず、容易に剥がれた。
(Comparative Example 4) In Example 4, except that the Cu particles having an average particle diameter of about 35 μm were replaced with Cu particles having an average particle diameter of 10 μm smaller than the average particle diameter of the powder of the thermoelectric conversion material. Firing was performed in the same manner as in Example 4 to obtain a thermoelectric conversion module. The obtained thermoelectric conversion element and the electrode did not have sufficient adhesion strength and were easily peeled off.

【0040】[0040]

【表1】 [Table 1]

【0041】以上の結果、表1から、実施例は比較例に
比べて熱電変換素子と電極との密着強度に優れた熱電変
換モジュールが得られることが分かった。
As a result of the above, it was found from Table 1 that in the example, a thermoelectric conversion module having a better adhesion strength between the thermoelectric conversion element and the electrode than in the comparative example was obtained.

【0042】[0042]

【発明の効果】本発明の請求項1に係る熱電変換モジュ
ールの製造方法によると、電極の表面に平均粒径10〜
200μmの金属粒子を、この金属粒子の融点より低い
温度で熱処理を行い、金属粒子の一部と電極とを融着さ
せて接合させることにより、表面粗度を高めた電極上
に、前記金属粒子の平均粒径より小さい平均粒径の前記
熱電変換材料の粉末を用いて成形し、焼成するので、熱
電変換素子と電極との間でアンカー効果を発揮できるた
め、熱電変換素子と電極との密着強度に優れ、高強度で
信頼性の高い熱電変換モジュールが得られる。。
According to the method of manufacturing a thermoelectric conversion module according to claim 1 of the present invention, the average particle size is 10 to 10 on the surface of the electrode.
The metal particles of 200 μm are heat-treated at a temperature lower than the melting point of the metal particles, and a part of the metal particles and the electrode are fused and bonded to each other, so that the surface of the electrode has an increased surface roughness. Since the thermoelectric conversion element powder is molded and fired by using the powder of the thermoelectric conversion material having an average particle diameter smaller than the average particle diameter, an anchor effect can be exerted between the thermoelectric conversion element and the electrode, and thus the adhesion between the thermoelectric conversion element and the electrode can be achieved. A thermoelectric conversion module having excellent strength, high strength and high reliability can be obtained. .

【0043】本発明の請求項2に係る熱電変換モジュー
ルの製造方法によると、前記金属粒子の平均粒径が20
〜150μmであるため、高強度で信頼性の高い熱電変
換モジュールが得られる。
According to the method of manufacturing a thermoelectric conversion module according to claim 2 of the present invention, the average particle size of the metal particles is 20.
Since it is about 150 μm, a thermoelectric conversion module having high strength and high reliability can be obtained.

【0044】本発明の請求項3に係る熱電変換モジュー
ルの製造方法は、前記熱電変換材料の粉末の平均粒径が
5〜100μmであるため、高強度で信頼性の高い熱電
変換モジュールが得られる。
In the method for manufacturing a thermoelectric conversion module according to claim 3 of the present invention, since the average particle diameter of the powder of the thermoelectric conversion material is 5 to 100 μm, a thermoelectric conversion module having high strength and high reliability can be obtained. .

【0045】本発明の請求項4に係る熱電変換モジュー
ルの製造方法は、前記金属粒子がCu、Ni及びAl元
素からなる群より選択される少なくとも1種類であるた
め、高強度で信頼性の高い熱電変換モジュールが得られ
る。
In the method of manufacturing a thermoelectric conversion module according to claim 4 of the present invention, since the metal particles are at least one selected from the group consisting of Cu, Ni and Al elements, they have high strength and high reliability. A thermoelectric conversion module is obtained.

【0046】本発明の請求項5に係る熱電変換モジュー
ルの製造方法は、前記金属粒子を電極表面に接合させる
雰囲気が、減圧雰囲気、不活性雰囲気又は水素を含む還
元雰囲気であるであるので、熱電変換材料の粉末表面で
化学吸着している不純物酸素を、水素により還元し、拡
散を防ぐことによって、熱電変換素子の熱電特性が向上
するため、高強度で信頼性の高い熱電変換モジュールが
得られる。
In the method for manufacturing a thermoelectric conversion module according to the fifth aspect of the present invention, the atmosphere for bonding the metal particles to the electrode surface is a reduced pressure atmosphere, an inert atmosphere or a reducing atmosphere containing hydrogen. Impurity oxygen chemically adsorbed on the powder surface of the conversion material is reduced by hydrogen to prevent diffusion, so that the thermoelectric characteristics of the thermoelectric conversion element are improved, so that a high-strength and highly reliable thermoelectric conversion module can be obtained. .

【0047】本発明の請求項6に係る熱電変換モジュー
ルの製造方法は、前記金属粒子を電極表面に接合させる
方法が、金属粒子の溶射であるため、高強度で信頼性の
高い熱電変換モジュールが得られる。
In the method for manufacturing a thermoelectric conversion module according to claim 6 of the present invention, since the method of bonding the metal particles to the electrode surface is thermal spraying of the metal particles, a thermoelectric conversion module having high strength and high reliability can be obtained. can get.

【0048】本発明の請求項7に係る熱電変換モジュー
ルの製造方法は、前記熱電変換材料の粉末を用いて電極
上に成形する前に、前記表面粗度を高めた電極の表面
に、Ni、Al、W及びMo元素からなる群より選択さ
れる少なくとも1種類を被覆するので、Al、Ni、
W、Mo元素が、Cu及び熱電変換素子元素と反応し、
さらに良好な接合強度を生じるため、高強度で信頼性の
高い熱電変換モジュールが得られる。
According to a seventh aspect of the present invention, in the method of manufacturing a thermoelectric conversion module, before the powder of the thermoelectric conversion material is molded on the electrode, Ni, Ni, Since at least one selected from the group consisting of Al, W and Mo elements is coated, Al, Ni,
W and Mo elements react with Cu and thermoelectric conversion element elements,
Further, since a good joint strength is produced, a thermoelectric conversion module having high strength and high reliability can be obtained.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Bi、Te、Se及びSb元素からなる
群より選択される少なくとも2種類の元素を含有した熱
電変換材料を焼成した熱電変換素子と電極とを備えた熱
電変換モジュールの製造方法において、前記電極の表面
に平均粒径10〜200μmの金属粒子を、この金属粒
子の融点より低い温度で熱処理を行い、金属粒子の一部
と電極とを融着させて接合させることにより、表面粗度
を高めた電極上に、前記金属粒子の平均粒径より小さい
平均粒径の前記熱電変換材料の粉末を用いて成形し、焼
成することを特徴とする熱電変換モジュールの製造方
法。
1. A method of manufacturing a thermoelectric conversion module comprising a thermoelectric conversion element and an electrode, which is obtained by firing a thermoelectric conversion material containing at least two kinds of elements selected from the group consisting of Bi, Te, Se and Sb elements. The surface of the electrode is roughened by heat-treating metal particles having an average particle size of 10 to 200 μm at a temperature lower than the melting point of the metal particles, and fusing and bonding a part of the metal particles and the electrode. A method of manufacturing a thermoelectric conversion module, comprising: forming a powder of the thermoelectric conversion material having an average particle size smaller than the average particle size of the metal particles on an electrode having an increased degree of temperature, and firing the powder.
【請求項2】 前記金属粒子の平均粒径が20〜150
μmであることを特徴とする請求項1記載の熱電変換モ
ジュールの製造方法。
2. The average particle size of the metal particles is 20 to 150.
The method for manufacturing a thermoelectric conversion module according to claim 1, wherein the thermoelectric conversion module has a thickness of μm.
【請求項3】 前記熱電変換材料の粉末の平均粒径が5
〜100μmであることを特徴とする請求項1又は請求
項2記載の熱電変換モジュールの製造方法。
3. The average particle size of the powder of the thermoelectric conversion material is 5
It is -100 micrometers, The manufacturing method of the thermoelectric conversion module of Claim 1 or Claim 2 characterized by the above-mentioned.
【請求項4】 前記金属粒子がCu、Ni及びAl元素
からなる群より選択される少なくとも1種類であること
を特徴とする請求項1乃至請求項3いずれかに記載の熱
電変換モジュールの製造方法。
4. The method of manufacturing a thermoelectric conversion module according to claim 1, wherein the metal particles are at least one kind selected from the group consisting of Cu, Ni and Al elements. .
【請求項5】 前記金属粒子を電極表面に接合させる雰
囲気が、減圧雰囲気、不活性雰囲気又は水素を含む還元
雰囲気であることを特徴とする請求項1乃至請求項4い
ずれかに記載の熱電変換モジュールの製造方法。
5. The thermoelectric conversion according to claim 1, wherein the atmosphere for bonding the metal particles to the electrode surface is a reduced pressure atmosphere, an inert atmosphere or a reducing atmosphere containing hydrogen. Module manufacturing method.
【請求項6】 前記金属粒子を電極表面に接合させる方
法が、金属粒子の溶射であることを特徴とする請求項1
乃至請求項5いずれかに記載の熱電変換モジュールの製
造方法。
6. The method for bonding the metal particles to the electrode surface is thermal spraying of the metal particles.
A method for manufacturing the thermoelectric conversion module according to claim 5.
【請求項7】 前記熱電変換材料の粉末を用いて電極上
に成形する前に、前記表面粗度を高めた電極の表面に、
Ni、Al、W及びMo元素からなる群より選択される
少なくとも1種類を被覆することを特徴とする請求項1
乃至請求項6いずれかに記載の熱電変換モジュールの製
造方法。
7. Before molding on the electrode using the powder of the thermoelectric conversion material, on the surface of the electrode having the increased surface roughness,
2. Coating with at least one kind selected from the group consisting of Ni, Al, W and Mo elements.
A method for manufacturing a thermoelectric conversion module according to claim 6.
JP7178310A 1995-07-14 1995-07-14 Production of thermoelectric conversion module Withdrawn JPH0936437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7178310A JPH0936437A (en) 1995-07-14 1995-07-14 Production of thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7178310A JPH0936437A (en) 1995-07-14 1995-07-14 Production of thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JPH0936437A true JPH0936437A (en) 1997-02-07

Family

ID=16046248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7178310A Withdrawn JPH0936437A (en) 1995-07-14 1995-07-14 Production of thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JPH0936437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399963B2 (en) * 1997-06-04 2002-06-04 Kabushiki Kaisha Toshiba Semiconductor light emitting element and its manufacturing method
JP2013539599A (en) * 2010-08-23 2013-10-24 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Semiconductor device for thermoelectric module and production method thereof
US9461226B2 (en) 2010-04-08 2016-10-04 Samsung Electronics Co., Ltd. Thermoelectric material and method of preparing the same
US9672858B2 (en) 2014-07-24 2017-06-06 Kabushiki Kaisha Toshiba Magnetic recording medium manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399963B2 (en) * 1997-06-04 2002-06-04 Kabushiki Kaisha Toshiba Semiconductor light emitting element and its manufacturing method
US9461226B2 (en) 2010-04-08 2016-10-04 Samsung Electronics Co., Ltd. Thermoelectric material and method of preparing the same
JP2013539599A (en) * 2010-08-23 2013-10-24 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Semiconductor device for thermoelectric module and production method thereof
US9672858B2 (en) 2014-07-24 2017-06-06 Kabushiki Kaisha Toshiba Magnetic recording medium manufacturing method

Similar Documents

Publication Publication Date Title
JP4876501B2 (en) Thermoelectric conversion material and manufacturing method thereof
TW201642278A (en) Conductive paste composition, conductive structure and method of producing the same
JP4584035B2 (en) Thermoelectric module
JP6623003B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2002151751A (en) Method of manufacturing thermoelectric element and thermoelectric module
JP6305335B2 (en) Thermoelectric conversion material, thermoelectric conversion module using the same, and method of manufacturing thermoelectric conversion material
WO2013047474A1 (en) Sintered body, sintered body for thermoelectric conversion element, thermoelectric conversion element, and thermoelectric conversion module
JP2003318454A (en) Thermoelectric conversion element and thermoelectric module
JPH07202274A (en) Thermoelectric device and its manufacture
JP2014157875A (en) Thermoelectric element
JPH0936437A (en) Production of thermoelectric conversion module
JP2006339283A (en) Thermoelectric module
JP2571233B2 (en) Circuit board manufacturing method
KR20180022611A (en) Thermoelectric element and thermoelectric module including the same
JP6556198B2 (en) Bonding structure
JP2023148351A (en) Thermoelectric element and manufacturing method thereof
JP2016115866A (en) Thermoelectric conversion element and thermoelectric conversion module
JP2004235367A (en) Thermoelectric module
JP7209126B1 (en) Metal particles for bonding materials
JP2018144080A (en) Joint structure part
JP2011003640A (en) Method for manufacturing thermoelectric conversion module and thermoelectric conversion module
CN114402445A (en) Thermoelectric conversion element, thermoelectric conversion module, joining material, and method for manufacturing thermoelectric conversion element
JP4643371B2 (en) Thermoelectric module
JPS5814017B2 (en) Directly heated cathode for electron tubes
JP3462462B2 (en) Oxide thermoelectric element manufactured by spark plasma sintering

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001