JPH0118124B2 - - Google Patents

Info

Publication number
JPH0118124B2
JPH0118124B2 JP59237684A JP23768484A JPH0118124B2 JP H0118124 B2 JPH0118124 B2 JP H0118124B2 JP 59237684 A JP59237684 A JP 59237684A JP 23768484 A JP23768484 A JP 23768484A JP H0118124 B2 JPH0118124 B2 JP H0118124B2
Authority
JP
Japan
Prior art keywords
hot
rolled steel
firing
strength
enameling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59237684A
Other languages
Japanese (ja)
Other versions
JPS61117246A (en
Inventor
Akihiko Nishimoto
Teruo Kurokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP23768484A priority Critical patent/JPS61117246A/en
Publication of JPS61117246A publication Critical patent/JPS61117246A/en
Publication of JPH0118124B2 publication Critical patent/JPH0118124B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は、ほうろう焼成後においても高い強
度を有し且つ爪とび欠陥が発生しない、焼成後の
強度が高く且つ耐爪とび性に優れたほうろう用熱
延鋼板の製造方法に関するものである。 〔従来技術とその問題点〕 鋼板の表面に、ガラス質釉薬を高温度で融着さ
せることによつて製造されるほうろう製品用の鋼
板は、ほうろう特性の面から、一般に原板として
冷延鋼板を使用する場合が多いが、冷延鋼板は、
その板厚に限度があるため、例えばほうろう製の
サイロや温水タンクのように、板厚の厚いほうろ
う製品を製造する場合には、原板として熱延鋼板
を使用せざるを得ない。 しかしながら、熱延鋼板は、ほうろう焼成後に
ほうろう層が半月状に剥離するいわゆる爪とび欠
陥が多発する問題を有している。 そこで、従来から上述のような熱延鋼板のもつ
耐爪とび性を改善する研究が種々なされており、
例えば特公昭58−1170号公報および特公昭59−
6894号公報には、その成分組成中にTiを含有さ
せることによつて、耐爪とび性を改善する方法が
開示されている。しかしながら上述の従来方法に
よるTi含有鋼板は、高温でのほうろう焼成時に
大幅に強度が低下するため、ほうろう焼成後の強
度を十分に確保することができない問題を有して
いる。 そこで、上記問題を解決する方法として、例え
ば特公昭58−36666号公報には、その成分組成中
にTiを含有させると共に、C、Si、Mnなどの含
有量を高めることによつて、ほうろう焼成前にお
ける原板としての熱延鋼板の強度を高め、ほうろ
う焼成後の強度を確保する方法が開示されてい
る。しかしながらほうろう製品は、原板を所定形
状に成形加工した後、釉薬を塗布し次いで焼成す
る工程を経て製造されるものであるから、上述の
従来方法のように原板としての熱延鋼板の強度を
高めると、冷間加工性が劣化するので成形が困難
になるばかりではなく、例えば原板を打抜き加工
する場合には、打抜き型の寿命が短くなるなどの
問題が生ずる。 本発明者等は、上述の問題を解決し、ほうろう
焼成後に生ずる爪とびの発生を防止すると共に、
原板としての熱延鋼板の冷間加工性が優れ成形が
容易で、しかも、ほうろう焼成後の強度が高いほ
うろう用熱延鋼板の製造方法を開発すべく鋭意研
究を重ねた。 従来のTi含有鋼板が、ほうろう焼成後に強度
が低下する原因は、次の通りである。即ち、従来
のTi含有鋼板は、原板としての熱延鋼板の段階
で、CがすべてTiCとして鋼中に微細に析出して
いる。このような微細であるほど鋼を強化する作
用をもつTi析出物が、高温で行なわれるほうろ
う焼成時に成長して、比較的大きいTiC析出物と
なるので、上述したTiC析出物の強化能が失われ
る。更に成長したTiC析出物にはフエライト粒の
成長抑止能力がないため、フエライト粒が粗大化
する。これらによつて、ほうろう焼成後の鋼板の
強度低下を招く。 そこで本発明者等は、上述のような観点から、
ほうろう焼成後の強度低下を防止する手段につい
て更に検討を進めた結果、原板としての熱延鋼板
の段階のときに、鋼中のCの一部を固溶状態で存
在させ、このCを、高温でのほうろう焼成時に
Tiと結合させて微細なTiCとして析出させるよう
にすれば、ほうろう焼成後においても鋼中に微細
なTiC析出物が存在する結果、ほうろう焼成後の
鋼板の高強度の維持が可能となることを知見し
た。 〔発明の概要〕 この発明は上記知見に基いてなされたものであ
つて、C:0.005〜0.02wt.%、Mn:0.05〜1.0wt.
%、N:0.003〜0.15wt.%、Ti:0.05〜0.3wt.%、
B:0.001〜0.010wt.%、残部:鉄および不可避不
純物からなる成分組成を有する鋼片を熱間圧延
し、熱間圧延終了後200〜500℃の温度で巻取るこ
とによつて、固溶炭素を0.001wt.%以上含有す
る、焼成後の強度が高く且つ耐爪とび性に優れた
ほうろう用熱延鋼板を製造することに特徴を有す
るものである。 〔発明の構成〕 この発明の方法で製造された熱延鋼板は、上述
のような成分組成を有し、ほうろう焼成前の原板
としての熱延鋼板の段階において、鋼中に含有さ
れているCの一部が固溶状態で存在しているの
で、これを高温でほうろう焼成すると、上記固溶
状態のCがTiと結合して、微細なTiCとして析出
する。従つて、ほうろう焼成後においても、高強
度を維持することができるのである。 また、ほうろう焼成後においても多く存在して
いる微細なTiCが、爪とび発生の原因となる水素
のトラツプサイトとして作用するので、耐爪とび
性を向上させることもできる。更に、上述したよ
うに原板としての熱延鋼板の段階において、鋼中
のCの一部が固溶しているので、強化能の大きい
微細なTiCの析出量が少なくなる結果、原板の軟
質化が可能になり、冷間加工性が向上する。 次に、この発明の方法において、鋼片の化学成
分組成範囲を、上述のように限定した理由につい
て述べる。 (1) C: Cは、所定の強度を確保する作用を有してい
る。しかしながら、Cの含有量が0.005wt.%未
満では、TiCの析出量が少ないので、ほうろう
焼成後の強度を高めることができない。一方、
Cの含有量が0.02wt.%を超すと、TiCが析出
しやすくなるので、熱間圧延終了後の鋼帯の巻
取り温度を調整しても、原板段階においてCが
すべてTiCとして析出し、固溶炭素として存在
しなくなり、従つて、ほうろう焼成後の強度を
高めることができず、更に、Tiの含有量を多
くする必要があるので、コスト高になる問題が
生ずる。従つて、Cの含有量は0.005から
0.02wt.%の範囲内とすべきである。 (2) Mn: Mnは、所定の強度を確保すると共に、鋼中
に不可避的に存在するSによる熱間脆性を防止
する作用を有している。しかしながら、Mnの
含有量が0.05wt.%未満では上述した作用に所
望の効果が得られず、一方、1.0wt.%を超える
と原板としての熱延鋼板の強度が高くなり過ぎ
且つほうろう特性に悪影響を及ぼす問題が生ず
る。従つて、Mnの含有量は0.05から1.0wt.%
の範囲内とすべきである。 (3) N: Nは、耐爪とび性を良好に保つ作用を有して
いる。しかしながら、Nの含有量が0.003wt.%
未満では上述した作用に所望の効果が得られ
ず、一方、0.015wt.%を超えるとTiの含有量を
多くする必要が生じてコスト高になる問題が生
ずる。従つて、Nの含有量は0.003から0.015wt.
%の範囲内とすべきである。 (4) Ti: Tiは、耐爪とび性を向上させる作用を有し
ている。しかしながら、Tiの含有量が0.05wt.
%未満では上述した作用に所望の効果が得られ
ず、一方、0.3wt.%を超えるとTiCが析出しや
すくなり、熱間圧延終了後の鋼帯の巻取り温度
を調整しても、CがすべてTiCとして析出する
結果、固溶炭素として存在しなくなつて、ほう
ろう焼成後の強度を高めることができなくなる
問題が生ずる。従つて、Tiの含有量は0.05から
0.3wt.%の範囲内とすべきである。 (5) B: Bは、耐爪とび性を向上させる作用を有して
いる。しかしながら、Bの含有量が0.001wt.%
未満では上述した作用に所望の効果が得られ
ず、一方、0.010wt.%を超えると溶接性が低下
し、製品品質に悪影響を及ぼす問題が生ずる。
従つて、Bの含有量は0.001から0.010wt.%の範
囲内とすべきである。 (6) 固溶炭素: 固溶炭素の量は、この発明におけるもつとも
重量な点であり、原板としての熱延鋼板中に存
在する固溶炭素量によつて、ほうろう焼成後の
強度が左右される。即ち固溶炭素量が0.001wt.
%未満では、焼成後十分な強度が得られない。
従つて、固溶炭素の含有量は0.001wt.%以上と
すべきである。 この発明にかかるほうろう用熱延鋼板の製造方
法において、熱間圧延を終了した鋼帯の巻取り温
度は、200から500℃の範囲内とすべきである。即
ち、熱間圧延を終了した鋼帯の巻取り温度が200
℃未満では、冷却歪により製品形状が損なわれ、
良好な形状の熱延鋼板が得られない。一方、前記
巻取り温度が500℃を超えると、TiCの析出が多
くなり、原板としての熱延鋼板中に0.001wt.%以
上の量の固溶炭素を確保することができない。 〔発明の実施例〕 次に、この発明を更に実施例により詳述する。 実施例 1 C:0.016wt.%、Mn:0.45wt.%、N:
0.0057wt.%、Ti:0.172wt.%、B:0.0037wt.%
からなる化学成分組成の鋼片を、900℃の仕上圧
延温度で熱間圧延し、種々の温度で巻取り、空冷
して板厚3.2mmの熱延鋼板を製造した。 このようにして製造された熱延鋼板の固溶炭素
量(内部摩擦により測定)と、前記熱延鋼板を、
850℃で5分間焼成したときの強度低下量との関
係を図面に示す。図面において横軸は固溶炭素
量、縦軸は強度低下量ΔTS〔(熱延鋼板のTS)―
(前記熱延鋼板を焼成後のTS)〕である。 図面から、強度低下量ΔTSは固溶炭素量の増
加と共に小さくなり、10ppm(0.001wt.%)以上
になると極めて小さくなることがわかる。このよ
うに、焼成したときの強度低下量が固溶炭素量の
増加と共に小さくなる理由は、焼成時にはマトリ
ツクスは軟化するものの、焼成前の原板段階にお
いて固溶状態で存在するCおよびTiが、焼成時
にTiCとして析出し、このTiC析出物によつて強
度が高まることによるものと考えられる。 実施例 2 第1表に示す化学成分組成の鋼片を、900℃の
仕上圧延温度で熱間圧延し、種々の温度で巻取
り、冷却後酸洗してスケールを除去し、板厚3.2
mmの熱延鋼板を製造した。
[Technical Field of the Invention] The present invention provides a method for producing a hot-rolled steel sheet for enameling, which has high strength even after enamel firing and does not generate nail skipping defects, and has high strength after firing and excellent nail skipping resistance. It is related to. [Prior art and its problems] Steel sheets for enamel products are manufactured by fusing a glassy glaze to the surface of a steel sheet at high temperatures.In terms of enamel properties, cold-rolled steel sheets are generally used as the base sheet. Although often used, cold-rolled steel sheets are
Because there is a limit to the thickness of the plate, when manufacturing thick enamel products such as enamel silos and hot water tanks, hot-rolled steel plates must be used as the original plate. However, hot-rolled steel sheets have the problem of frequent so-called nail-skipping defects in which the enamel layer peels off in a half-moon shape after enamel firing. Therefore, various studies have been conducted to improve the nail-skipping resistance of hot-rolled steel sheets as described above.
For example, Special Publication No. 58-1170 and Special Publication No. 59-
Publication No. 6894 discloses a method of improving the nail chipping resistance by incorporating Ti into the component composition. However, the Ti-containing steel plate produced by the above-mentioned conventional method has a problem in that the strength is significantly reduced during enameling firing at a high temperature, so that sufficient strength cannot be ensured after enameling. Therefore, as a method to solve the above problem, for example, Japanese Patent Publication No. 58-36666 discloses a method of enameling firing by adding Ti to the component composition and increasing the content of C, Si, Mn, etc. A method is disclosed for increasing the strength of a hot-rolled steel sheet as an original sheet and ensuring the strength after enameling. However, since enamel products are manufactured through a process of forming the original sheet into a predetermined shape, applying a glaze, and then firing it, the strength of the hot-rolled steel sheet as the original sheet is increased, unlike the conventional method described above. As a result, cold workability deteriorates, which not only makes molding difficult, but also causes problems such as shortening of the life of the punching die when punching the original plate, for example. The present inventors have solved the above-mentioned problems, prevented the occurrence of nail skipping that occurs after enamel firing, and
We have conducted extensive research to develop a method for producing hot-rolled steel sheets for enameling that have excellent cold workability and are easy to form, and have high strength after enameling. The reason why the strength of conventional Ti-containing steel sheets decreases after enameling is as follows. That is, in conventional Ti-containing steel sheets, all C is finely precipitated in the steel as TiC at the stage of hot-rolled steel sheets as original sheets. These Ti precipitates, which have the effect of strengthening steel as they become finer, grow during enameling firing performed at high temperatures and become relatively large TiC precipitates, causing the above-mentioned strengthening ability of the TiC precipitates to be lost. be exposed. Since the further grown TiC precipitates do not have the ability to inhibit the growth of ferrite grains, the ferrite grains become coarse. These lead to a decrease in the strength of the steel plate after enameling. Therefore, from the above-mentioned viewpoint, the present inventors
As a result of further studies on means to prevent strength reduction after enameling firing, we found that some C in the steel was made to exist in a solid solution state during the hot-rolled steel sheet stage as the original sheet, and this C was heated to a high temperature. During enamel firing in
By combining with Ti and precipitating it as fine TiC, it is possible to maintain the high strength of the steel sheet after enamel firing as a result of the presence of fine TiC precipitates in the steel even after enamel firing. I found out. [Summary of the Invention] This invention was made based on the above findings, and includes C: 0.005 to 0.02 wt.%, Mn: 0.05 to 1.0 wt.%.
%, N: 0.003-0.15wt.%, Ti: 0.05-0.3wt.%,
B: 0.001~0.010wt.%, balance: solid solution by hot rolling a steel billet with a composition consisting of iron and unavoidable impurities, and winding it at a temperature of 200~500℃ after hot rolling. The present invention is characterized by producing a hot-rolled steel sheet for enameling, which contains 0.001 wt.% or more of carbon, has high strength after firing, and has excellent nail-skipping resistance. [Structure of the Invention] The hot-rolled steel sheet manufactured by the method of the present invention has the above-mentioned composition, and the carbon contained in the steel is removed at the stage of the hot-rolled steel sheet as an original sheet before enameling. Since a part of C exists in a solid solution state, when this is enameled at a high temperature, the solid solution C combines with Ti and precipitates as fine TiC. Therefore, high strength can be maintained even after enamel firing. In addition, the fine TiC, which is present in large quantities even after enamel firing, acts as a trap site for hydrogen, which causes nail skipping, so that the nail skipping resistance can be improved. Furthermore, as mentioned above, when the hot-rolled steel sheet is used as the original sheet, some C in the steel is dissolved in solid solution, so the amount of precipitated fine TiC, which has a large strengthening ability, is reduced, resulting in the softening of the original sheet. This makes it possible to improve cold workability. Next, the reason why the chemical composition range of the steel slab is limited as described above in the method of the present invention will be described. (1) C: C has the function of ensuring a predetermined strength. However, if the C content is less than 0.005 wt.%, the amount of TiC precipitated is small, so the strength after enameling cannot be increased. on the other hand,
When the C content exceeds 0.02wt.%, TiC tends to precipitate, so even if the coiling temperature of the steel strip after hot rolling is adjusted, all of the C will precipitate as TiC in the original plate stage. Since it no longer exists as solid solution carbon, it is not possible to increase the strength after enamel firing, and furthermore, it is necessary to increase the Ti content, resulting in the problem of high costs. Therefore, the content of C is from 0.005
It should be within the range of 0.02wt.%. (2) Mn: Mn has the effect of ensuring a predetermined strength and preventing hot embrittlement caused by S, which inevitably exists in steel. However, if the Mn content is less than 0.05wt.%, the desired effects described above cannot be obtained, while if it exceeds 1.0wt.%, the strength of the hot rolled steel sheet as the original sheet becomes too high and the enameling property is deteriorated. Problems arise that have negative effects. Therefore, the Mn content is 0.05 to 1.0wt.%
It should be within the range of . (3) N: N has the effect of maintaining good nail-skipping resistance. However, the N content is 0.003wt.%
If it is less than 0.015 wt.%, the desired effect cannot be obtained. On the other hand, if it exceeds 0.015 wt.%, it becomes necessary to increase the Ti content, resulting in a problem of high cost. Therefore, the N content is between 0.003 and 0.015wt.
It should be within the range of %. (4) Ti: Ti has the effect of improving nail-skipping resistance. However, the Ti content is 0.05wt.
If it is less than 0.3 wt.%, the desired effect cannot be obtained, while if it exceeds 0.3 wt.%, TiC tends to precipitate, and even if the coiling temperature of the steel strip after hot rolling is adjusted, the C As a result, all of the TiC precipitates, and as a result, it no longer exists as solid solution carbon, resulting in the problem that the strength after enameling cannot be increased. Therefore, the content of Ti is from 0.05
It should be within the range of 0.3wt.%. (5) B: B has the effect of improving nail-skipping resistance. However, the B content is 0.001wt.%
If the content is less than 0.010wt.%, the desired effect cannot be obtained, while if it exceeds 0.010wt.%, weldability will deteriorate, causing a problem that will adversely affect product quality.
Therefore, the content of B should be within the range of 0.001 to 0.010 wt.%. (6) Solute carbon: The amount of solute carbon is the most important point in this invention, and the strength after enameling is influenced by the amount of solute carbon present in the hot rolled steel sheet as the original sheet. Ru. In other words, the amount of solid solute carbon is 0.001wt.
If it is less than %, sufficient strength will not be obtained after firing.
Therefore, the content of solid solution carbon should be 0.001wt.% or more. In the method for producing a hot-rolled steel sheet for enameling according to the present invention, the coiling temperature of the hot-rolled steel strip should be within the range of 200 to 500°C. In other words, the coiling temperature of the steel strip after hot rolling is 200℃.
Below ℃, the product shape will be damaged due to cooling distortion.
A hot-rolled steel sheet with a good shape cannot be obtained. On the other hand, when the coiling temperature exceeds 500°C, TiC precipitation increases, making it impossible to secure solute carbon in an amount of 0.001 wt.% or more in the hot rolled steel sheet as the original sheet. [Examples of the Invention] Next, the present invention will be further described in detail with reference to Examples. Example 1 C: 0.016wt.%, Mn: 0.45wt.%, N:
0.0057wt.%, Ti: 0.172wt.%, B: 0.0037wt.%
A steel billet with a chemical composition consisting of the following was hot rolled at a finish rolling temperature of 900°C, coiled at various temperatures, and air cooled to produce a hot rolled steel plate with a thickness of 3.2 mm. The amount of solid solute carbon (measured by internal friction) of the hot-rolled steel sheet manufactured in this way and the hot-rolled steel sheet,
The figure shows the relationship with the amount of decrease in strength when fired at 850°C for 5 minutes. In the drawing, the horizontal axis is the amount of solid solute carbon, and the vertical axis is the amount of strength reduction ΔTS [(TS of hot rolled steel sheet) -
(TS after firing the hot-rolled steel sheet)]. From the drawing, it can be seen that the amount of strength reduction ΔTS decreases as the amount of solid solute carbon increases, and becomes extremely small when it exceeds 10 ppm (0.001 wt.%). The reason why the amount of decrease in strength during firing decreases as the amount of solid solute carbon increases is that although the matrix softens during firing, C and Ti, which are present in solid solution in the original plate stage before firing, are This is thought to be due to the fact that TiC sometimes precipitates, and this TiC precipitate increases the strength. Example 2 A steel billet having the chemical composition shown in Table 1 was hot rolled at a finish rolling temperature of 900°C, coiled at various temperatures, and after cooling was pickled to remove scale, resulting in a plate thickness of 3.2
mm hot-rolled steel sheets were manufactured.

【表】 このようにして製造された熱延鋼板の固溶炭素
量と、その焼成前と焼成後の機械試験値および爪
とび発生量を第2表に示す。なお、爪とび発生量
は、鋼板に脱脂処理を施し、次いで市販の釉薬を
両面掛けし、乾燥した後、露点30℃の雰囲気中で
850℃の温度により5分間焼成し、このようにし
て焼成された鋼板に発生した単位面積当りの爪と
び発生個数によつて表示した。
[Table] Table 2 shows the amount of solid solute carbon in the hot-rolled steel sheet produced in this way, the mechanical test values before and after firing, and the amount of snapping. The amount of nail skipping is measured by degreasing a steel plate, applying a commercially available glaze on both sides, drying it, and then placing it in an atmosphere with a dew point of 30°C.
Firing was performed at a temperature of 850°C for 5 minutes, and the number of nail skips generated per unit area on the thus fired steel plate was expressed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明によれば、焼成後
の強度が高く、且つ、優れた耐爪とび性を有する
ほうろう用熱延鋼板を得ることができる。なお、
この発明において、熱延鋼板の素材である鋼片
は、連続鋳造によつて製造された鋼片でも、普通
造塊および分塊圧延によつて製造された鋼片でも
よく、また、熱間圧延は、連続鋳造によつて製造
された高温の鋼片を、そのまま熱間圧延する直接
熱間圧延の方法でも、常温まで冷却された鋼片を
再加熱後熱間圧延する方法でもよい。
As described above, according to the present invention, it is possible to obtain a hot-rolled steel plate for enameling that has high strength after firing and excellent nail-skipping resistance. In addition,
In this invention, the steel billet that is the material of the hot-rolled steel sheet may be a steel billet manufactured by continuous casting, a steel billet manufactured by normal ingot-forming and blooming rolling, or a hot-rolled steel billet manufactured by continuous casting. This method may be a direct hot rolling method in which a high temperature steel billet manufactured by continuous casting is directly hot rolled, or a method in which a steel billet cooled to room temperature is reheated and then hot rolled.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、熱延鋼板の固溶炭素量と熱延鋼板の焼
成後における強度低下量との関係を示すグラフで
ある。
The drawing is a graph showing the relationship between the amount of solid solute carbon in a hot rolled steel sheet and the amount of strength reduction after firing of the hot rolled steel sheet.

Claims (1)

【特許請求の範囲】 1 C :0.005〜0.02wt.%、 Mn:0.05〜1.0wt.%、 N :0.003〜0.015wt.%、 Ti:0.05〜0.3wt.%、 B :0.001〜0.010wt.%、 残部:鉄および不可避不純物 からなる成分組成を有する鋼片を熱間圧延し、熱
間圧延終了後200〜500℃の温度で巻取ることによ
つて、固溶炭素を0.001wt.%以上含有させること
を特徴とする、焼成後の強度が高く且つ耐爪とび
性に優れたほうろう用熱延鋼板の製造方法。
[Claims] 1 C: 0.005-0.02wt.%, Mn: 0.05-1.0wt.%, N: 0.003-0.015wt.%, Ti: 0.05-0.3wt.%, B: 0.001-0.010wt.%. %, remainder: By hot rolling a steel billet with a composition consisting of iron and unavoidable impurities, and coiling it at a temperature of 200 to 500°C after hot rolling, the solute carbon is reduced to 0.001wt.% or more. A method for producing a hot-rolled steel sheet for enameling which has high strength after firing and excellent nail chipping resistance.
JP23768484A 1984-11-13 1984-11-13 Hot rolled steel sheet for enamel having high strength after baking and superior fish scale resistance and manufacture thereof Granted JPS61117246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23768484A JPS61117246A (en) 1984-11-13 1984-11-13 Hot rolled steel sheet for enamel having high strength after baking and superior fish scale resistance and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23768484A JPS61117246A (en) 1984-11-13 1984-11-13 Hot rolled steel sheet for enamel having high strength after baking and superior fish scale resistance and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61117246A JPS61117246A (en) 1986-06-04
JPH0118124B2 true JPH0118124B2 (en) 1989-04-04

Family

ID=17018971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23768484A Granted JPS61117246A (en) 1984-11-13 1984-11-13 Hot rolled steel sheet for enamel having high strength after baking and superior fish scale resistance and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61117246A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360095B1 (en) * 1998-08-28 2003-10-22 주식회사 포스코 Manufacturing method of high adhesion enameled steel sheet with excellent formability
CN100453678C (en) * 2005-11-16 2009-01-21 鞍钢股份有限公司 Steel plate for hot-rolled double-side enamel and method for producing same
MY179869A (en) 2013-09-10 2020-11-18 Nippon Steel Corp Cold-rolled steel sheet for vitreous enameling and enameled product
CN110079731B (en) * 2019-04-30 2020-09-11 马鞍山钢铁股份有限公司 260 MPa-grade cold-rolled steel plate for enamel and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118610A (en) * 1973-03-16 1974-11-13
JPS54125117A (en) * 1978-03-24 1979-09-28 Nippon Steel Corp Steel plate for enamel
JPS569357A (en) * 1979-07-03 1981-01-30 Nippon Steel Corp Steel plate for enameling with excellent nail flying resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118610A (en) * 1973-03-16 1974-11-13
JPS54125117A (en) * 1978-03-24 1979-09-28 Nippon Steel Corp Steel plate for enamel
JPS569357A (en) * 1979-07-03 1981-01-30 Nippon Steel Corp Steel plate for enameling with excellent nail flying resistance

Also Published As

Publication number Publication date
JPS61117246A (en) 1986-06-04

Similar Documents

Publication Publication Date Title
EP0098324A1 (en) Process for producing aluminum-bearing grain-oriented silicon steel strip
JPH0118124B2 (en)
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
EP0739992B1 (en) Alloy sheet for shadow mask and method for manufacturing thereof
WO2000012773A1 (en) Method for manufacturing high adherence enamel-coating steel sheet with superior formability
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
EP0573642B1 (en) Process for manufacturing high magnetic flux density grain oriented electrical steel sheet having superior magnetic properties
JP2003129203A (en) Production method for aluminum alloy plate excellent in rivet formability, score workability, and blowup resistance and used for lid of positive-pressure can
JP3508436B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JPH0788558B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
KR870000703B1 (en) Process for producing strip of corrosion resistant alloy steel
JP3858127B2 (en) Method for producing cold rolled steel sheet for enamel with excellent claw resistance
EP0500715B1 (en) Aluminium alloys suitable for lithographic printing plates
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JP2825864B2 (en) Manufacturing method of cold rolled steel sheet with excellent ductility
JP3296924B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing without coarse grains and little oxide film
JP3494708B2 (en) An enameled steel sheet having excellent nail flying resistance and deep drawability, and a method for producing the same
JP3042273B2 (en) Method for producing Fe-Ni-based alloy thin plate for IC lead frame with excellent rust resistance
JP3619403B2 (en) Hot working method of S-added Fe-Ni alloy
JPH049859B2 (en)
EP1336665B1 (en) Cold reduced enamelling steel sheet and an enamelled structure comprising a component of such a steel sheet
JP3222048B2 (en) Manufacturing method of high purity ferritic stainless steel sheet with excellent ridging characteristics
JP4258039B2 (en) Ferritic stainless steel hot-rolled sheet, cold-rolled sheet excellent in ridging resistance, and manufacturing method thereof
JP3846019B2 (en) Method for producing non-oriented electrical steel sheet
KR20200066199A (en) Steel sheet for enamel and method of manufacturing the same