JP3294892B2 - Sealing alloy material and heat treatment method thereof - Google Patents

Sealing alloy material and heat treatment method thereof

Info

Publication number
JP3294892B2
JP3294892B2 JP05553793A JP5553793A JP3294892B2 JP 3294892 B2 JP3294892 B2 JP 3294892B2 JP 05553793 A JP05553793 A JP 05553793A JP 5553793 A JP5553793 A JP 5553793A JP 3294892 B2 JP3294892 B2 JP 3294892B2
Authority
JP
Japan
Prior art keywords
weight
crystal grains
alloy
grain
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05553793A
Other languages
Japanese (ja)
Other versions
JPH06264191A (en
Inventor
晋平 勇
敏彦 武本
卓司 沖山
誠 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP05553793A priority Critical patent/JP3294892B2/en
Publication of JPH06264191A publication Critical patent/JPH06264191A/en
Application granted granted Critical
Publication of JP3294892B2 publication Critical patent/JP3294892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ブラウン管のシャドウ
マスクを支持するサポートスタッド等の封着用合金及び
その熱処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealing alloy such as a support stud for supporting a shadow mask of a cathode ray tube and a heat treatment method thereof.

【0002】[0002]

【従来の技術】ガラス,セラミックス等との封着に使用
される合金としては、Fe−42Ni−6Cr合金,F
e−42〜50Ni合金,Fe−29Ni−17Co合
金,Fe−18Cr合金等が使用されている。なかで
も、Fe−18Cr合金は、ブラウン管に使用されてい
るガラスに近い熱膨張係数をもつことから、サポートス
タッド等のシャドウマスク支持部品として広く使用され
ている。サポートスタッドには、棒状材料を冷間鍛造及
び切削し、図1の断面形状をもつカップに加工したもの
が使用されてきた。しかし、このサポートスタッド10
は、多数の加工工程を必要とし、また重量が大きい欠点
がある。
2. Description of the Related Art As alloys used for sealing with glass, ceramics, etc., there are Fe-42Ni-6Cr alloy, F
e-42 to 50Ni alloy, Fe-29Ni-17Co alloy, Fe-18Cr alloy and the like are used. Among them, an Fe-18Cr alloy is widely used as a shadow mask support component such as a support stud because it has a thermal expansion coefficient close to that of glass used for a cathode ray tube. For the support stud, a bar-shaped material that has been cold forged and cut and processed into a cup having the cross-sectional shape shown in FIG. 1 has been used. However, this support stud 10
Has the disadvantage that it requires a large number of processing steps and is heavy.

【0003】最近では、プレス加工技術の進展に伴って
加工工数の減少が可能となり、板厚0.8mm前後の薄
鋼板をプレス加工することによって図2に示す断面形状
をもつサポートスタッド20が一部で使用され始めてい
る。サポートスタッド20に使用される薄鋼板は、一般
に溶製,熱間圧延,焼鈍及び冷間圧延を経て、950〜
1050℃に0.5〜5分加熱する仕上げ焼鈍が施され
ている。薄鋼板をプレス加工によってカップ状に加工し
た後、加熱温度1100〜1200℃,加熱時間10〜
60分で湿潤水素ガス雰囲気中で予備酸化処理が施され
る。予備酸化処理によって、ガラス封着に有効な酸化皮
膜が表面に形成される。
Recently, with the development of press working technology, the number of working steps can be reduced, and a support stud 20 having a sectional shape shown in FIG. Has begun to be used in the department. The thin steel sheet used for the support stud 20 is generally subjected to smelting, hot rolling, annealing and cold rolling.
Finish annealing for heating at 1050 ° C. for 0.5 to 5 minutes is performed. After processing a thin steel plate into a cup shape by pressing, the heating temperature is 1100 to 1200 ° C and the heating time is 10 to 10.
A preliminary oxidation treatment is performed in a wet hydrogen gas atmosphere for 60 minutes. By the preliminary oxidation treatment, an oxide film effective for sealing the glass is formed on the surface.

【0004】[0004]

【発明が解決しようとする課題】サポートスタッドに要
求される特性としては、比較的重量の大きなシャドウマ
スクを支持するに十分な強度をもつことが要求される。
この点、棒状材料から冷間鍛造及び切削加工によって製
造されたサポートスタッド10(図1)は、肉厚があ
り、強度の信頼性が高い。他方、薄鋼板をプレス加工し
て製造したサポートスタッド20(図2)は、薄肉であ
る。このサポートスタッド20が予備酸化時の高温に曝
されると、大きな加工を受けた湾曲部21における再結
晶が平坦部22に比較して優先的に進行する。その結
果、湾曲部21の結晶粒が粗大化し、結晶粒の粗大化が
それほど進行しない平坦部22との間に強度差が発生す
る場合があり、湾曲部21に変形,亀裂等が発生し易く
なる。
As a characteristic required for the support stud, it is required that the support stud has sufficient strength to support a relatively heavy shadow mask.
In this regard, the support stud 10 (FIG. 1) manufactured from a bar-shaped material by cold forging and cutting has a large thickness and high strength reliability. On the other hand, the support stud 20 (FIG. 2) manufactured by pressing a thin steel plate is thin. When the support stud 20 is exposed to a high temperature at the time of preliminary oxidation, recrystallization in the curved portion 21 that has undergone large processing proceeds preferentially in comparison with the flat portion 22. As a result, the crystal grains of the curved portion 21 are coarsened, and there may be a difference in strength between the curved portion 21 and the flat portion 22 where the coarsening of the crystal grains does not proceed so much, and the curved portion 21 is likely to be deformed, cracked, or the like. Become.

【0005】結晶粒が粗大化して板厚を貫通すると、板
厚の表裏が単一の結晶粒界で連絡され、ガスの粒界拡散
に起因したスローリークが発生し易くなる。その結果、
サポートスタッドの気密性が低下し、ブラウン管の性能
を著しく害する。この点、必要な気密性を確保する上で
は、予備酸化後の結晶粒が板厚に対し安定して3個以上
の細粒であることが要望されている。しかし、従来の製
造方法では、予備酸化された状態で細粒組織を安定して
得ることが困難であった。また、強度,気密性等の問題
は、サポートスタッドに限らず、薄鋼板から製造される
蛍光表示管用リードフレーム等の他の封着用部品につい
ても同様である。
[0005] When the crystal grains become coarse and penetrate the plate thickness, the front and back of the plate thickness are connected by a single crystal grain boundary, so that a slow leak due to the diffusion of the gas boundary is likely to occur. as a result,
The airtightness of the support stud is reduced, and the performance of the CRT is significantly impaired. In this regard, in order to secure necessary airtightness, it is required that crystal grains after pre-oxidation are three or more fine grains stably with respect to the plate thickness. However, in the conventional manufacturing method, it was difficult to stably obtain a fine grain structure in a pre-oxidized state. Further, the problems of strength, airtightness, etc. are not limited to the support studs, but also apply to other sealing parts such as a lead frame for a fluorescent display tube manufactured from a thin steel plate.

【0006】本発明は、このような問題を解消すべく案
出されたものであり、Ti,C,N及びSの含有量が規
定されたFe−18Cr系合金に二段階の仕上げ焼鈍を
施すことにより、仕上げ焼鈍後に結晶粒径が揃った整粒
組織を得、予備酸化後の結晶粒が板厚に対して安定して
3個以上の細粒であることを満足する信頼性に優れた封
着用合金材料を提供することを目的とする。
The present invention has been devised to solve such a problem, and performs a two-stage finish annealing on an Fe-18Cr alloy in which the contents of Ti, C, N and S are specified. Thereby, a grain-sized structure having a uniform crystal grain size after finish annealing is obtained, and excellent reliability is satisfied to satisfy that the crystal grains after pre-oxidation are three or more fine grains stably with respect to the plate thickness. An object of the present invention is to provide a sealing alloy material.

【0007】[0007]

【課題を解決するための手段】本発明の封着用合金材料
は、その目的を達成するため、C:0.005〜0.0
8重量%,Si:0.05〜1.0重量%,Mn:0.
10〜0.80重量%,S:0.005〜0.015重
量%,Cr:16〜25重量%,N:0.005〜0.
02重量%,Ti:0.15〜0.60重量%,Al:
0.01〜0.30重量%を含むFe合金であって、仕
上げ焼鈍後の結晶粒が粒度5〜6の範囲に整粒されてい
ることを特徴とする。この封着用合金材料は、前述した
組成をもつFe合金を、800〜950℃で30分以内
保持し、500℃以下に冷却し、更に900〜1050
℃で30分以内保持する二段階仕上げ焼鈍を施すことに
より製造される。
In order to achieve the object, the alloy material for sealing of the present invention has a C content of 0.005 to 0.0.
8% by weight, Si: 0.05 to 1.0% by weight, Mn: 0.
10 to 0.80% by weight, S: 0.005 to 0.015% by weight, Cr: 16 to 25% by weight, N: 0.005 to 0.5%.
02% by weight, Ti: 0.15 to 0.60% by weight, Al:
A Fe alloy containing 0.01 to 0.30% by weight, wherein the crystal grains after the finish annealing are sized to have a grain size of 5 to 6. This sealing alloy material holds the Fe alloy having the above-described composition at 800 to 950 ° C. for 30 minutes or less, cools it to 500 ° C. or less, and further cools it to 900 to 1050 ° C.
It is manufactured by performing a two-stage finish annealing that is held at 30 ° C. within 30 minutes.

【0008】[0008]

【作用】プレス加工により製造したサポートスタッド等
の封着用合金が十分なシャドウマスク支持強度をもち且
つ優れた気密性を維持するためには、予備酸化処理時に
おける結晶粒の成長を抑制する必要があるとの前提で、
本発明者等は、予備酸化後の結晶粒の変化を種々の観点
から調査・研究した。結晶粒の粗大化を抑制する方法と
して、予備酸化処理の加熱温度を低くしたり、加熱時間
を短くすることが考えられる。しかし、低温或いは短時
間の予備酸化処理では、薄い酸化皮膜が形成され、封着
強度が低下する欠点を伴う。また、合金中のC及びNに
対する親和力が大きいTiを含有させることによって、
Tiの炭窒化物を形成することにより粗大化防止を図る
ことも知られている(昭和55年12月25日 日刊工
業新聞社発行「ステンレス鋼便覧」第360〜361頁
参照)。
[Action] In order for a sealing alloy such as a support stud manufactured by press working to have sufficient shadow mask support strength and to maintain excellent airtightness, it is necessary to suppress the growth of crystal grains during the preliminary oxidation treatment. Assuming that there is,
The present inventors have investigated and studied the change of crystal grains after the preliminary oxidation from various viewpoints. As a method for suppressing the coarsening of crystal grains, it is conceivable to lower the heating temperature of the preliminary oxidation treatment or shorten the heating time. However, the preliminary oxidation treatment at a low temperature or for a short time forms a thin oxide film, which has a disadvantage of lowering the sealing strength. Further, by containing Ti having a high affinity for C and N in the alloy,
It is also known to prevent coarsening by forming a carbonitride of Ti (see “Stainless Steel Handbook”, pages 360-361, published by Nikkan Kogyo Shimbun, December 25, 1980).

【0009】本発明者等もTi添加による効果を調査し
たが、プレス加工によるサポートスタッドの結晶粒粗大
化の抑止について、予備酸化後の結晶粒が板厚に対し安
定して3個以上の細粒の要求が満足されず、Tiの炭窒
化物を析出させるのみでは不十分であることを確認し
た。結晶粒の粗大化は、合金の成分設計及び仕上げ焼鈍
後の組織に大きな影響を受ける。本発明者等は、仕上げ
焼鈍後の結晶粒を整粒することが、予備酸化処理後の結
晶粒の粗大化防止に有効に働くことを実験的に確認し
た。そして、実験結果からTi,C,Nに加えてSの含
有量をも特定したFe−Cr系合金に、一段目を800
〜950℃,二段目を900〜1050℃に加熱する二
段階の仕上げ焼鈍を施すとき、予備酸化後の結晶粒の粗
大化が有効に抑制されることを見い出した。なお、一段
階及び二段階の加熱は、何れも所定温度に昇温した後、
その温度に30分以内の時間保持する。
The present inventors also investigated the effect of the addition of Ti. As for the suppression of coarsening of the support stud by press working, the crystal grains after the pre-oxidation were stably three or more fine with respect to the plate thickness. It was confirmed that the requirements for the grains were not satisfied, and it was not sufficient to only precipitate the carbonitride of Ti. The coarsening of the crystal grains is greatly affected by the composition design of the alloy and the structure after the finish annealing. The present inventors have experimentally confirmed that sizing the crystal grains after the finish annealing effectively prevents the coarsening of the crystal grains after the preliminary oxidation treatment. From the experimental results, the first stage of the Fe-Cr-based alloy, in which the content of S in addition to Ti, C, and N is specified, is 800
It has been found that when performing two-stage finish annealing in which the second stage is heated to 900 to 950 ° C and the second stage to 900 to 1050 ° C, the coarsening of the crystal grains after the preliminary oxidation is effectively suppressed. In addition, the one-stage and two-stage heating, after raising the temperature to a predetermined temperature,
Hold at that temperature for no more than 30 minutes.

【0010】適正な成分設計及び二段階の仕上げ焼鈍に
よって、整粒組織が得られ、予備酸化処理状態で板厚方
向に関する結晶粒の粗大化が抑制される機構は、次のよ
うに推察される。一段目の加熱によって、TiC,Ti
S,TiN等の微細なTi系化合物がマトリックス中に
均一に分散析出する。析出したTi系化合物は、予備酸
化処理時において結晶粒の成長を抑制するピンニング作
用を呈する。再結晶成長過程において、結晶粒が部分的
に大きく成長することがある。大きく成長した結晶粒
は、その後の結晶成長過程で、隣接する小さな結晶粒を
吸収し、一層大きな粒径になる。その結果、大きな結晶
粒の粒界に小さな結晶粒が散在する混粒組織となる。こ
のような組織では、予備酸化後に板厚に対して3個以上
の結晶粒が存在する状態を安定して得ることができな
い。
The mechanism by which a proper grain design is obtained by proper component design and two-step finish annealing, and the coarsening of crystal grains in the thickness direction in the pre-oxidation state is suppressed is presumed as follows. . By the first heating, TiC, Ti
Fine Ti-based compounds such as S and TiN are uniformly dispersed and precipitated in the matrix. The precipitated Ti-based compound exhibits a pinning action of suppressing the growth of crystal grains during the preliminary oxidation treatment. During the recrystallization growth process, crystal grains may partially grow large. The large grown crystal grains absorb adjacent small crystal grains in the subsequent crystal growth process, and become larger in size. As a result, a mixed grain structure in which small crystal grains are scattered at the grain boundaries of large crystal grains is obtained. With such a structure, it is impossible to stably obtain a state in which three or more crystal grains exist with respect to the plate thickness after the preliminary oxidation.

【0011】そこで、一段目の加熱で、再結晶時の粒成
長を、混粒組織となる直前の結晶成長7番の段階で一旦
加熱を留める。加熱されたFe−Cr系合金を500℃
以下の低温まで冷却すると、個々の結晶粒に生じていた
結晶粒界移動の駆動力のバラツキが均一化される。その
結果、二段目の再加熱を受けたとき、個々の結晶粒が均
等に成長し、二次再結晶で生じ易い結晶粒の混粒が抑制
され整粒化された組織が得られる。このように、一段目
の加熱温度を800〜950℃、二段目の加熱温度を9
00〜1050℃とし、それぞれの加熱時間を30分以
内に設定するとき、二次再結晶で生じ易い混粒の発生を
抑制し、整粒組織が得られる。また、結晶粒の粗大化
は、一段目の加熱で析出したTi系化合物によっても抑
制される。
Therefore, in the first stage heating, the grain growth during recrystallization is temporarily stopped at the seventh stage of crystal growth immediately before the mixed grain structure. 500 ℃ of heated Fe-Cr alloy
When cooled to the following low temperature, the dispersion of the driving force for the movement of the crystal grain boundaries generated in the individual crystal grains is made uniform. As a result, when subjected to the second stage of reheating, the individual crystal grains grow evenly, and the mixture of crystal grains that are likely to occur in the secondary recrystallization is suppressed, and a grain-sized structure is obtained. Thus, the first stage heating temperature is 800-950 ° C., and the second stage heating temperature is 9
When the temperature is set to 00 to 1050 ° C. and the respective heating times are set within 30 minutes, generation of mixed grains which are likely to occur in the secondary recrystallization is suppressed, and a sized structure is obtained. Further, the coarsening of the crystal grains is also suppressed by the Ti-based compound precipitated by the first-stage heating.

【0012】仕上げ焼鈍された状態での整粒組織は、結
晶粒径が5〜6の範囲に揃っていることが必要である。
結晶粒径が揃った組織をもつ合金材料は、後続する予備
酸化処理工程で高温に加熱されても、全体的に均等な結
晶成長が進行し、一部の結晶粒が隣接する結晶粒を吸収
し粗大化することがない。すなわち、結晶粒成長に関し
ては、一次再結晶後、大部分の再結晶粒の大きさがd
で、少数の再結晶粒の大きさがD>2dであるとき、そ
の少数の再結晶粒のみが大きく成長すると一般にいわれ
ている。この一次再結晶後の粒径に影響され、混粒組織
が形成されるものと考えられる。
[0012] The grain sized structure in the state of finish annealing needs to have a crystal grain size in a range of 5 to 6.
Even if the alloy material having a structure with a uniform crystal grain size is heated to a high temperature in the subsequent pre-oxidation process, uniform crystal growth proceeds overall, and some crystal grains absorb adjacent crystal grains. It does not become coarse. That is, regarding the crystal grain growth, the size of most of the recrystallized grains after primary recrystallization is d
It is generally said that when the size of a small number of recrystallized grains is D> 2d, only the small number of recrystallized grains grow large. It is considered that a mixed grain structure is formed due to the influence of the grain size after the primary recrystallization.

【0013】また、二段階仕上げ焼鈍によって整粒組織
を得るためには、合金成分及びその含有量を規定する必
要がある。以下、各合金成分について、説明する。 C: Tiと結合してTiCとなり、結晶粒の粗大化を
防止する上で有効な合金元素である。この作用は、0.
005重量%以上のC含有量で顕著になる。しかし、オ
ーステナイト相の析出防止及び良好な耐食性を維持する
ために、C含有量を0.08重量%以下に規制すること
が必要である。 Si: 予備酸化処理時に内部酸化粒子を形成し、酸化
皮膜の密着強度を向上させる作用を呈する。この作用を
確保するために、0.05重量%以上のSiが必要であ
る。しかし、1.0重量%を超える多量のSiは、酸化
膜を薄くすることに作用し、酸化膜の密着強度を低下さ
せることから好ましくない。 Mn: 予備酸化時に生成される酸化膜をスピネル型に
し、酸化膜とガラスとの密着強度を向上させる上で有効
な合金元素である。Mn含有量が0.10重量%未満で
は、スピネル型酸化物の形成が少ない。しかし、Mn含
有量が0.80重量%を超えると、予備酸化時に生成す
る酸化膜が厚くなりすぎ、下地に対する密着性が低下す
る。
Further, in order to obtain a grain-sized structure by two-step finish annealing, it is necessary to regulate alloy components and their contents. Hereinafter, each alloy component will be described. C: Combined with Ti to form TiC, which is an effective alloying element for preventing coarsening of crystal grains. This effect is equivalent to 0.
It becomes remarkable at a C content of 005% by weight or more. However, in order to prevent precipitation of the austenitic phase and maintain good corrosion resistance, it is necessary to regulate the C content to 0.08% by weight or less. Si: An internal oxide particle is formed during the preliminary oxidation treatment, and has an effect of improving the adhesion strength of the oxide film. To secure this effect, 0.05% by weight or more of Si is required. However, a large amount of Si exceeding 1.0% by weight acts to reduce the thickness of the oxide film, and is not preferable because it lowers the adhesion strength of the oxide film. Mn: An alloy element effective for making the oxide film formed during the preliminary oxidation into a spinel type and improving the adhesion strength between the oxide film and the glass. When the Mn content is less than 0.10% by weight, formation of a spinel oxide is small. However, if the Mn content exceeds 0.80% by weight, the oxide film formed during the preliminary oxidation becomes too thick, and the adhesion to the base decreases.

【0014】S: TiSとなって結晶粒の粗大化を抑
制する。S含有量が0.005重量%未満ではTiSの
生成量が少なく、結晶粒粗大化に対する抑止作用が得ら
れない。逆に、0.015重量%を超えるS含有量で
は、腐食の起点となる硫化物系介在物が多量に生成し、
耐食性を劣化させる。 Cr: ブラウン管用のガラスに近似した熱膨張係数を
付与するため、16〜25重量%の範囲にCr含有量が
規定される。Cr含有量が16重量%未満では、熱膨張
係数が大きくなり、ガラスとの熱膨張差に起因する欠陥
が生じ易くなる。また、25重量%を超えるCr含有量
では、加工性が劣化する。 Ti: TiC,TiS,TiN等の微細なTi系化合
物を生成する上で必要な合金元素である。Ti含有量が
0.15重量%未満では、必要とする微細なTi系化合
物の生成量が少なく、十分な結晶粒の粗大化抑止効果が
得られない。逆に、0.60重量%を超える多量のTi
含有量では、合金材料の表面性状が劣化する。
S: becomes TiS and suppresses coarsening of crystal grains. If the S content is less than 0.005% by weight, the amount of TiS generated is small, and the effect of suppressing the crystal grain coarsening cannot be obtained. Conversely, if the S content exceeds 0.015% by weight, a large amount of sulfide-based inclusions serving as corrosion starting points are generated,
Deterioration of corrosion resistance. Cr: The Cr content is specified in the range of 16 to 25% by weight in order to give a thermal expansion coefficient similar to that of glass for a cathode ray tube. If the Cr content is less than 16% by weight, the coefficient of thermal expansion increases, and defects due to the difference in thermal expansion from glass tend to occur. On the other hand, if the Cr content exceeds 25% by weight, workability deteriorates. Ti: An alloy element necessary for producing fine Ti-based compounds such as TiC, TiS, and TiN. If the Ti content is less than 0.15% by weight, the amount of the required fine Ti-based compound to be produced is small, and a sufficient effect of suppressing the coarsening of crystal grains cannot be obtained. Conversely, a large amount of Ti exceeding 0.60% by weight
With the content, the surface properties of the alloy material deteriorate.

【0015】N: TiNとなって結晶粒の粗大化を抑
制する。N含有量が0.005重量%未満であると、T
iNの生成量が少なく、有効な結晶粒粗大化抑止効果が
得られない。逆に、0.02重量%を超える多量のNが
含有されると、予備酸化処理時に酸化ムラが生じ易くな
り、均質な酸化皮膜が得られ難くなる。 Al: 内部酸化粒子の形成によりアンカーリング効果
を増進させる上で、必要な合金元素である。有効な内部
酸化粒子を形成させるために、0.01重量%以上のA
lを含有させる。しかし、0.30重量%を超える多量
のAlを含有させると、Alの優先酸化によって生じた
酸化皮膜がバリヤー層として働き、他の元素の酸化を抑
制する。その結果、生成する酸化膜が薄くなり、下地に
対する密着性が低下する。
N: becomes TiN and suppresses coarsening of crystal grains. If the N content is less than 0.005% by weight, T
The amount of iN generated is small, and an effective crystal grain coarsening suppression effect cannot be obtained. On the other hand, when a large amount of N exceeding 0.02% by weight is contained, unevenness in oxidation tends to occur during the preliminary oxidation treatment, and it is difficult to obtain a uniform oxide film. Al: An alloy element necessary for enhancing the anchoring effect by forming internal oxide particles. In order to form effective internal oxide particles, 0.01% by weight or more of A
l. However, when a large amount of Al exceeding 0.30% by weight is contained, an oxide film formed by preferential oxidation of Al functions as a barrier layer and suppresses oxidation of other elements. As a result, the generated oxide film becomes thinner, and the adhesion to the base decreases.

【0016】合金元素及びその含有量が規定されたFe
合金は、二段階の仕上げ焼鈍を受ける。一段目の加熱
は、800〜950℃,好ましくは850〜930℃の
温度範囲で行われる。加熱温度が800℃未満であると
き、或いは950℃を超えるとき、適正な微細Ti系化
合物が均質に分散析出した一次再結晶組織が得られな
い。二段目の加熱は、900〜1050℃、好ましくは
930〜1020℃の温度範囲で行われる。二段目の加
熱によって二次再結晶を十分に行わせるため、900℃
以上の加熱温度が必要である。しかし、1050℃を超
える加熱温度では、結晶粒を過度に成長させ、プレス成
形された製品の表面肌を悪化させる。
[0016] Fe with defined alloying elements and their contents
The alloy undergoes two stages of finish annealing. The first-stage heating is performed in a temperature range of 800 to 950C, preferably 850 to 930C. When the heating temperature is lower than 800 ° C. or higher than 950 ° C., a primary recrystallized structure in which an appropriate fine Ti-based compound is uniformly dispersed and precipitated cannot be obtained. The second stage heating is performed in a temperature range of 900 to 1050C, preferably 930 to 1020C. 900 ° C. to make secondary recrystallization sufficiently performed by the second stage heating
The above heating temperature is required. However, when the heating temperature exceeds 1050 ° C., the crystal grains grow excessively, and the surface texture of the pressed product deteriorates.

【0017】一段目及び二段目の加熱時間は、結晶粒の
成長を考慮して30分以内に設定される。加熱時間が短
すぎると十分な焼鈍効果が得られず、長すぎると生産性
が低下する。好ましくは、一段目の加熱を0.1〜5
分,二段目の加熱を1〜5分の間で設定する。また、一
段目の加熱と二段目の加熱との間に、合金材料を500
℃以下に冷却する降温工程をおく。この冷却は、個々の
結晶粒に生じていた結晶粒界移動の駆動力を一旦無く
し、そのバラツキを均一化することを目的とする。
The first and second heating times are set within 30 minutes in consideration of the growth of crystal grains. If the heating time is too short, a sufficient annealing effect cannot be obtained, and if it is too long, the productivity is reduced. Preferably, the first stage heating is 0.1 to 5
And the second-stage heating are set between 1 and 5 minutes. In addition, between the first-stage heating and the second-stage heating, 500
There is a cooling step of cooling to below ℃. The purpose of this cooling is to temporarily eliminate the driving force for moving the grain boundary generated in each crystal grain, and to make the variation uniform.

【0018】[0018]

【実施例】表1に示した4種類の合金を、真空誘導溶解
炉で溶製した。得られた合金からそれぞれ板厚5.5m
mの熱延板を製造し、各熱延板を900℃で焼鈍した
後、ディスケールし、圧延率70%の冷間圧延を施すこ
とによって板厚0.8mmの冷延板を得た。
EXAMPLES Four kinds of alloys shown in Table 1 were melted in a vacuum induction melting furnace. The thickness of each of the obtained alloys is 5.5 m
m, each hot-rolled sheet was annealed at 900 ° C., descaled, and cold-rolled at a rolling reduction of 70% to obtain a cold-rolled sheet having a thickness of 0.8 mm.

【表1】 [Table 1]

【0019】各冷延板に、750〜1000℃の範囲に
おける一段目の加熱,500℃以下に降温する冷却、次
いで850〜1100℃の範囲における二段目の加熱を
行う二段階仕上げ焼鈍を施した。なお、従来通り一段階
の仕上げ焼鈍を950〜1050℃の範囲で施した比較
材も用意した。焼鈍後の各供試材を、図3に示す形状に
プレス成形した。なお、小径部の寸法d1 =6mm,大
径部の寸法d2 =12mm及び全高H=10mmに設定
した。プレス加工後の各供試材に、湿潤水素雰囲気中で
1150℃で40分間加熱する予備酸化処理を施した。
その後、図3に示した湾曲部を輪切りにして試験片を採
取した。試験片の矢印Fで示す面を顕微鏡観察し、板厚
方向に関する結晶粒の個数をカウントした。調査結果
を、表2に示す。
Each cold rolled sheet is subjected to a two-stage finish annealing in which the first stage heating in the range of 750 to 1000 ° C., the cooling to lower the temperature to 500 ° C. or lower, and the second stage heating in the range of 850 to 1100 ° C. did. In addition, the comparative material which performed the one-step finish annealing in the range of 950-1050 degreeC as usual was also prepared. Each test material after annealing was press-formed into the shape shown in FIG. The dimension d 1 of the small diameter portion was set to 6 mm, the dimension d 2 of the large diameter portion was set to 12 mm, and the total height H was set to 10 mm. Each test material after the press working was subjected to a preliminary oxidation treatment of heating at 1150 ° C. for 40 minutes in a wet hydrogen atmosphere.
Thereafter, the test piece was sampled by cutting the curved portion shown in FIG. The surface of the test piece indicated by the arrow F was observed under a microscope, and the number of crystal grains in the thickness direction was counted. Table 2 shows the results of the survey.

【表2】 [Table 2]

【0020】表2から明らかなように、一段階だけの仕
上げ焼鈍を施したときには、予備酸化後の結晶粒が粗大
化し、板厚方向に関し3個以上の結晶粒が存在するもの
は得られなかった。これに対し、適量のTi,C及びN
を加え更にS含有量を規定した合金に、800〜950
℃での一段加熱及び900〜1050℃での二段加熱を
施したものでは、湾曲部に粗大粒が出現しておらず、板
厚方向に3個以上の結晶粒が存在した組織が安定して得
られた。予備酸化処理された供試材を使用してガラス封
着を行ったところ、強度及び気密性に優れた封着部が得
られた。
As is clear from Table 2, when the finish annealing is performed in only one stage, the crystal grains after the preliminary oxidation are coarsened, and no crystal grains having three or more crystal grains in the thickness direction can be obtained. Was. In contrast, appropriate amounts of Ti, C and N
To an alloy having a specified S content,
In the one-stage heating at 900 ° C and the two-stage heating at 900 to 1050 ° C, coarse grains did not appear in the curved part, and the structure in which three or more crystal grains existed in the plate thickness direction became stable. Obtained. When glass sealing was performed using the pre-oxidized test material, a sealed portion excellent in strength and airtightness was obtained.

【0021】実施例2:供試材No.1に種々の熱処理条
件で二段階焼鈍を施し、焼鈍後の結晶粒度を変化させ
た。実験結果から、一段目の加熱を800〜950℃,
二段目の加熱を900〜1050℃とした場合、焼鈍後
の結晶粒が粒度5〜6の範囲に維持された整粒組織が得
られることが判明した。
Example 2 The test material No. 1 was subjected to two-stage annealing under various heat treatment conditions to change the grain size after annealing. From the experimental results, the first stage heating was 800-950 ° C,
When the second-stage heating was performed at 900 to 1050 ° C., it was found that a grain-sized structure in which the crystal grains after annealing were maintained in the range of particle size of 5 to 6 was obtained.

【0022】各種結晶粒度をもつ供試材をプレス成形し
た後、相対湿度70%の湿潤雰囲気中で1200℃に4
0分間加熱する予備酸化処理を施した。そして、予備酸
化処理後における板厚方向に関する結晶組織を観察し、
焼鈍後の整粒状態との関係で整理したところ、両者の間
に表3に示す関係があった。なお、表3における予備酸
化処理後の結晶組織は、顕微鏡観察によって結晶粒をカ
ウントし、板厚方向に関し3個以上の結晶粒が安定して
存在する組織をA,板厚方向に関し1個又は2個の結晶
粒が面積率10%以下にみられる組織をB,板厚方向に
関し1個又は2個の結晶粒が観察される部分の面積率が
11〜50%である組織をC,板厚方向に関し1個又は
2個の結晶粒が観察される部分の面積率が50%を超え
る組織をDとして評価した。
After the test materials having various crystal grain sizes are press-molded, they are heated to 1200 ° C. in a humid atmosphere having a relative humidity of 70%.
A preliminary oxidation treatment of heating for 0 minutes was performed. And observing the crystal structure in the thickness direction after the preliminary oxidation treatment,
When arranged in relation to the grain size after annealing, there was a relationship shown in Table 3 between the two. The crystal structure after the pre-oxidation treatment in Table 3 is obtained by counting the crystal grains by microscopic observation, denoting the structure in which three or more crystal grains are stably present in the sheet thickness direction as A, one in the sheet thickness direction B indicates a structure in which two crystal grains have an area ratio of 10% or less, C indicates a structure in which the area ratio of a portion where one or two crystal grains are observed in the thickness direction is 11 to 50%, and A structure in which the area ratio of a portion where one or two crystal grains were observed in the thickness direction exceeded 50% was evaluated as D.

【表3】 [Table 3]

【0023】表3から明らかなように、焼鈍条件の調整
によって焼鈍後の結晶粒度を5〜6に揃えるとき、予備
酸化された状態で結晶粒は板厚方向に関して安定して3
個以上になっており、微細組織をもつ封着合金材料とな
ることが判った。
As is apparent from Table 3, when the grain size after annealing is adjusted to 5 to 6 by adjusting the annealing conditions, the crystal grains in the pre-oxidized state are stable in the thickness direction.
It became clear that it became the sealing alloy material which has a fine structure.

【0024】[0024]

【発明の効果】以上に説明したように、本発明において
は、Ti,C,N,S等の含有量が規定されたFe−C
r系合金に二段階の仕上げ焼鈍を施すことにより、粒度
が5〜6の範囲に揃った整粒組織をもった封着合金用素
材を得ている。この材料を予備酸化処理すると、結晶粒
が板厚方向に関して3個以上存在する微細組織が安定し
て得られる。そのため、予備酸化された封着合金は、シ
ャドウマスク等を支持するために十分な強度をもち、し
かも気密性に優れた封着部を形成する。
As described above, according to the present invention, Fe-C having a prescribed content of Ti, C, N, S, etc. is used.
By subjecting the r-based alloy to the two-stage finish annealing, a material for a sealing alloy having a grain-size-regulated structure having a uniform grain size in the range of 5 to 6 is obtained. When this material is pre-oxidized, a fine structure in which three or more crystal grains are present in the thickness direction can be stably obtained. Therefore, the pre-oxidized sealing alloy has sufficient strength to support a shadow mask and the like, and forms a sealing portion having excellent airtightness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 冷間鍛造及び切削加工によって棒状材料から
製造されたサポートスタッドの断面図
FIG. 1 is a cross-sectional view of a support stud manufactured from a rod material by cold forging and cutting.

【図2】 プレス加工で帯鋼から製造されたサポートス
タッドの断面図
FIG. 2 is a cross-sectional view of a support stud manufactured from a steel strip by press working.

【図3】 本発明実施例で製造したサポートスタッドの
斜視図
FIG. 3 is a perspective view of a support stud manufactured according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 :小径部の直径 d2 :大径部の直径 H:サ
ポートスタッドの全高 F:結晶粒の観察面
d 1 : diameter of small diameter part d 2 : diameter of large diameter part H: total height of support stud F: observation surface of crystal grain

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 誠 山口県新南陽市野村南町4976番地 日新 製鋼株式会社鉄鋼研究所内 (56)参考文献 特開 平6−49599(JP,A) 特開 平4−371550(JP,A) 特開 平4−293751(JP,A) 特開 昭62−267449(JP,A) 特開 昭62−44526(JP,A) 特開 昭61−147852(JP,A) 特開 平6−158162(JP,A) 特公 昭63−19588(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 H01J 5/02 H01J 29/02 H01J 29/92 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Makoto Inoue 4976 Nomura Minami-cho, Shinnanyo-shi, Yamaguchi Pref. Nisshin Steel Co., Ltd. Steel Research Laboratory (56) References JP-A-6-49599 (JP, A) JP-A Heihei 4-371550 (JP, A) JP-A-4-293751 (JP, A) JP-A-62-267449 (JP, A) JP-A-62-44526 (JP, A) JP-A-61-147852 (JP, A A) JP-A-6-158162 (JP, A) JP-B-63-19588 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38/60 H01J 5 / 02 H01J 29/02 H01J 29/92

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.005〜0.08重量%,S
i:0.05〜1.0重量%,Mn:0.10〜0.8
0重量%,S:0.005〜0.015重量%,Cr:
16〜25重量%,N:0.005〜0.02重量%,
Ti:0.15〜0.60重量%,Al:0.01〜
0.30重量%を含むFe合金であって、仕上げ焼鈍後
の結晶粒が粒度5〜6の範囲に整粒されていることを特
徴とする封着用合金材料。
1. C: 0.005 to 0.08% by weight, S
i: 0.05 to 1.0% by weight, Mn: 0.10 to 0.8
0% by weight, S: 0.005 to 0.015% by weight, Cr:
16 to 25% by weight, N: 0.005 to 0.02% by weight,
Ti: 0.15 to 0.60% by weight, Al: 0.01 to
An alloy material for sealing, which is an Fe alloy containing 0.30% by weight, wherein crystal grains after finish annealing are sized to have a grain size of 5 to 6.
【請求項2】 C:0.005〜0.08重量%,S
i:0.05〜1.0重量%,Mn:0.10〜0.8
0重量%,S:0.005〜0.015重量%,Cr:
16〜25重量%,N:0.005〜0.02重量%,
Ti:0.15〜0.60重量%,Al:0.01〜
0.30重量%を含むFe合金を、800〜950℃に
30分以内保持し、500℃以下に冷却し、更に900
〜1050℃に30分以内保持する二段階仕上げ焼鈍を
施すことを特徴とする封着用合金の熱処理方法。
2. C: 0.005 to 0.08% by weight, S
i: 0.05 to 1.0% by weight, Mn: 0.10 to 0.8
0% by weight, S: 0.005 to 0.015% by weight, Cr:
16 to 25% by weight, N: 0.005 to 0.02% by weight,
Ti: 0.15 to 0.60% by weight, Al: 0.01 to
A Fe alloy containing 0.30% by weight is kept at 800 to 950 ° C. within 30 minutes, cooled to 500 ° C. or less, and further cooled to 900 ° C.
A heat treatment method for a sealing alloy, wherein a two-step finish annealing is performed at a temperature of 501050 ° C. within 30 minutes.
JP05553793A 1993-03-16 1993-03-16 Sealing alloy material and heat treatment method thereof Expired - Fee Related JP3294892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05553793A JP3294892B2 (en) 1993-03-16 1993-03-16 Sealing alloy material and heat treatment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05553793A JP3294892B2 (en) 1993-03-16 1993-03-16 Sealing alloy material and heat treatment method thereof

Publications (2)

Publication Number Publication Date
JPH06264191A JPH06264191A (en) 1994-09-20
JP3294892B2 true JP3294892B2 (en) 2002-06-24

Family

ID=13001477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05553793A Expired - Fee Related JP3294892B2 (en) 1993-03-16 1993-03-16 Sealing alloy material and heat treatment method thereof

Country Status (1)

Country Link
JP (1) JP3294892B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4921636B2 (en) * 2000-12-25 2012-04-25 株式会社東芝 Alloy plate for panel pin, panel pin, and picture tube

Also Published As

Publication number Publication date
JPH06264191A (en) 1994-09-20

Similar Documents

Publication Publication Date Title
KR20200046454A (en) High-strength and high-toughness medium entropy alloy and manufacturing method for the same
WO2019050084A1 (en) Boron-doped high-entropy alloy and manufacturing method therefor
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
JP2596210B2 (en) Method of preventing adhesion seizure during annealing, Fe-Ni alloy for shadow mask excellent in gas emission, and method for producing the same
KR20200042279A (en) Medium-entropy alloys and Manufacturing method of the same
JPH0823053B2 (en) High-strength titanium alloy with excellent workability, method for producing the alloy material, and superplastic forming method
US5468305A (en) Method of lowering permeability of difficult-to-work Co alloy
JP3294892B2 (en) Sealing alloy material and heat treatment method thereof
EP0739992B1 (en) Alloy sheet for shadow mask and method for manufacturing thereof
JP2871414B2 (en) Alloy thin plate for shadow mask excellent in press formability and method for producing the same
JP3233839B2 (en) Method of manufacturing magnetic shield material for TV cathode ray tube
JPH0873935A (en) Production of alloy strip of iron-nickel alloy
JPH07228922A (en) Alloy material for sealing and heat treatment therefor
JP3379826B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same
JPH0481299B2 (en)
JP3353321B2 (en) Method for producing Fe-Ni alloy sheet for shadow mask excellent in press formability and Fe-Ni alloy sheet for shadow mask excellent in press formability
JP2501157B2 (en) High strength and low thermal expansion Fe-Ni alloy with excellent hot workability
JP7132415B1 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JP3042273B2 (en) Method for producing Fe-Ni-based alloy thin plate for IC lead frame with excellent rust resistance
JPS60255924A (en) Manufacture of steel plate used for magnetic shielding member
JPH0798975B2 (en) Method for producing Fe-Ni alloy
JPH08239716A (en) Production of sealing material
JP3360033B2 (en) Fe-Ni alloy for shadow mask and method for producing the same
JP3401307B2 (en) Material for shadow mask excellent in recrystallization characteristics and manufacturing method
JP3079897B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for color picture tube excellent in press formability and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020319

LAPS Cancellation because of no payment of annual fees