JPH06264191A - Alloy material for sealing and heat treatment therefor - Google Patents

Alloy material for sealing and heat treatment therefor

Info

Publication number
JPH06264191A
JPH06264191A JP5055537A JP5553793A JPH06264191A JP H06264191 A JPH06264191 A JP H06264191A JP 5055537 A JP5055537 A JP 5055537A JP 5553793 A JP5553793 A JP 5553793A JP H06264191 A JPH06264191 A JP H06264191A
Authority
JP
Japan
Prior art keywords
weight
crystal grains
alloy
sealing
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5055537A
Other languages
Japanese (ja)
Other versions
JP3294892B2 (en
Inventor
Shinpei Yu
晋平 勇
Toshihiko Takemoto
敏彦 武本
Takuji Okiyama
卓司 沖山
Makoto Inoue
誠 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP05553793A priority Critical patent/JP3294892B2/en
Publication of JPH06264191A publication Critical patent/JPH06264191A/en
Application granted granted Critical
Publication of JP3294892B2 publication Critical patent/JP3294892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

PURPOSE:To produce a sealing material such as parts for supporting a shadow mask in which the coarsening of crystalline grains after preliminary oxidation is suppressed and high reliability is maintained over a long period. CONSTITUTION:An Fe alloy contg., by weight, 0.005 to 0.08% C, 0.05 to 1.0% Si, 0.10 to 0.80% Mn, 0.005 to 0.015% S, 16 to 25% Cr, 0.005 to 0.02S N, 0.15 to 0.60% Ti and 0.01 to 0.30% Al is subjected to two stage finish annealing of holding at 800 to 950 deg.C within 30min, cooling to <=500 deg.C furthermore holding at 900 to 1050 deg.C within 30min. The sealing material subjected to the final annealing has a graded structure in which the grain size is regulated to 5 to 6. Relatively many crystalline grains are present in the direction of the sheet thickness after preliminary oxidation, and supporting strength and airtightness are satisfied in the required shadow mask or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ブラウン管のシャドウ
マスクを支持するサポートスタッド等の封着用合金及び
その熱処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealing alloy such as a support stud for supporting a shadow mask of a cathode ray tube and a heat treatment method thereof.

【0002】[0002]

【従来の技術】ガラス,セラミックス等との封着に使用
される合金としては、Fe−42Ni−6Cr合金,F
e−42〜50Ni合金,Fe−29Ni−17Co合
金,Fe−18Cr合金等が使用されている。なかで
も、Fe−18Cr合金は、ブラウン管に使用されてい
るガラスに近い熱膨張係数をもつことから、サポートス
タッド等のシャドウマスク支持部品として広く使用され
ている。サポートスタッドには、棒状材料を冷間鍛造及
び切削し、図1の断面形状をもつカップに加工したもの
が使用されてきた。しかし、このサポートスタッド10
は、多数の加工工程を必要とし、また重量が大きい欠点
がある。
2. Description of the Related Art Fe-42Ni-6Cr alloys and F alloys are used as alloys for sealing glass and ceramics.
e-42 to 50Ni alloy, Fe-29Ni-17Co alloy, Fe-18Cr alloy and the like are used. Among them, the Fe-18Cr alloy has a thermal expansion coefficient close to that of glass used in cathode ray tubes, and is therefore widely used as a shadow mask supporting component such as a support stud. As the support stud, a rod-shaped material which has been cold forged and cut into a cup having a cross-sectional shape shown in FIG. 1 has been used. However, this support stud 10
Has the drawback of requiring a large number of processing steps and of being heavy.

【0003】最近では、プレス加工技術の進展に伴って
加工工数の減少が可能となり、板厚0.8mm前後の薄
鋼板をプレス加工することによって図2に示す断面形状
をもつサポートスタッド20が一部で使用され始めてい
る。サポートスタッド20に使用される薄鋼板は、一般
に溶製,熱間圧延,焼鈍及び冷間圧延を経て、950〜
1050℃に0.5〜5分加熱する仕上げ焼鈍が施され
ている。薄鋼板をプレス加工によってカップ状に加工し
た後、加熱温度1100〜1200℃,加熱時間10〜
60分で湿潤水素ガス雰囲気中で予備酸化処理が施され
る。予備酸化処理によって、ガラス封着に有効な酸化皮
膜が表面に形成される。
Recently, it has become possible to reduce the number of working steps with the progress of press working technology, and by press working a thin steel plate having a plate thickness of about 0.8 mm, the support stud 20 having the sectional shape shown in FIG. Is beginning to be used in the department. The thin steel sheet used for the support stud 20 is generally 950 to 50 after being subjected to melting, hot rolling, annealing and cold rolling.
Finish annealing is performed by heating to 1050 ° C. for 0.5 to 5 minutes. After processing a thin steel plate into a cup shape by pressing, the heating temperature is 1100 to 1200 ° C and the heating time is 10
A pre-oxidation treatment is performed in a wet hydrogen gas atmosphere for 60 minutes. By the pre-oxidation treatment, an oxide film effective for glass sealing is formed on the surface.

【0004】[0004]

【発明が解決しようとする課題】サポートスタッドに要
求される特性としては、比較的重量の大きなシャドウマ
スクを支持するに十分な強度をもつことが要求される。
この点、棒状材料から冷間鍛造及び切削加工によって製
造されたサポートスタッド10(図1)は、肉厚があ
り、強度の信頼性が高い。他方、薄鋼板をプレス加工し
て製造したサポートスタッド20(図2)は、薄肉であ
る。このサポートスタッド20が予備酸化時の高温に曝
されると、大きな加工を受けた湾曲部21における再結
晶が平坦部22に比較して優先的に進行する。その結
果、湾曲部21の結晶粒が粗大化し、結晶粒の粗大化が
それほど進行しない平坦部22との間に強度差が発生す
る場合があり、湾曲部21に変形,亀裂等が発生し易く
なる。
The characteristics required for the support studs are that they have sufficient strength to support a relatively heavy shadow mask.
In this respect, the support stud 10 (FIG. 1) manufactured from the rod-shaped material by cold forging and cutting has a thick wall and has high strength reliability. On the other hand, the support stud 20 (FIG. 2) manufactured by pressing a thin steel plate is thin. When this support stud 20 is exposed to the high temperature at the time of pre-oxidation, recrystallization in the curved portion 21 that has undergone a large process progresses preferentially as compared with the flat portion 22. As a result, the crystal grains of the curved portion 21 become coarse, and a difference in strength may occur between the crystal portion and the flat portion 22 in which the coarsening of the crystal grains does not progress so much, and the curved portion 21 is likely to be deformed or cracked. Become.

【0005】結晶粒が粗大化して板厚を貫通すると、板
厚の表裏が単一の結晶粒界で連絡され、ガスの粒界拡散
に起因したスローリークが発生し易くなる。その結果、
サポートスタッドの気密性が低下し、ブラウン管の性能
を著しく害する。この点、必要な気密性を確保する上で
は、予備酸化後の結晶粒が板厚に対し安定して3個以上
の細粒であることが要望されている。しかし、従来の製
造方法では、予備酸化された状態で細粒組織を安定して
得ることが困難であった。また、強度,気密性等の問題
は、サポートスタッドに限らず、薄鋼板から製造される
蛍光表示管用リードフレーム等の他の封着用部品につい
ても同様である。
When the crystal grains become coarse and penetrate through the plate thickness, the front and back of the plate thickness are connected by a single crystal grain boundary, and a slow leak due to the grain boundary diffusion of gas is likely to occur. as a result,
The airtightness of the support stud is reduced, and the performance of the cathode ray tube is significantly impaired. In this respect, in order to secure the necessary airtightness, it is required that the crystal grains after the pre-oxidation are stably 3 or more fine grains with respect to the plate thickness. However, with the conventional manufacturing method, it was difficult to stably obtain a fine grain structure in a pre-oxidized state. The problems of strength, airtightness, etc. are not limited to the support studs, and are the same for other sealing components such as lead frames for fluorescent display tubes manufactured from thin steel plates.

【0006】本発明は、このような問題を解消すべく案
出されたものであり、Ti,C,N及びSの含有量が規
定されたFe−18Cr系合金に二段階の仕上げ焼鈍を
施すことにより、仕上げ焼鈍後に結晶粒径が揃った整粒
組織を得、予備酸化後の結晶粒が板厚に対して安定して
3個以上の細粒であることを満足する信頼性に優れた封
着用合金材料を提供することを目的とする。
The present invention has been devised in order to solve such a problem, and a Fe-18Cr-based alloy in which the contents of Ti, C, N and S are specified is subjected to two-step finish annealing. As a result, a uniform grain size structure with uniform crystal grain size was obtained after finish annealing, and the crystal grain after pre-oxidation was stable with respect to the plate thickness and was excellent in reliability satisfying that it was 3 or more fine grains. It is an object to provide an alloy material for sealing.

【0007】[0007]

【課題を解決するための手段】本発明の封着用合金材料
は、その目的を達成するため、C:0.005〜0.0
8重量%,Si:0.05〜1.0重量%,Mn:0.
10〜0.80重量%,S:0.005〜0.015重
量%,Cr:16〜25重量%,N:0.005〜0.
02重量%,Ti:0.15〜0.60重量%,Al:
0.01〜0.30重量%を含むFe合金であって、仕
上げ焼鈍後の結晶粒が粒度5〜6の範囲に整粒されてい
ることを特徴とする。この封着用合金材料は、前述した
組成をもつFe合金を、800〜950℃で30分以内
保持し、500℃以下に冷却し、更に900〜1050
℃で30分以内保持する二段階仕上げ焼鈍を施すことに
より製造される。
In order to achieve the object, the alloy material for sealing according to the present invention has C: 0.005 to 0.0
8% by weight, Si: 0.05 to 1.0% by weight, Mn: 0.
10 to 0.80% by weight, S: 0.005 to 0.015% by weight, Cr: 16 to 25% by weight, N: 0.005 to 0.
02% by weight, Ti: 0.15 to 0.60% by weight, Al:
An Fe alloy containing 0.01 to 0.30% by weight, characterized in that the crystal grains after finish annealing are sized within a grain size range of 5 to 6. This sealing alloy material holds the Fe alloy having the above-mentioned composition at 800 to 950 ° C. for 30 minutes or less, cools it to 500 ° C. or lower, and further 900 to 1050
It is manufactured by performing a two-step finish annealing that is held at 30 ° C. for 30 minutes or less.

【0008】[0008]

【作用】プレス加工により製造したサポートスタッド等
の封着用合金が十分なシャドウマスク支持強度をもち且
つ優れた気密性を維持するためには、予備酸化処理時に
おける結晶粒の成長を抑制する必要があるとの前提で、
本発明者等は、予備酸化後の結晶粒の変化を種々の観点
から調査・研究した。結晶粒の粗大化を抑制する方法と
して、予備酸化処理の加熱温度を低くしたり、加熱時間
を短くすることが考えられる。しかし、低温或いは短時
間の予備酸化処理では、薄い酸化皮膜が形成され、封着
強度が低下する欠点を伴う。また、合金中のC及びNに
対する親和力が大きいTiを含有させることによって、
Tiの炭窒化物を形成することにより粗大化防止を図る
ことも知られている(昭和55年12月25日 日刊工
業新聞社発光「ステンレス鋼便覧」第360〜361頁
参照)。
[Function] In order for the sealing alloy such as the support stud manufactured by pressing to have sufficient shadow mask support strength and maintain excellent airtightness, it is necessary to suppress the growth of crystal grains during the pre-oxidation treatment. Assuming there is,
The present inventors investigated and studied changes in crystal grains after pre-oxidation from various viewpoints. As a method for suppressing the coarsening of crystal grains, it is conceivable to lower the heating temperature of the pre-oxidation treatment or shorten the heating time. However, the low-temperature or short-time pre-oxidation treatment has a drawback that a thin oxide film is formed and the sealing strength is lowered. Further, by containing Ti, which has a large affinity for C and N in the alloy,
It is also known to prevent coarsening by forming a carbonitride of Ti (see pages 360 to 361, Nihon Kogyo Shimbun Illumination, "Stainless Steel Handbook", December 25, 1980).

【0009】本発明者等もTi添加による効果を調査し
たが、プレス加工によるサポートスタッドの結晶粒粗大
化の抑止について、予備酸化後の結晶粒が板厚に対し安
定して3個以上の細粒の要求が満足されず、Tiの炭窒
化物を析出させるのみでは不十分であることを確認し
た。結晶粒の粗大化は、合金の成分設計及び仕上げ焼鈍
後の組織に大きな影響を受ける。本発明者等は、仕上げ
焼鈍後の結晶粒を整粒することが、予備酸化処理後の結
晶粒の粗大化防止に有効に働くことを実験的に確認し
た。そして、実験結果からTi,C,Nに加えてSの含
有量をも特定したFe−Cr系合金に、一段目を800
〜950℃,二段目を900〜1050℃に加熱する二
段階の仕上げ焼鈍を施すとき、予備酸化後の結晶粒の粗
大化が有効に抑制されることを見い出した。なお、一段
階及び二段階の加熱は、何れも所定温度に昇温した後、
その温度に30分以内の時間保持する。
The inventors of the present invention also investigated the effect of adding Ti, and as for the suppression of the crystal grain coarsening of the support studs by press working, the crystal grains after pre-oxidation are stable with respect to the plate thickness and have three or more fine grains. It was confirmed that the requirements for grains were not satisfied, and that precipitation of carbonitride of Ti was not sufficient. The coarsening of crystal grains is greatly affected by the alloy component design and the structure after finish annealing. The present inventors experimentally confirmed that sizing the crystal grains after finish annealing effectively works to prevent coarsening of the crystal grains after the pre-oxidation treatment. Then, the Fe-Cr-based alloy in which the content of S was specified in addition to Ti, C, and N from the experimental results had a first step of 800
It was found that the coarsening of the crystal grains after the pre-oxidation is effectively suppressed when performing the two-step finish annealing in which the second stage is heated to 950 ° C and the second stage to 900 to 1050 ° C. In addition, in the one-step and two-step heating, after raising the temperature to a predetermined temperature,
Hold at that temperature for up to 30 minutes.

【0010】適正な成分設計及び二段階の仕上げ焼鈍に
よって、整粒組織が得られ、予備酸化処理状態で板厚方
向に関する結晶粒の粗大化が抑制される機構は、次のよ
うに推察される。一段目の加熱によって、TiC,Ti
S,TiN等の微細なTi系化合物がマトリックス中に
均一に分散析出する。析出したTi系化合物は、予備酸
化処理時において結晶粒の成長を抑制するピンニング作
用を呈する。再結晶成長過程において、結晶粒が部分的
に大きく成長することがある。大きく成長した結晶粒
は、その後の結晶成長過程で、隣接する小さな結晶粒を
吸収し、一層大きな粒径になる。その結果、大きな結晶
粒の粒界に小さな結晶粒が散在する混粒組織となる。こ
のような組織では、予備酸化後に板厚に対して3個以上
の結晶粒が存在する状態を安定して得ることができな
い。
The mechanism by which a grain size controlled structure is obtained by proper component design and two-step finish annealing and grain coarsening in the plate thickness direction is suppressed in the pre-oxidation state is presumed as follows. . By the first heating, TiC, Ti
Fine Ti-based compounds such as S and TiN are uniformly dispersed and precipitated in the matrix. The deposited Ti-based compound exhibits a pinning effect of suppressing the growth of crystal grains during the pre-oxidation treatment. In the recrystallization growth process, crystal grains may partially grow large. The large-grown crystal grains absorb adjacent small crystal grains in the subsequent crystal growth process to have a larger grain size. As a result, a mixed grain structure is formed in which small crystal grains are scattered at the grain boundaries of large crystal grains. With such a structure, a state in which three or more crystal grains are present with respect to the plate thickness cannot be stably obtained after pre-oxidation.

【0011】そこで、一段目の加熱で、再結晶時の粒成
長を、混粒組織となる直前の結晶成長7番の段階で一旦
加熱を留める。加熱されたFe−Cr系合金を500℃
以下の低温まで冷却すると、個々の結晶粒に生じていた
結晶粒界移動の駆動力のバラツキが均一化される。その
結果、二段目の再加熱を受けたとき、個々の結晶粒が均
等に成長し、二次再結晶で生じ易い結晶粒の混粒が抑制
され整粒化された組織が得られる。このように、一段目
の加熱温度を800〜950℃、二段目の加熱温度を9
00〜1050℃とし、それぞれの加熱時間を30分以
内に設定するとき、二次再結晶で生じ易い混粒の発生を
抑制し、整粒組織が得られる。また、結晶粒の粗大化
は、一段目の加熱で析出したTi系化合物によっても抑
制される。
Therefore, in the first stage heating, the grain growth during recrystallization is temporarily stopped at the stage of crystal growth No. 7 just before the mixed grain structure is formed. Heated Fe-Cr alloy to 500 ° C
When cooled to the following low temperature, the variation in the driving force of the grain boundary movement generated in each crystal grain becomes uniform. As a result, when the second-stage reheating is performed, the individual crystal grains grow uniformly, and the mixed grains of the crystal grains that are likely to be generated in the secondary recrystallization are suppressed, so that the grain-structured structure is obtained. In this way, the heating temperature of the first step is 800 to 950 ° C, and the heating temperature of the second step is 9
When the heating time is set to 00 to 1050 ° C. and each heating time is set to 30 minutes or less, the generation of mixed grains that are likely to occur in secondary recrystallization is suppressed, and a sized structure is obtained. Further, the coarsening of the crystal grains is also suppressed by the Ti-based compound deposited by the first heating.

【0012】仕上げ焼鈍された状態での整粒組織は、結
晶粒径が5〜6の範囲に揃っていることが必要である。
結晶粒径が揃った組織をもつ合金材料は、後続する予備
酸化処理工程で高温に加熱されても、全体的に均等な結
晶成長が進行し、一部の結晶粒が隣接する結晶粒を吸収
し粗大化することがない。すなわち、結晶粒成長に関し
ては、一次再結晶後、大部分の再結晶粒の大きさがd
で、少数の再結晶粒の大きさがD>2dであるとき、そ
の少数の再結晶粒のみが大きく成長すると一般にいわれ
ている。この一次再結晶後の粒径に影響され、混粒組織
が形成されるものと考えられる。
The grain size control structure in the finish-annealed state must have a crystal grain size in the range of 5 to 6.
Even if the alloy material with a uniform crystal grain size is heated to a high temperature in the subsequent pre-oxidation process, uniform crystal growth progresses, and some crystal grains absorb adjacent crystal grains. It does not become coarse. That is, regarding the crystal grain growth, the size of most of the recrystallized grains is d after the primary recrystallization.
It is generally said that, when the size of a few recrystallized grains is D> 2d, only the few recrystallized grains grow large. It is considered that a mixed grain structure is formed due to the influence of the grain size after the primary recrystallization.

【0013】また、二段階仕上げ焼鈍によって整粒組織
を得るためには、合金成分及びその含有量を規定する必
要がある。以下、各合金成分について、説明する。 C: Tiと結合してTiCとなり、結晶粒の粗大化を
防止する上で有効な合金元素である。この作用は、0.
005重量%以上のC含有量で顕著になる。しかし、オ
ーステナイト相の析出防止及び良好な耐食性を維持する
ために、C含有量を0.08重量%以下に規制すること
が必要である。 Si: 予備酸化処理時に内部酸化粒子を形成し、酸化
皮膜の密着強度を向上させる作用を呈する。この作用を
確保するために、0.05重量%以上のSiが必要であ
る。しかし、1.0重量%を超える多量のSiは、酸化
膜を薄くすることに作用し、酸化膜の密着強度を低下さ
せることから好ましくない。 Mn: 予備酸化時に生成される酸化膜をスピネル型に
し、酸化膜とガラスとの密着強度を向上させる上で有効
な合金元素である。Mn含有量が0.10重量%未満で
は、スピネル型酸化物の形成が少ない。しかし、Mn含
有量が0.80重量%を超えると、予備酸化時に生成す
る酸化膜が厚くなりすぎ、下地に対する密着性が低下す
る。
Further, in order to obtain a grain size controlled structure by the two-step finish annealing, it is necessary to specify the alloy components and their contents. Hereinafter, each alloy component will be described. C: An alloying element that is effective in preventing coarsening of crystal grains by combining with Ti to form TiC. This effect is 0.
It becomes remarkable at a C content of 005% by weight or more. However, in order to prevent the precipitation of the austenite phase and maintain good corrosion resistance, it is necessary to regulate the C content to 0.08% by weight or less. Si: Formes internal oxide particles during the pre-oxidation treatment, and has the effect of improving the adhesion strength of the oxide film. To secure this action, 0.05 wt% or more of Si is necessary. However, a large amount of Si exceeding 1.0% by weight acts to thin the oxide film and reduces the adhesion strength of the oxide film, which is not preferable. Mn: This is an alloying element effective in making the oxide film produced during pre-oxidation into a spinel type and improving the adhesion strength between the oxide film and glass. When the Mn content is less than 0.10% by weight, the formation of spinel type oxide is small. However, if the Mn content exceeds 0.80% by weight, the oxide film formed during pre-oxidation becomes too thick, and the adhesion to the underlayer is reduced.

【0014】S: TiSとなって結晶粒の粗大化を抑
制する。S含有量が0.005重量%未満ではTiSの
生成量が少なく、結晶粒粗大化に対する抑止作用が得ら
れない。逆に、0.015重量%を超えるS含有量で
は、腐食の起点となる硫化物系介在物が多量に生成し、
耐食性を劣化させる。 Cr: ブラウン管用のガラスに近似した熱膨張係数を
付与するため、16〜25重量%の範囲にCr含有量が
規定される。Cr含有量が16重量%未満では、熱膨張
係数が大きくなり、ガラスとの熱膨張差に起因する欠陥
が生じ易くなる。また、25重量%を超えるCr含有量
では、加工性が劣化する。 Ti: TiC,TiS,TiN等の微細なTi系化合
物を生成する上で必要な合金元素である。Ti含有量が
0.15重量%未満では、必要とする微細なTi系化合
物の生成量が少なく、十分な結晶粒の粗大化抑止効果が
得られない。逆に、0.60重量%を超える多量のTi
含有量では、合金材料の表面性状が劣化する。
S: TiS to suppress coarsening of crystal grains. If the S content is less than 0.005% by weight, the amount of TiS produced is small, and the effect of suppressing crystal grain coarsening cannot be obtained. On the contrary, if the S content exceeds 0.015% by weight, a large amount of sulfide-based inclusions, which are the starting point of corrosion, are generated,
Deteriorates corrosion resistance. Cr: In order to give a coefficient of thermal expansion similar to that of glass for cathode ray tubes, the Cr content is specified in the range of 16 to 25% by weight. When the Cr content is less than 16% by weight, the coefficient of thermal expansion becomes large, and defects due to the difference in thermal expansion from glass are likely to occur. Further, if the Cr content exceeds 25% by weight, workability deteriorates. Ti: An alloying element necessary for producing fine Ti-based compounds such as TiC, TiS, and TiN. When the Ti content is less than 0.15% by weight, the required amount of fine Ti-based compound produced is small and a sufficient effect of suppressing coarsening of crystal grains cannot be obtained. On the contrary, a large amount of Ti exceeding 0.60% by weight
The content deteriorates the surface quality of the alloy material.

【0015】N: TiNとなって結晶粒の粗大化を抑
制する。N含有量が0.005重量%未満であると、T
iNの生成量が少なく、有効な結晶粒粗大化抑止効果が
得られない。逆に、0.02重量%を超える多量のNが
含有されると、予備酸化処理時に酸化ムラが生じ易くな
り、均質な酸化皮膜が得られ難くなる。 Al: 内部酸化粒子の形成によりアンカーリング効果
を増進させる上で、必要な合金元素である。有効な内部
酸化粒子を形成させるために、0.01重量%以上のA
lを含有させる。しかし、0.30重量%を超える多量
のAlを含有させると、Alの優先酸化によって生じた
酸化皮膜がバリヤー層として働き、他の元素の酸化を抑
制する。その結果、生成する酸化膜が薄くなり、下地に
対する密着性が低下する。
N: TiN is used to suppress coarsening of crystal grains. When the N content is less than 0.005% by weight, T
The amount of iN produced is small, and an effective grain coarsening inhibiting effect cannot be obtained. On the other hand, when a large amount of N exceeding 0.02% by weight is contained, uneven oxidation is likely to occur during the preliminary oxidation treatment, and it becomes difficult to obtain a uniform oxide film. Al: An alloying element necessary for enhancing the anchoring effect by forming internal oxide particles. 0.01% by weight or more of A to form effective internal oxide particles
1 is included. However, when a large amount of Al exceeding 0.30 wt% is contained, the oxide film formed by preferential oxidation of Al acts as a barrier layer and suppresses the oxidation of other elements. As a result, the oxide film produced becomes thin, and the adhesion to the base is reduced.

【0016】合金元素及びその含有量が規定されたFe
合金は、二段階の仕上げ焼鈍を受ける。一段目の加熱
は、800〜950℃,好ましくは850〜930℃の
温度範囲で行われる。加熱温度が800℃未満であると
き、或いは950℃を超えるとき、適正な微細Ti系化
合物が均質に分散析出した一次再結晶組織が得られな
い。二段目の加熱は、900〜1050℃、好ましくは
930〜1020℃の温度範囲で行われる。二段目の加
熱によって二次再結晶を十分に行わせるため、900℃
以上の加熱温度が必要である。しかし、1050℃を超
える加熱温度では、結晶粒を過度に成長させ、プレス成
形された製品の表面肌を悪化させる。
Fe with an alloying element and its content specified
The alloy undergoes a two stage finish anneal. The first stage heating is performed in the temperature range of 800 to 950 ° C, preferably 850 to 930 ° C. When the heating temperature is lower than 800 ° C. or higher than 950 ° C., a proper recrystallized structure in which an appropriate fine Ti compound is uniformly dispersed and precipitated cannot be obtained. The second heating is performed in the temperature range of 900 to 1050 ° C, preferably 930 to 1020 ° C. In order to sufficiently carry out the secondary recrystallization by heating the second stage, 900 ° C
The above heating temperature is required. However, if the heating temperature exceeds 1050 ° C., the crystal grains grow excessively and the surface texture of the press-formed product is deteriorated.

【0017】一段目及び二段目の加熱時間は、結晶粒の
成長を考慮して30分以内に設定される。加熱時間が短
すぎると十分な焼鈍効果が得られず、長すぎると生産性
が低下する。好ましくは、一段目の加熱を0.1〜5
分,二段目の加熱を1〜5分の間で設定する。また、一
段目の加熱と二段目の加熱との間に、合金材料を500
℃以下に冷却する降温工程をおく。この冷却は、個々の
結晶粒に生じていた結晶粒界移動の駆動力を一旦無く
し、そのバラツキを均一化することを目的とする。
The heating time of the first and second steps is set within 30 minutes in consideration of the growth of crystal grains. If the heating time is too short, a sufficient annealing effect cannot be obtained, and if it is too long, the productivity is lowered. Preferably, the first stage heating is 0.1 to 5
Minutes, the second stage heating is set between 1 and 5 minutes. In addition, between the first heating and the second heating, 500
A temperature lowering step of cooling to below ℃ is performed. The purpose of this cooling is to temporarily eliminate the driving force of the crystal grain boundary movement that has occurred in each crystal grain and to make the variation uniform.

【0018】[0018]

【実施例】表1に示した4種類の合金を、真空誘導溶解
炉で溶製した。得られた合金からそれぞれ板厚5.5m
mの熱延板を製造し、各熱延板を900℃で焼鈍した
後、ディスケールし、圧延率70%の冷間圧延を施すこ
とによって板厚0.8mmの冷延板を得た。
Example The four alloys shown in Table 1 were melted in a vacuum induction melting furnace. The thickness of each alloy obtained is 5.5 m
m hot-rolled sheet was manufactured, each hot-rolled sheet was annealed at 900 ° C., descaled, and cold-rolled at a rolling rate of 70% to obtain a cold-rolled sheet having a sheet thickness of 0.8 mm.

【表1】 [Table 1]

【0019】各冷延板に、750〜1000℃の範囲に
おける一段目の加熱,500℃以下に降温する冷却、次
いで850〜1100℃の範囲における二段目の加熱を
行う二段階仕上げ焼鈍を施した。なお、従来通り一段階
の仕上げ焼鈍を950〜1050℃の範囲で施した比較
材も用意した。焼鈍後の各供試材を、図3に示す形状に
プレス成形した。なお、小径部の寸法d1 =6mm,大
径部の寸法d2 =12mm及び全高H=10mmに設定
した。プレス加工後の各供試材に、湿潤水素雰囲気中で
1150℃で40分間加熱する予備酸化処理を施した。
その後、図3に示した湾曲部を輪切りにして試験片を採
取した。試験片の矢印Fで示す面を顕微鏡観察し、板厚
方向に関する結晶粒の個数をカウントした。調査結果
を、表2に示す。
Each cold-rolled sheet is subjected to a two-step finish annealing in which the first stage heating in the range of 750 to 1000 ° C., the cooling to lower the temperature to 500 ° C. or lower, and the second stage heating in the range of 850 to 1100 ° C. are performed. did. In addition, the comparative material which performed the one-step finish annealing in the range of 950 to 1050 ° C. was prepared as usual. After annealing, each test material was press-formed into the shape shown in FIG. The dimension d 1 of the small diameter portion was 6 mm, the dimension d 2 of the large diameter portion was 12 mm, and the total height H was 10 mm. After the pressing, each test material was subjected to a preliminary oxidation treatment of heating at 1150 ° C. for 40 minutes in a wet hydrogen atmosphere.
Then, the curved portion shown in FIG. 3 was sliced to obtain a test piece. The surface of the test piece indicated by the arrow F was observed under a microscope, and the number of crystal grains in the plate thickness direction was counted. The survey results are shown in Table 2.

【表2】 [Table 2]

【0020】表2から明らかなように、一段階だけの仕
上げ焼鈍を施したときには、予備酸化後の結晶粒が粗大
化し、板厚方向に関し3個以上の結晶粒が存在するもの
は得られなかった。これに対し、適量のTi,C及びN
を加え更にS含有量を規定した合金に、800〜950
℃での一段加熱及び900〜1050℃での二段加熱を
施したものでは、湾曲部に粗大粒が出現しておらず、板
厚方向に3個以上の結晶粒が存在した組織が安定して得
られた。予備酸化処理された供試材を使用してガラス封
着を行ったところ、強度及び気密性に優れた封着部が得
られた。
As is clear from Table 2, when only one step of finish annealing is performed, the crystal grains after the pre-oxidation become coarse, and those having three or more crystal grains in the plate thickness direction cannot be obtained. It was On the other hand, appropriate amount of Ti, C and N
Is added to the alloy whose S content is specified, and 800 to 950
With the one-stage heating at ℃ and the two-stage heating at 900 to 1050 ° C., coarse grains did not appear in the curved portion, and the structure in which three or more crystal grains were present in the plate thickness direction was stable. It was obtained. When glass was sealed using the pre-oxidized test material, a sealed part excellent in strength and airtightness was obtained.

【0021】実施例2:供試材No.1に種々の熱処理条
件で二段階焼鈍を施し、焼鈍後の結晶粒度を変化させ
た。実験結果から、一段目の加熱を800〜950℃,
二段目の加熱を900〜1050℃とした場合、焼鈍後
の結晶粒が粒度5〜6の範囲に維持された整粒組織が得
られることが判明した。
Example 2: The test material No. 1 was subjected to two-step annealing under various heat treatment conditions to change the grain size after annealing. From the experimental results, the first stage heating was 800-950 ° C,
It was found that when the heating in the second step was set to 900 to 1050 ° C., a sized structure in which the crystal grains after annealing were maintained in the grain size range of 5 to 6 was obtained.

【0022】各種結晶粒度をもつ供試材をプレス成形し
た後、相対湿度70%の湿潤雰囲気中で1200℃に4
0分間加熱する予備酸化処理を施した。そして、予備酸
化処理後における板厚方向に関する結晶組織を観察し、
焼鈍後の整粒状態との関係で整理したところ、両者の間
に表3に示す関係があった。なお、表3における予備酸
化処理後の結晶組織は、顕微鏡観察によって結晶粒をカ
ウントし、板厚方向に関し3個以上の結晶粒が安定して
存在する組織をA,板厚方向に関し1個又は2個の結晶
粒が面積率10%以下にみられる組織をB,板厚方向に
関し1個又は2個の結晶粒が観察される部分の面積率が
11〜50%である組織をC,板厚方向に関し1個又は
2個の結晶粒が観察される部分の面積率が50%を超え
る組織をDとして評価した。
After press-molding the test materials having various grain sizes, the temperature was changed to 1200 ° C. in a humid atmosphere with a relative humidity of 70%, and
A pre-oxidation treatment of heating for 0 minutes was performed. Then, observe the crystal structure in the plate thickness direction after the preliminary oxidation treatment,
When arranged in relation to the sized state after annealing, there was a relation shown in Table 3 between the two. Regarding the crystal structure after the pre-oxidation treatment in Table 3, the crystal grains are counted by microscopic observation, and a structure in which three or more crystal grains are stably present in the plate thickness direction is A, one in the plate thickness direction or B is a structure in which two crystal grains have an area ratio of 10% or less, and C is a structure in which the area ratio of the portion where one or two crystal grains are observed in the plate thickness direction is 11 to 50%. The structure in which the area ratio of the portion where one or two crystal grains are observed in the thickness direction exceeds 50% was evaluated as D.

【表3】 [Table 3]

【0023】表3から明らかなように、焼鈍条件の調整
によって焼鈍後の結晶粒度を5〜6に揃えるとき、予備
酸化された状態で結晶粒は板厚方向に関して安定して3
個以上になっており、微細組織をもつ封着合金材料とな
ることが判った。
As is clear from Table 3, when the grain size after annealing is adjusted to 5 to 6 by adjusting the annealing conditions, the grain size is stable in the plate thickness direction in the pre-oxidized state.
It has been found that the number of the alloys is more than one, and that the material is a sealing alloy material having a fine structure.

【0024】[0024]

【発明の効果】以上に説明したように、本発明において
は、Ti,C,N,S等の含有量が規定されたFe−C
r系合金に二段階の仕上げ焼鈍を施すことにより、粒度
が5〜6の範囲に揃った整粒組織をもった封着合金用素
材を得ている。この材料を予備酸化処理すると、結晶粒
が板厚方向に関して3個以上存在する微細組織が安定し
て得られる。そのため、予備酸化された封着合金は、シ
ャドウマスク等を支持するために十分な強度をもち、し
かも気密性に優れた封着部を形成する。
As described above, in the present invention, Fe-C in which the content of Ti, C, N, S, etc. is specified.
By subjecting the r-based alloy to a two-step finish annealing, a raw material for a sealing alloy having a sized structure in which the grain size is in the range of 5 to 6 is obtained. When this material is pre-oxidized, a fine structure having three or more crystal grains in the plate thickness direction can be stably obtained. Therefore, the pre-oxidized sealing alloy has sufficient strength to support the shadow mask and the like, and forms a sealing portion excellent in airtightness.

【図面の簡単な説明】[Brief description of drawings]

【図1】 冷間鍛造及び切削加工によって棒状材料から
製造されたサポートスタッドの断面図
FIG. 1 is a sectional view of a support stud manufactured from a rod-shaped material by cold forging and cutting.

【図2】 プレス加工で帯鋼から製造されたサポートス
タッドの断面図
[Fig. 2] Cross-sectional view of a support stud manufactured from a band steel by press working.

【図3】 本発明実施例で製造したサポートスタッドの
斜視図
FIG. 3 is a perspective view of a support stud manufactured according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 :小径部の直径 d2 :大径部の直径 H:サ
ポートスタッドの全高 F:結晶粒の観察面
d 1 : Diameter of small diameter part d 2 : Diameter of large diameter part H: Total height of support stud F: Observation surface of crystal grain

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 誠 山口県新南陽市野村南町4976番地 日新製 鋼株式会社鉄鋼研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Inoue 4976 Nomura Minami-cho, Shinnanyo-shi, Yamaguchi Nisshin Steel Co., Ltd. Steel Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.005〜0.08重量%,S
i:0.05〜1.0重量%,Mn:0.10〜0.8
0重量%,S:0.005〜0.015重量%,Cr:
16〜25重量%,N:0.005〜0.02重量%,
Ti:0.15〜0.60重量%,Al:0.01〜
0.30重量%を含むFe合金であって、仕上げ焼鈍後
の結晶粒が粒度5〜6の範囲に整粒されていることを特
徴とする封着用合金材料。
1. C: 0.005-0.08% by weight, S
i: 0.05 to 1.0% by weight, Mn: 0.10 to 0.8
0% by weight, S: 0.005 to 0.015% by weight, Cr:
16-25% by weight, N: 0.005-0.02% by weight,
Ti: 0.15 to 0.60% by weight, Al: 0.01 to
A Fe alloy containing 0.30% by weight, wherein the crystal grains after finish annealing are sized within a grain size range of 5 to 6 for sealing alloy material.
【請求項2】 C:0.005〜0.08重量%,S
i:0.05〜1.0重量%,Mn:0.10〜0.8
0重量%,S:0.005〜0.015重量%,Cr:
16〜25重量%,N:0.005〜0.02重量%,
Ti:0.15〜0.60重量%,Al:0.01〜
0.30重量%を含むFe合金を、800〜950℃に
30分以内保持し、500℃以下に冷却し、更に900
〜1050℃に30分以内保持する二段階仕上げ焼鈍を
施すことを特徴とする封着用合金の熱処理方法。
2. C: 0.005-0.08% by weight, S
i: 0.05 to 1.0% by weight, Mn: 0.10 to 0.8
0% by weight, S: 0.005 to 0.015% by weight, Cr:
16-25% by weight, N: 0.005-0.02% by weight,
Ti: 0.15 to 0.60% by weight, Al: 0.01 to
An Fe alloy containing 0.30% by weight is kept at 800 to 950 ° C. for 30 minutes or less, cooled to 500 ° C. or lower, and further 900
A heat treatment method for a sealing alloy, which comprises performing a two-step finish annealing at 1050 ° C for 30 minutes or less.
JP05553793A 1993-03-16 1993-03-16 Sealing alloy material and heat treatment method thereof Expired - Fee Related JP3294892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05553793A JP3294892B2 (en) 1993-03-16 1993-03-16 Sealing alloy material and heat treatment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05553793A JP3294892B2 (en) 1993-03-16 1993-03-16 Sealing alloy material and heat treatment method thereof

Publications (2)

Publication Number Publication Date
JPH06264191A true JPH06264191A (en) 1994-09-20
JP3294892B2 JP3294892B2 (en) 2002-06-24

Family

ID=13001477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05553793A Expired - Fee Related JP3294892B2 (en) 1993-03-16 1993-03-16 Sealing alloy material and heat treatment method thereof

Country Status (1)

Country Link
JP (1) JP3294892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197988A (en) * 2000-12-25 2002-07-12 Toshiba Corp Sealing alloy plate and panel pin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002197988A (en) * 2000-12-25 2002-07-12 Toshiba Corp Sealing alloy plate and panel pin

Also Published As

Publication number Publication date
JP3294892B2 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
EP0108268B1 (en) Method for the production of cold rolled steel sheet having super deep drawability
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
JPS62177143A (en) Aluminum alloy sheet excellent in formability and baking hardening and its production
JPS6140299B2 (en)
EP0739992B1 (en) Alloy sheet for shadow mask and method for manufacturing thereof
JP7132415B1 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
EP0299605B1 (en) Iron-copper-chromium alloy for high-strength lead frame or pin grid array and process for preparation thereof
JP2871414B2 (en) Alloy thin plate for shadow mask excellent in press formability and method for producing the same
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JP3280692B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JPH06264191A (en) Alloy material for sealing and heat treatment therefor
US5637161A (en) Method of producing an alloy sheet for a shadow mask
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JPH07228922A (en) Alloy material for sealing and heat treatment therefor
JP3042273B2 (en) Method for producing Fe-Ni-based alloy thin plate for IC lead frame with excellent rust resistance
JP3353321B2 (en) Method for producing Fe-Ni alloy sheet for shadow mask excellent in press formability and Fe-Ni alloy sheet for shadow mask excellent in press formability
JP4285869B2 (en) Method for producing Cr-containing thin steel sheet
JPH07292417A (en) Production of ferritic stainless steel sheet excellent in formed surface characteristic
JPS5910987B2 (en) Aluminum alloy with excellent formability and method for manufacturing its thin plate
JP2628743B2 (en) Manufacturing method of aluminum alloy material for forming
JPH08239716A (en) Production of sealing material
JP3367147B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for shadow mask having excellent press formability and method for producing the same
JPH0118124B2 (en)
JPH02221356A (en) Production of aluminum alloy stock for heat radiation bar
JP2663777B2 (en) Fe-Ni alloy excellent in plating property and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020319

LAPS Cancellation because of no payment of annual fees