JPH06265183A - 固液混合流体の搬送制御方法 - Google Patents

固液混合流体の搬送制御方法

Info

Publication number
JPH06265183A
JPH06265183A JP14842993A JP14842993A JPH06265183A JP H06265183 A JPH06265183 A JP H06265183A JP 14842993 A JP14842993 A JP 14842993A JP 14842993 A JP14842993 A JP 14842993A JP H06265183 A JPH06265183 A JP H06265183A
Authority
JP
Japan
Prior art keywords
solid
ipf
mixed fluid
liquid mixed
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14842993A
Other languages
English (en)
Other versions
JP3302782B2 (ja
Inventor
Koichi Tsubata
行一 津幡
Yukio Hamaoka
幸夫 浜岡
Junichi Aizawa
旬一 相沢
Taiji Ono
泰司 大野
Takuji Yokoyama
卓史 横山
Yamato Morikawa
大和 森川
Masahiro Miyawaki
正博 宮脇
Takeshi Fujimoto
健 藤本
Tomohiro Kuriyama
知広 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikken Sekkei Ltd
Kansai Electric Power Co Inc
Mayekawa Manufacturing Co
Original Assignee
Nikken Sekkei Ltd
Kansai Electric Power Co Inc
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikken Sekkei Ltd, Kansai Electric Power Co Inc, Mayekawa Manufacturing Co filed Critical Nikken Sekkei Ltd
Priority to JP14842993A priority Critical patent/JP3302782B2/ja
Publication of JPH06265183A publication Critical patent/JPH06265183A/ja
Application granted granted Critical
Publication of JP3302782B2 publication Critical patent/JP3302782B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

(57)【要約】 【目的】 本発明の、水抜き配管路への氷の流出が多く
なり、搬送固液混合流体の流量が多くなっても、固液混
合流体の搬送動力の増加の無い固液混合流体の搬送制御
方法を提供することにある。 【構成】 本発明は、氷等の潜熱物質と水等の液体との
固液混合流体を収容する熱源貯溜部から搬送ポンプ及び
搬送管を介して前記混合流体を負荷部に搬送する固体固
液混合流体の搬送制御方法において、前記負荷側に供給
される固液混合流体の搬送動力当りの搬送熱量が最大と
なる、前記搬送管内における前記混合流体のIPFと管
内流速との関係(アルゴリズム)を例えば図10及び図
12〜14から予め求め、負荷側の熱負荷変動に対応さ
せて固液混合流体の搬送冷却量が最大となるように前記
アルゴリズムに基づいて、搬送管内の流速又は/及びI
PFを制御することを特徴とする。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、地域冷房等において、
熱源貯溜部に蓄積された冷熱を、氷等の潜熱物質と水等
の液体との固液混合流体により搬送する固液混合流体搬
送システムの冷熱量制御方法に関する。
【0002】
【従来の技術】地域冷房等において、熱源貯溜部に蓄積
されている冷熱を、負荷部に搬送する場合、単一の流体
を用いて顕熱を搬送する方法が提供されている。この場
合通常、流体の負荷側へ向かう流れの温度(往温度)は
5〜7℃、負荷側から熱源貯溜部へ向かう流れの温度
(復温度)は10〜13℃で以って顕熱を利用する方式
を採っており、この方式における冷熱の搬送量のコント
ロールは、流体の流量を増減することにより行ってい
る。
【0003】一方近年は、前記顕熱と併せて潜熱を利用
して冷熱を搬送する方式、即ち冷熱の移送を固液二相の
混合流体(例えば氷とブラインの固液混合流体)によっ
て行う方式が多く採用されるようになった。かかる冷暖
房システムにあっては、固液混合流体中の潜熱物質混合
充填率(以下“IPF”と称する)を、負荷の変動又は
前記熱源貯溜部内のIPFの変動に応じて調整して、固
液混合流体を前記負荷に供給する必要がある。
【0004】図15に、固液混合流体搬送システムの従
来例を示す。図において1は氷と水との固液混合流体が
収容される熱源貯溜部即ち氷槽であり、該貯氷槽1内の
固液混合流体は、搬送主管7に設けられた搬送ポンプ2
により加圧、吐出され、吐出側に設けられたIPF調整
器14に導入され、ここで一部の水が抜き出され、水抜
き配管16を経て貯氷槽1に戻される。貯氷槽1に戻さ
れる水の流量はIPF調整器14の下流に設けられた質
量流量計6の密度値の検出により調節される。そしてI
PF制御の一例を数値により説明すると、所要の供給流
量をQm3 /minとし、所要のIPFが30%である
として、貯氷槽1内の固液混合流体即ち氷水のIPFが
10%であるときは、貯氷槽1の氷水流量3Qが搬送ポ
ンプ2により4kg/cm2 ・Gの圧力に加圧されて搬
送主管7に送り出され、IPF調整器14により2Qの
水流量が水抜き配管16を経て貯氷槽1に戻され、これ
によりIPFを30%に調節された氷水流量Qが地域導
管8を経て負荷9に供給され冷熱を供給する。なお、8
aは地域戻り導管、15は水抜き流量を制御する自動調
整弁である。
【0005】そして前記IPF調整器14は例えば図1
6に示すように、IPF調整器14においては、貯氷槽
1からの固液混合流体が入口Aから口径0.5mm程度
の孔14bが穿設されたパンチングメタル製の管14a
に導入され、該孔14bから水のみが抜き取られて水出
口Cから水抜き配管16を経て貯氷槽1に戻されること
により、IPFが調整される。
【0006】
【発明が解決しようとする課題】前記従来システムにお
いては、夜間等に負荷側が極少量の冷熱しか必要としな
い場合、冷熱量の減少操作を固液混合流体の流量を減少
させることにより行っている。しかしながら、この方式
によると、固液混合流体の流量に対する前記IPFの調
整の影響により、固液混合流体の搬送主管等の流体管路
の圧力損失は、液体(水)のみの場合に較べて大きくな
り、システム全体の効率が低下するとともに、流体管路
内に氷(潜熱物質)が詰り、配管の閉塞、破壊の発生を
誘起する。一方、かかる不具合を回避するために固液混
合流体の減少を抑制すると、必要以上の冷熱が負荷側へ
搬送され、潜熱の一部が利用されずに熱源貯溜部に戻っ
てくることとなり、搬送ポンプの動力が無駄に費される
こととなる。
【0007】本発明はかかる従来技術の欠点に鑑み、負
荷の変動に応じて固液混合流体の流速及びIPFを制御
することにより、負荷の変動による圧力損失を低減し、
搬送ポンプ動力の浪費を防止してシステムの効率を向上
せしめるとともに、配管系の閉塞の発生を防止する固液
混合流体搬送システムの冷熱量制御方法を提供する事を
目的とする。本発明の他の目的は、水抜き配管路への氷
の流出が多くなり、搬送固液混合流体の流量が多くなっ
ても、固液混合流体の搬送動力の増加の無い固液混合流
体の搬送制御方法を提供することにある。
【0008】
【課題を解決するための手段】本発明に至った経過を順
を追って説明する。図7は、氷等の潜熱物質と水等の液
体との固液混合流体を、図1に示すように冷熱源貯溜部
1から搬送主管7を介して負荷部9に搬送するシステム
において、固液混合流体の管7内の平均流速(以下、単
に流速)Vm〔m/s〕と内径50mmの配管における
圧力損失(ΔPmmAq/m……配管1m当りの圧力損
失を水柱mmで表わしたもの)との関係を示すグラフで
あって、IPFを0%から29%まで6段階に分け、流
速Vmと圧力損失ΔPとの関係をプロットしたものであ
る。このグラフによれば、IPFが小さくなる程、配管
における圧力損失ΔPが減少することが分る。
【0009】図8は図7の実験点を、横軸にIPF、縦
軸に圧力損失ΔPをとって表わしたものであり、流速V
mを0.53から2まで5段階に分けている。これによ
れば、高い流速Vm=2.00m/sよりも低い流速V
m=0.53m/sの方が、すなわち、流速Vmが小さ
くなるほど、IPFを減少させたときの圧力損失ΔPの
低下量が大きいことが分る。
【0010】また図9は前記混合流体の流速Vm〔m/
s〕を一定とした場合において、IPFと「混合流体を
搬送する理論動力W当りの搬送冷熱量q、すなわちq/
w」との関係を示すグラフであって、流速Vm〔m/
s〕を0.53から2.00までの5段階においてそれ
ぞれ一定にした場合において、IPFとq/wとの関係
をプロットしたものである。このグラフによれば、流速
Vm=一定においてq/wが最大になるIPFが存在す
ることが分る。このIPFの最大値を適正IPFと呼称
し、この適正IPFと流速Vmとの関係をとってプロッ
トしたのが図10である。このグラフによれば、適正I
PFとVmとは直線的な関係にあることが分る。
【0011】本発明はかかる知見に着目して、氷等の潜
熱物質と水等の液体との固液混合流体を収容する熱源貯
溜部から搬送ポンプ及び搬送管を介して前記混合流体を
負荷部に搬送する固液混合流体の搬送制御方法におい
て、前記負荷側に供給される固液混合流体の搬送動力当
りの搬送熱量が最大となる、前記搬送管内における前記
混合流体のIPFと管内流速との関係(アルゴリズム)
を例えば図10及び図12〜14から予め求め、負荷側
の熱負荷変動に対応させて固液混合流体の搬送冷却量が
最大となるように前記アルゴリズムに基づいて、搬送管
内の流速又は/及びIPFを制御することを特徴とす
る。
【0012】この場合前記IPFの制御は、前記熱源貯
溜部内に設置された攪拌機の回転制御により行なっても
よく、又前記IPFを調整するIPF調整器から前記熱
源貯溜部への液体の抜き量を制御する事により行なって
もよく、更に、前記熱源貯溜部の固液混合流体出口近傍
に設けたメッシュの異なる金網または穴径の異なるパン
チングメタルを設けた場合において、前記メッシュ又は
パンチングメタルの穴径を切り換えて行なう事も出来
る。又前記熱源貯溜部内に、氷等の潜熱物質を攪拌し、
搬送管路側への氷寄せ若しくは取り出しを行なうための
一又は複数の攪拌機を設けた場合、前記攪拌機の運転間
隔および運転周波数を貯氷IPF、搬送IPFに応じて
適宜に変化させることにより、攪拌動力を削減出来る。
【0013】そして本発明は、前記制御を容易にするた
めに、前記負荷側に供給される搬送熱量が、その最大値
からの割合に応じて、IPFを一定にして前記管内流速
を制御するか、若しくは管内流速を一定にしてIPFを
制御するかを選択させるように制御する。そしてこの場
合管内流速を一定にしてIPFを制御する場合におい
て、前記IPFを段階的に制御することにより一層の制
御の簡略化と容易化が達成される。即ち具体的には、負
荷が部分負荷領域において変動した場合、負荷がその最
大値から所定の百分比の値の範囲にあるときは、固液混
合流体のIPFを一定に保持して固液混合流体の流速を
調節し、負荷が前記所定の百分比値より小さい範囲にあ
るときは固液混合流体の流速を一定に保持してIPFを
段階的に調節するのがよい。
【0014】
【実施例】以下図面を参照して本発明の実施例について
詳細に説明する。但し、この実施例に記載されている構
成要素の形状、数値、仕様、相対配置等、特に特定的な
記載がない限りは、この発明の範囲をそれのみに限定す
る趣旨でなく、単なる説明例に過ぎないものである。
【0015】図1乃至図3に本発明が適用される固液混
合流体搬送装置を示す。図において、1は氷と水との固
液混合流体が収容される熱源貯溜部、9は負荷部、7は
搬送主管、2は該搬送主管路に設けられた1又は複数の
搬送ポンプ、8は戻り導管、52は前記貯溜部1内に設
置された1又は複数の攪拌機である。かかる装置におい
て、負荷部9の負荷即ち要求される搬送冷熱量が変化す
ると、それに応じて、搬送ポンプ2はその運転台数又は
/及び回転数を調節可能に、また熱源貯溜部1内の攪拌
機52は、その運転台数又は/及び回転数を調節可能に
構成されている。前記攪拌機52の機能について図2、
図3を参照して説明すると、図2においては攪拌機52
の回転数が高いので熱源貯溜部1内の固液混合流体は
(イ)のように大まわりに循環する。したがって、搬送
主管7から流出する固液混合流体のIPFは大きい。と
ころが攪拌機52の回転数が低くなると、図3のよう
に、攪拌機52による攪拌力が小さくなるため、固液混
合流体は(ロ)のように小まわりに循環することにな
り、氷(潜熱物質)は浮き上って上部に溜るようになる
ので、搬送主管7から流出する氷の量が減少し、固液混
合流体のIPFが小さくなる。
【0016】従ってかかる装置によれば前記負荷側に供
給される固液混合流体の搬送動力当りの搬送熱量が最大
となる、前記搬送管内における前記混合流体のIPFと
管内流速との関係(アルゴリズム)を例えば図10及び
図12〜14から予め求め、負荷側の熱負荷変動に対応
させて固液混合流体の搬送冷却量が最大となるように前
記アルゴリズムに基づいて、搬送ポンプ2の運転台数又
は/及び回転数と、熱源貯溜部1内の攪拌機52の運転
台数又は/及び回転数とを夫々調節する事により負荷側
の熱負荷変動に対応させて固液混合流体の搬送冷却量が
最大となるように前記アルゴリズムに基づいて、搬送主
管の流速又は/及びIPFを制御する事が出来る。
【0017】図4は本発明が適用される固液混合流体搬
送装置の第2実施例である。この実施例では搬送ポンプ
2の吐出側にIPF調整器11を設けて、搬送ポンプ2
から吐出された固液混合流体から水を一部分離して水抜
き配管16を経て熱源貯溜部1に戻すようにしている。
負荷部9の負荷(要求される搬送冷熱量)が変化したと
きは、それに応じて搬送ポンプ2の運転台数及び回転数
を調節して混合流体の流速を制御するとともに、水抜き
配管16に設けた流量調節弁53の弁開度を調節するこ
とによりIPF調整器11から水抜き配管16に流入す
る水の量を調節し、負荷部9に搬送する混合流体のIP
Fを前記制御された流速における混合流体の搬送理論動
力当りの搬送冷熱量が適正IPFになるように制御す
る。例えば流量調節弁53を適量閉じることにより分離
される水の量が減り、IPFを適正値まで小さくするこ
とができる。
【0018】図5及び図6は本発明の本発明が適用され
る固液混合流体搬送装置の第3実施例で熱源貯溜部1の
要部構成を示す。熱源貯溜部1の内壁には攪拌機52及
び回転板54が設けてあり、該回転板54はステップモ
ーター等の駆動源55に回転軸56を介して直結され回
転駆動される。なお、該回転板54は手動で回転させる
こともできる。
【0019】そして前記回転板54にはメッシュの異な
る金網または穴径の異なるパンチングメタル55a、5
5b、55c、55dが円周方向に取付けられている。
7aは搬送主管7の固液混合流体取出口であり、前記回
転板54を適宜回転させて、適正IPFに適合するメッ
シュの金網または穴径のパンチングメタルを混合流体取
出口7aの位置に来るように設置して駆動源55により
適宜角度回転させてパンチングメタル55a、55b、
55c、55dの穴径を切り換えて前記IPFを調整
し、これにより搬送される固液混合流体のIPFを制御
することができる。
【0020】以上、本発明の異なる3つの実施例につい
ては説明したが、負荷(要求される搬送冷熱量)の値は
次のようにして決めることができる。すなわち、図11
において、負荷冷水の流量Q2、負荷冷水の入口温度T
2、負荷冷水の出口温度T3を検出することにより求め
る方法と、固液混合流体の流量Q1、固液混合流体のI
PF、固液混合流体の戻り水温度T1を検出することに
より求める方法がある。負荷9の値が決まれば、それに
見合う固液混合流体の流速、IPFは図10に基づき図
12のように決められるので図12より搬送すべき冷熱
量に最適な流速とIPFを求めて固液混合流体の制御を
することができる。
【0021】更に本発明は次のようにして実施すること
もできる。すなわち、図12を用いる前記のような固液
混合流体の制御よりも簡単な、流速とIPFの制御方法
の実施例(例えば内径150mmの配管の場合)を図1
3及び図14によって説明する。両図は、横軸に負荷
(要求される搬送冷熱量)、縦軸には配管内を流れてい
る固液混合流体のIPF〔%〕、流速V〔m/s〕をそ
れぞれ採っている。
【0022】図13は、負荷が部分負荷領域において変
動する場合を想定して4段階に分け、各段階におけるI
PFはそれぞれ一定とするとともに各段階ごとのIPF
は互いに異なる値とし、混合流体の搬送主管7内の流速
は各段階において負荷の変動にしたがいそれぞれ連続的
に変化させている。これにより、検出された部分負荷の
大きさに応じて、同図からそれに対応する搬送冷熱量の
段階が選択され、該段階において検出された前記負荷に
対応するIPFと流速とが選択されて固液混合流体の制
御を行なう。このような段階的制御は、図12のように
IPFと流速とを共に連続的に制御する場合に比べて効
率は幾分低くなるが、なお従来技術に比べて大幅すぐれ
ており、制御方法は簡略化される。
【0023】図14は、本発明の制御方法の他の実施例
であって、負荷が部分領域において変動する場合、或る
所定の部分負荷まですなわち全負荷から所定の部分負荷
までの比較的広い領域においては、IPFを一定にして
固液混合流体の流速を検出された負荷に応じて変化させ
る制御を行ない、前記所定の部分負荷よりも負荷が小さ
い領域においては、IPFを負荷すなわち要求される搬
送冷熱量に応じて低下させる。すなわち、地域冷房にお
いて最大負荷時での搬送主管7内の流速は2.0〜3.
0m/sとなるよう配管サイズが選定される。この制御
方法においては、部分負荷時はIPFを20〜30%の
範囲で一定に維持し、負荷が最大負荷の30〜50%ま
での領域では先ず流速(供給流量)を減少させ、それよ
りも負荷の小さい領域では流速(最低流速0.5m/
s)を下げずに一定とし、IPFを低くして負荷に応じ
た冷熱供給を行なう。なお、前記最低流速は搬送主管内
で潜熱物質(氷)が停滞しない流速とする。
【0024】図14によれば、負荷すなわち要求される
搬送冷熱量が1800kW位まではIPFを一定とし固
液混合流体の流速を変化させる制御を行ない、負荷が前
記値よりも小さい領域においては、検出された負荷に対
応するIPFと流速とが選択されこれに適応した固液混
合流体の制御を行なう。このような制御は、図12のよ
うなIPFと流速とを共に連続的に制御する場合に比べ
ると効率は低くなるが、従来技術よりはまさっており、
制御方法は前記は第4実施例よりもさらに簡単になる。
尚、以上の実施例は地域冷房システムに適用されるの場
合であるが、本発明はこれに限定されることなく、暖房
の場合も含み、従って「負荷」には「冷却負荷」と「加
熱負荷」とを、「熱源貯溜部」には「貯氷槽」と「高熱
源」をそれぞれ含む。
【0025】さて、例えば図1に記載したシステムにお
いて、貯氷槽1内に流動性を有する氷水を夜間に貯蔵
し、昼間にポンプ2により取り出して、その冷熱を空調
等に用いる空調システムを考える。その空調システムの
貯氷槽1においては、氷水を放置しておくと、氷水同士
が固着し、流動性が失われる、表面の空気に接する氷が
氷塊となる搬送管路7中に閉塞の原因となってしまうな
ど、システム運用上の障害となる為に、氷を貯蔵する夜
間に、氷水を攪拌する必要がある。また、又昼間時にお
いても取り出し口7aからポンプ2で吸引するだけで氷
を取り出そうとしても水しか流出しない。
【0026】したがって、図18(A)に示すように、
氷水を取り出してその冷熱を利用する昼間には、取り出
し口7aの前に、取り出し用の攪拌機52(WM1)を
設置し、氷と水を攪拌して混合し、氷を取り出す必要が
ある。また、氷水を取り出しているうちに、取り出し口
7aの前の氷が少なくなるので、氷寄せ用の攪拌機52
(WM2)を運転するなどして、取り出し口1aの前に
氷を寄せる必要がある。この場合夜間、攪拌機52を運
転する際、常時運転しては消費電力量が大きくなってし
まうので、WM1、WM2を間欠的に運転する。その
時、運転間隔及び運転周波数を、最大貯氷IPFに合わ
せて一定にしていたので、貯氷IPFが小さいときは、
氷水の見かけの粘度が小さく水に近いため、氷水が波立
つほど攪拌してしまい無駄な攪拌動力を消費していた。
同様に昼間は、常時運転する取り出し用の攪拌機52
(WM1)の運転周波数を、最大貯氷IPFに合わせて
一定にしていたので、貯氷IPFが小さいときは、氷水
の見かけの粘度が小さく水に近いため、氷水が波立つほ
ど攪拌してしまい無駄な攪拌動力を消費していた。さら
に、間欠的に運転する氷寄せ用の攪拌機52(WM2)
の運転間隔および運転周波数を、貯氷IPFに合わせて
一定にしていたので、貯氷IPFが小さいときは、氷水
の見かけの粘土が小さく水に近いため、氷水が波立つほ
ど攪拌してしまい無駄な攪拌動力を消費していた。
【0027】従ってこの様な場合、攪拌機52の運転間
隔および運転周波数を貯氷IPF、搬送IPFに応じて
適切に変化させることにより、攪拌動力を削減出来る。
尚、貯氷IPFは、氷水の温度で検知ることが出来、又
搬送IPFは、搬送する氷水の密度で検知することがで
きる。そして運転間隔はシーケンサを用いて変化させる
ことができ、運転周波数は、攪拌機52の駆動モ−タの
インバータで変化させることができる。
【0028】次に前記攪拌機52の運転間隔及び運転周
波数の好ましい実施例を表1、表2、表3に基づいて説
明する。先ず夜間には、攪拌機52WM1とWM2を同
時に1分間、貯氷IPFに応じて表1に示す運転方法で
運転する。昼間には、氷取り出し用の攪拌機52(WM
1)を常時、貯氷IPFに応じて表2に示す運転方法で
運転する。また、昼間には、氷寄せ用の攪拌機52(W
M2)を1分間、搬送IPFが貯氷IPFより15%以
上小さくなったときに、表3に示す運転方法で運転す
る。
【0029】
【表1】
【表2】
【表3】
【0030】さて前記したように貯氷槽1内に高いIP
Fで氷が貯溜されている場合、その付着性から1つの大
きな塊となってしまう。この為図18(A)に示すよう
に、負荷と熱交換後の温度が上がった戻り水を戻り配管
59により貯氷槽1の全表面に散布していたが、これの
みでは足りずこれを攪拌するには大きな攪拌機52と動
力が必要のみならず、しばしば攪拌に必要な動力が大き
過ぎ、過負荷で攪拌機52が停止してしまう場合があっ
た。このような、大きな氷塊が攪拌機52入口部の羽根
に引っかかり、攪拌機52が過負荷になる場合、攪拌機
52を一旦停止して、正逆回転を数回繰り返すことによ
り、氷塊が細断され、過負荷を防止できる。又戻り水
も、貯氷槽1内の氷水に表面から、その熱で大きな氷の
塊を細断するように戻すよにするのがよい。即ち大きな
塊が小さくなると、攪拌機52の大きさ、攪拌動力が小
さくて済む。そしてこの様な構成は図19(A)に示す
ように、氷を細断したい大きさに合わせて、貯氷槽1上
部に開閉制御バルブ58を介して戻り水の戻り配管59
を配置し、戻り配管59の下の穴から、戻り水を氷表面
に流出させる。戻り水に接触した氷は、戻り水の熱で解
けるため、大きな氷の塊は、図の例では4つに小さく細
断される。氷塊を細断する順序としては、まず、氷水取
り出し口7aの近辺から、適宜バルブ58を開閉して行
う。なぜなら、戻り水を全体の戻り配管59から戻す
と、各配管から流出する流量が十分でなく、氷を細断で
きにくいから、また、取り出し口7aに近い氷から流出
させる方が氷の移動に要する動力が少なく効率的だから
である。
【0031】さて、図18(B)に示すように、貯氷槽
1の氷水の取出し口7a側には金網またはパンチングメ
タル51を設け、搬送主管側に搬送される氷粒子径の制
限を行なっている。この場合、前記金網のメッシュ
(目)またはパンチングメタル51の孔52aは、配管
途中に設けられる流量調整バルブ57や氷水受入設備で
の熱交換器の通過隙間より小さい寸法からなるととも
に、前記メッシュまたは孔の氷水流通総面積は取出し口
7aの断面積より十分に大きく構成されている。更に前
記金網またはパンチングメタル51と貯氷槽1の内壁と
の間には50mm以上の間隙を設けている。
【0032】前記のように構造、寸法等の条件を設定す
ることにより多少の氷塊が金網またはパンチングメタル
51の前に停滞しても、金網またはパンチングメタル5
1の通路面積が大きいので、氷水通過面積の減少する割
合が小さくなり、前記氷塊の停滞によって他の氷の停滞
を生起することはない。したがって配管中に流出し搬送
される氷粒の大きさが限定され、配管中の通過隙間縮小
部においても氷塊が停滞せず、混合水通路の閉塞を防止
することができる。また、金網またはパンチングメタル
51を通過する氷水の速度は氷水の流通断面積の関係で
取出し口7aを通過する速度よりも十分に小さく、地域
冷房システムの負荷が最大の場合においても例えば0.
1m/s以下にすることができるので、金網またはパン
チングメタル51の一部分において氷塊が溜って閉塞を
起すのを防止することができる。
【0033】また前記のような、氷塊及び氷粒付着によ
る閉塞防止は次のようにしても行なわれる。すなわち、
図18に示すように貯氷槽1中の金網またはパンチング
メタル51の近傍に設置される氷水の攪拌機52はその
噴流方向が金網またはパンチングメタル51を通過する
氷水流に直角に、すなわち金網またはパンチングメタル
51の表面に平行となるように構成される。この噴流の
力により金網またはパンチングメタル51の前方で氷塊
の停滞するのを防止でき、かつ攪拌機52の台数及び回
転数制御により、所定のIPFで氷水の取り出しができ
る。その結果、従来の冷水のみの冷熱搬送に比べ搬送動
力を削減できることになる。
【0034】次に図20に前記金網またはパンチングメ
タル51の詳細を示す。この例では、金網またはパンチ
ングメタル51はハニカム形状に構成されており、例え
ば、これの孔51aの径を5mmとし、ピッチを6mm
とすれば、地域冷房システムが全負荷の場合でも氷水の
通過速度を0.1m/s位とすることができる。更に金
網またはパンチングメタル51の大きさを変えることに
より、任意の流路隙間において閉塞を起すことなく氷水
を搬送することが可能となる。
【0035】しかしながら前記パンチングメタル51の
穴径を、配管径によらず一定にしているため、大きな配
管径の時は、配管径に対するパンチングメタル51の穴
径が小さくなり、取り出し部での圧力損失が大きいとい
う問題点があった。例えば氷水を搬送する際の流量制御
を搬送主管7に設けた開閉弁57のバルブ開度でする場
合、同じ流量削減割合の時のバルブ開口高さhは、配管
径により異なる。たとえば、設計流量の1/10に流量
を削減するときのバルブ開口高さhは、配管径50mm
の時5mmで、配管径150mmの時15mmになると
いうことである。ただし、この流量削減率とバルブ開口
高さhの関係は、バルブの種類、圧力などにより異なる
ので、示した数字は参考例の意味しかない。したがっ
て、最小の流量時のバルブ開口高さhに合わせて、パン
チングメタル51の穴径を決めれば、配管径が大きくな
ったときでも取り出し部における圧力損失が大きくなる
ことを防ぐことができる。尚バルブ開口高さhと種々の
バルブとの関係は図17に示す。
【0036】
【発明の効果】以上記載した如く本発明によれば、負荷
の変動に応じて負荷部に搬送される固液混合流体の搬送
動力当りの搬送冷熱量が最大となるように制御した為、
圧力損失が少なく、搬送動力の消費が少ない高効率の地
域冷暖房運転ができる。又負荷の変動に応じて負荷部に
搬送される固液混合流体の流速を搬送ポンプの運転を調
節することによって制御するとともに、熱源貯溜部内の
攪拌機の運転を調節することにより、熱源貯溜部から流
出する固液混合流体のIPFを制御することができるの
で、前記制御を無段階に行なう場合に適しており、前記
と同様、効率の高い地域冷暖房運転ができる。更に固液
混合流体の流速を搬送ポンプの運転を調節することによ
って制御するとともに、搬送ポンプの吐出側において固
液混合流体から水(液体)を一部分離して熱源貯溜部に
戻すとともに、その戻し量を調節することにより、負荷
部に搬送される固液混合流体のIPFを制御することが
できるので、特に熱源貯溜部内のIPFが小さいときに
高効率の運転ができる。更に又、負荷部に搬送する固液
混合流体の流速を搬送ポンプの運転を調節することによ
って制御するとともに、熱源貯溜部内の固液混合流体流
出口近傍にメッシュの異なる金網または穴径の異なるパ
ンチングメタルを切換え設置することにより、熱源貯溜
部から流出する固液混合流体のIPFを制御することが
できるので、段階的ではあるが制御を簡単に行なうこと
ができ、かつ高効率運転も維持できる。
【0037】又、検出された負荷変動値に応じて負荷部
に搬送される混合流体の流速とIPFを段階的に調節す
ることにより、IPFと流速とを連続的に変化させて制
御する場合に比べて効率は幾分低くなるものの従来技術
よりも高効率が得られ、しかも制御が簡単になる。この
場合負荷が部分負荷領域において変動した場合、負荷が
その最大値から所定の百分比の値の範囲にあるときは、
固液混合流体のIPFを一定に保って固液混合流体の流
速を調節し、負荷が前記所定の百分比値より小さい範囲
にあるときは固液混合流体の流速を一定に保って固液混
合流体のIPFを検出された負荷に対応して段階的に調
節することができるので、従来技術に較べ高効率を維持
しつつ、簡単に制御ができる。等の種々の著効を有す。
【図面の簡単な説明】
【図1】本発明に適用される固液混合流体搬送装置の概
略図。
【図2】図1の装置において、攪拌機の回転数が高いと
きの氷水貯溜部の説明図。
【図3】図1の装置において、攪拌機の回転数が低いと
きの氷水貯溜部の説明図。
【図4】本発明に適用される固液混合流体搬送装置の他
の概略図。
【図5】本発明の他の実施例に係る氷水貯溜部の断面概
略図。
【図6】図5の実施例の回転板の正面図。
【図7】固液混合流体搬送時における搬送管内の圧力勾
配と流速の関係を示す線図。
【図8】固液混合流体搬送時における搬送管内の圧力勾
配とIPFの関係を示す線図。
【図9】固液混合流体搬送時における搬送管内の搬送理
論動力当りの搬送冷熱量とIPFの関係を示す線図。
【図10】固液混合流体搬送時における搬送管内の適正
IPFと流速の関係を示す線図。
【図11】固液混合流体搬送時における負荷部における
冷熱受授流体の状態説明図。
【図12】固液混合流体搬送時における搬送冷熱量と固
液混合流体の適正IPF、流速の関係を示す線図。
【図13】搬送冷熱量と固液混合流体のIPF、流速及
び搬送動力比の関係を示す線図であり、特に本発明の他
の実施例の説明図である。
【図14】搬送冷熱量と固液混合流体のIPF、流速及
び搬送動力比の関係を示す線図であり、特に本発明の他
の実施例の説明図である。
【図15】従来の搬送装置を示す系統図。
【図16】IPF調整器の一例を示す断面略図。
【図17】搬送主管に設けた開閉制御弁のバルブ開口高
さhと種々のバルブとの関係を示す説明図。
【図18】本発明が適用される氷水貯溜部を示し、
(A)が平面概略図、(B)が平面図である。
【図19】本発明の実施例に係る氷水貯溜部を示し、
(A)が平面概略図、(B)が正面図である。
【図20】氷水貯溜部の取り出し口に取付けられるパン
チングメタルの部分図。
【符号の説明】
1 熱源貯溜部としての貯氷槽 2 搬送ポンプ 3、4 IPF調整器 7 搬送主管 8 戻り導管 9 負荷 7a 固液混合流体取出口 16 水抜き配管 51 金網またはパンチングメタル 52 攪拌機
───────────────────────────────────────────────────── フロントページの続き (72)発明者 津幡 行一 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 浜岡 幸夫 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 相沢 旬一 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 大野 泰司 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 横山 卓史 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 森川 大和 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 宮脇 正博 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 藤本 健 大阪府大阪市中央区高麗橋4丁目6番2号 株式会社日建設計内 (72)発明者 栗山 知広 大阪府大阪市中央区高麗橋4丁目6番2号 株式会社日建設計内

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 氷等の潜熱物質と水等の液体との固液混
    合流体を収容する熱源貯溜部から搬送ポンプ及び搬送管
    を介して前記混合流体を負荷部に搬送する固液混合流体
    の搬送制御方法において、 前記負荷側に供給される固液混合流体の搬送動力当りの
    搬送熱量が最大となる、前記搬送管内における前記混合
    流体の潜熱物質混合充填率(IPF)と管内流速との関
    係(アルゴリズム)を予め求め、 負荷側の熱負荷変動に対応させて固液混合流体の搬送冷
    却量が最大となるように前記アルゴリズムに基づいて、
    搬送管内の流速又は/及びIPFを制御することを特徴
    とする固液混合流体の搬送制御方法。
  2. 【請求項2】 前記熱源貯溜部内に設置された攪拌機の
    回転制御により前記IPFを制御することを特徴とする
    請求項1記載の固液混合流体の搬送制御方法。
  3. 【請求項3】 前記IPFを調整するIPF調整器から
    前記熱源貯溜部への液体の抜き量を制御する事により前
    記IPFを制御することを特徴とする請求項1記載の固
    液混合流体の搬送制御方法。
  4. 【請求項4】 前記熱源貯溜部の固液混合流体出口近傍
    に設けたメッシュの異なる金網または穴径の異なるパン
    チングメタルを設けた場合において、前記メッシュ又は
    穴径を切り換えて前記IPFを制御することを特徴とす
    る請求項1記載の固液混合流体の搬送制御方法。
  5. 【請求項5】 氷等の潜熱物質と水等の液体との固液混
    合流体を収容する熱源貯溜部から搬送ポンプ及び搬送管
    を介して前記混合流体を負荷部に搬送する固液混合流体
    の搬送制御方法において、 前記負荷側の熱負荷変動に対応させて、 搬送管内の流速又は/及びIPFを制御すると共に、前
    記負荷側に供給される搬送熱量が、その最大値からの割
    合に応じて、IPFを一定にして前記管内流速を制御す
    るか、若しくは管内流速を一定にしてIPFを制御する
    かを選択させることを特徴とする請求項1記載の固液混
    合流体の搬送制御方法。
  6. 【請求項6】 管内流速を一定にしてIPFを制御する
    場合において、前記IPFを段階的に制御することを特
    徴とする請求項6記載の固液混合流体の搬送制御方法。
  7. 【請求項7】 前記熱源貯溜部内に、氷等の潜熱物質を
    攪拌し、搬送管路側への氷寄せ若しくは取り出しを行な
    うための一又は複数の攪拌機を設けた請求項1記載の固
    液混合流体の搬送制御方法において、 前記攪拌機の運転間隔および運転周波数を貯氷IPF、
    搬送IPFに応じて適宜に変化させることを特徴とする
    固液混合流体の搬送制御方法
  8. 【請求項8】 負荷部で熱交換後の戻り水を貯氷槽上よ
    り貯氷槽表面に散布可能に構成した熱源貯溜部を有する
    請求項1記載の固液混合流体の搬送制御方法において、 貯氷槽上部に截断すべき氷形状に合わせ戻り水の戻り配
    管を配置し、戻り配管の下穴から、戻り水を流出させる
    事を特徴とする固液混合流体の搬送制御方法
JP14842993A 1992-05-29 1993-05-28 固液混合流体の搬送制御方法 Expired - Fee Related JP3302782B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14842993A JP3302782B2 (ja) 1992-05-29 1993-05-28 固液混合流体の搬送制御方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-138772 1992-05-29
JP13877292 1992-05-29
JP14842993A JP3302782B2 (ja) 1992-05-29 1993-05-28 固液混合流体の搬送制御方法

Publications (2)

Publication Number Publication Date
JPH06265183A true JPH06265183A (ja) 1994-09-20
JP3302782B2 JP3302782B2 (ja) 2002-07-15

Family

ID=26471736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14842993A Expired - Fee Related JP3302782B2 (ja) 1992-05-29 1993-05-28 固液混合流体の搬送制御方法

Country Status (1)

Country Link
JP (1) JP3302782B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190983A (ja) * 2010-03-15 2011-09-29 Shinryo Corp 大深度水槽に適したダイナミック式氷蓄熱システム
JP2016033444A (ja) * 2014-07-31 2016-03-10 高砂熱学工業株式会社 シャーベット氷の製氷システム、及びシャーベット氷の製氷方法
JP2018054289A (ja) * 2018-01-15 2018-04-05 高砂熱学工業株式会社 シャーベット氷の製氷システム、及びシャーベット氷の製氷方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190983A (ja) * 2010-03-15 2011-09-29 Shinryo Corp 大深度水槽に適したダイナミック式氷蓄熱システム
JP2016033444A (ja) * 2014-07-31 2016-03-10 高砂熱学工業株式会社 シャーベット氷の製氷システム、及びシャーベット氷の製氷方法
JP2018054289A (ja) * 2018-01-15 2018-04-05 高砂熱学工業株式会社 シャーベット氷の製氷システム、及びシャーベット氷の製氷方法

Also Published As

Publication number Publication date
JP3302782B2 (ja) 2002-07-15

Similar Documents

Publication Publication Date Title
US3782451A (en) Hydraulic flow distribution system for multiple pass air cooled heat exchanger
CN101744722B (zh) 滴丸生产线
US5139549A (en) Apparatus and method for cooling using aqueous ice slurry
NZ301632A (en) Ice slurry delivery
JPH06265183A (ja) 固液混合流体の搬送制御方法
US5475982A (en) Method for storing a coolant fluid in melting equilibrium
KR100984130B1 (ko) 기계적 교반장치를 사용하지 않는 축열식 아이스슬러리 직접 순환 냉각장치
JP3469129B2 (ja) 氷蓄熱・氷水搬送システム
JP2579431Y2 (ja) 冷却負荷部に搬送する混合液の流出制御装置
CN211886691U (zh) 一种六价铬还原剂生产装置
CN213791069U (zh) 一种自动配料系统
JPH08313018A (ja) 氷混合水蓄熱装置及びその搬送装置
EA000328B1 (ru) Способ и устройство для поддержания твердых частиц во взвешенном состоянии в жидкости
CN209809998U (zh) 可以调节混料滚筒温度的混料机
CN208927950U (zh) 连续溶胶系统
CN111076464A (zh) 一种冰浆在线浓缩输送系统
WO2020158131A1 (ja) 氷スラリー製造システム
CN220008310U (zh) 制浆系统
CN109647270A (zh) 一种连续循环化料系统
CN219746297U (zh) 圆盘浇铸机循环水系统
CN217838464U (zh) 一种磁混凝沉淀池
CN212309292U (zh) 一种尿素溶解装置及溶解储存一体化系统
CN214829907U (zh) 基于料池的冷却水循环装置及玻璃颗粒捞料系统
JPH086175Y2 (ja) 氷水分離装置
CN215709411U (zh) 一种给料输送装置

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees