JP3367147B2 - Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for shadow mask having excellent press formability and method for producing the same - Google Patents

Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for shadow mask having excellent press formability and method for producing the same

Info

Publication number
JP3367147B2
JP3367147B2 JP15288593A JP15288593A JP3367147B2 JP 3367147 B2 JP3367147 B2 JP 3367147B2 JP 15288593 A JP15288593 A JP 15288593A JP 15288593 A JP15288593 A JP 15288593A JP 3367147 B2 JP3367147 B2 JP 3367147B2
Authority
JP
Japan
Prior art keywords
annealing
less
cold rolling
rolling
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15288593A
Other languages
Japanese (ja)
Other versions
JPH06336654A (en
Inventor
正 井上
清 鶴
道人 日朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP15288593A priority Critical patent/JP3367147B2/en
Priority to US08/160,399 priority patent/US5620535A/en
Priority to EP19930120232 priority patent/EP0627494B1/en
Priority to EP96101338A priority patent/EP0739992B1/en
Priority to DE1993612477 priority patent/DE69312477T2/en
Priority to DE1993619153 priority patent/DE69319153T2/en
Priority to CN94103317A priority patent/CN1037984C/en
Priority to KR1019940005990A priority patent/KR970003640B1/en
Publication of JPH06336654A publication Critical patent/JPH06336654A/en
Priority to US08/429,252 priority patent/US5637161A/en
Application granted granted Critical
Publication of JP3367147B2 publication Critical patent/JP3367147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、プレス成形性に優れ
たシャドウマスク用Fe−Ni系合金薄板およびFe−
Ni−Co系合金薄板とその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-Ni alloy thin plate for a shadow mask having excellent press formability and Fe-.
The present invention relates to a Ni-Co alloy thin plate and a manufacturing method thereof.

【従来の技術】近年、カラーテレビの高品位化に伴い、
色ずれの問題に対処できるシャドウマスク用合金とし
て、34〜38wt%のNiを含有するFe−Ni系合
金が使用されている。このFe−Ni系合金は、シャド
ウマスク用材料として従来から使用されてきた低炭素鋼
に較べ、熱膨張率が著しく小さい。このためFe−Ni
系合金で作られたシャドウマスクは、電子ビームにより
加熱されても熱膨張による色ずれの問題は生じにくい。
2. Description of the Related Art In recent years, with the increasing quality of color televisions,
As a shadow mask alloy capable of coping with the problem of color shift, a Fe-Ni alloy containing 34 to 38 wt% Ni is used. This Fe-Ni alloy has a remarkably small coefficient of thermal expansion as compared with the low carbon steel conventionally used as a shadow mask material. Therefore, Fe-Ni
A shadow mask made of a system alloy is unlikely to cause a problem of color shift due to thermal expansion even when heated by an electron beam.

【0002】通常、シャドウマスク用合金薄板は連続鋳
造法または造塊法によって得られた合金塊に、分塊圧
延、熱間圧延および冷間圧延・焼鈍を施すことにより製
造される。また、このようにして製造されたシャドウマ
スク用合金薄板は、通常、以下のような工程によってシ
ャドウマスクに加工される。即ち、シャドウマスク用合
金薄板にフォトエッチングによって電子ビームの通過孔
を形成し(以下、このエッチングによって穿孔されたま
まのシャドウマスク用合金薄板を「フラットマスク」と
いう)、このフラットマスクに焼鈍を施した後、ブラウ
ン管の形状に合うように曲面形状にプレス成形し、しか
る後これをシャドウマスクに組立て、その表面上に黒化
処理を施す。
Usually, an alloy thin plate for a shadow mask is manufactured by subjecting an alloy ingot obtained by a continuous casting method or an ingot making method to slab rolling, hot rolling and cold rolling / annealing. Moreover, the alloy thin plate for a shadow mask manufactured in this way is usually processed into a shadow mask by the following steps. That is, electron beam passage holes are formed by photoetching in a shadow mask alloy thin plate (hereinafter, the shadow mask alloy thin plate that has been punched by this etching is referred to as a "flat mask"), and this flat mask is annealed. After that, it is press-formed into a curved shape so as to match the shape of the cathode ray tube, and then this is assembled into a shadow mask, and the surface thereof is subjected to blackening treatment.

【0003】従来、Fe−Ni系合金を冷間圧延、再結
晶焼鈍し或いは再結晶焼鈍後に軽微な仕上圧延をして製
造されたシャドウマスク用材料は、低炭素鋼のシャドウ
マスク用材料に較べて強度が高いため、エッチング穿孔
後のプレス成形性を確保するためにプレス成形前に80
0℃以上の温度で軟化焼鈍(プレス前焼鈍)を実施し、
結晶粒を粗大化させることでその軟質化を図っている。
そして、この軟化焼鈍後に温間プレスする方法で球面成
形を行なっている。しかし、このように軟化焼鈍を80
0℃以上という高温で行うことは作業効率及び経済性の
面で不利であり、より低温の軟化焼鈍により800℃以
上で軟化焼鈍した材料と同等の低強度が得られる材料の
開発が望まれている。このような要望に対応する技術と
して、特開平3−267320号が提案されている。こ
の技術は、冷間圧延とこれに続く再結晶焼鈍の後、5〜
20%の圧延率で仕上冷間圧延を実施することにより、
800℃未満の軟化焼鈍、具体的には730℃×60分
の軟化焼鈍を行うことで200℃での0.2%耐力を
9.5kgf/mm2(10kgf/mm2以下)とし
て、プレス成形性の良好なレベルまで低強度化を図ろう
とするものである。
Conventionally, a shadow mask material produced by cold rolling, recrystallization annealing, or recrystallization annealing followed by a slight finish rolling of an Fe-Ni alloy is less than a shadow mask material of low carbon steel. Since the strength is high, 80% before press forming to ensure press formability after etching perforation
Softening annealing (pre-press annealing) at a temperature of 0 ° C or higher,
By making the crystal grains coarse, the softening is aimed at.
Then, spherical molding is performed by a method of warm pressing after the softening annealing. However, the softening
Performing at a temperature as high as 0 ° C or higher is disadvantageous in terms of work efficiency and economy, and it is desired to develop a material that can obtain the same low strength as the material softened and annealed at 800 ° C or higher by the softening and annealing at a lower temperature. There is. Japanese Unexamined Patent Publication (Kokai) No. 3-267320 has been proposed as a technique to meet such a demand. This technique requires 5 to 5 days after cold rolling and subsequent recrystallization annealing.
By performing the finish cold rolling at a rolling rate of 20%,
Press-molding by softening annealing at less than 800 ° C., specifically, 703 ° C. × 60 minutes to obtain 0.2% proof stress at 200 ° C. of 9.5 kgf / mm 2 (10 kgf / mm 2 or less). It is intended to reduce the strength to a good level.

【0004】[0004]

【発明が解決しようとする課題】しかし、この先行技術
でも良好な温間プレス成形性を十分に満足するものとは
言い難い。すなわち、この先行技術により得られるシャ
ドウマスク用材料は、プレス成形時に金型にかじり付き
が発生し、材料の端部で割れが発生し易いという欠点が
ある。このような問題にも拘らず、ブラウン管メーカー
では作業効率及び経済性をさらに追及するため、軟化焼
鈍の焼鈍時間を上記した温度においてより短縮化するこ
とも試みられている。ちなみに、この場合の焼鈍時間と
は40分以下であり、場合によっては2分といった短時
間処理もあり得る。しかし、このような焼鈍条件を上記
の先行技術に適用した場合、プレス成形時の金型へのか
じり付きの発生がより著しくなり、この結果材料の割れ
が多発し、品質上著しい問題となる。
However, even this prior art cannot be said to sufficiently satisfy good warm press formability. That is, the shadow mask material obtained by this prior art has a drawback that galling occurs in the mold during press molding and cracks are likely to occur at the end of the material. Despite these problems, CRT manufacturers have also attempted to shorten the annealing time of softening annealing at the above-mentioned temperature in order to further pursue work efficiency and economic efficiency. Incidentally, the annealing time in this case is 40 minutes or less, and depending on the case, a short time treatment such as 2 minutes may be possible. However, when such an annealing condition is applied to the above-mentioned prior art, the occurrence of galling on the mold during press molding becomes more significant, resulting in frequent cracking of the material, which is a serious quality problem.

【0005】本発明はこのような従来の問題に鑑み、プ
レス成形前の軟化焼鈍を790℃以下という低い温度で
しかも40分以下の短い時間で実施した場合でも、優れ
たプレス成形性が得られるシャドウマスク用Fe−Ni
系合金薄板およびFe−Ni−Co系合金薄板とその製
造法を提供することを目的とする。ここで、本発明にお
いて優れたプレス成形性とは、成形時の形状凍結性が優
れ、金型とのなじみが良く(金型とのかじりがなく)、
しかも材料に割れが生じないことを意味する。
In view of such conventional problems, the present invention provides excellent press formability even when softening annealing before press forming is carried out at a temperature as low as 790 ° C. or less and a short time of 40 minutes or less. Fe-Ni for shadow mask
An object is to provide a system alloy thin plate, a Fe-Ni-Co system alloy thin plate, and a method for producing the same. Here, the excellent press moldability in the present invention is excellent in shape fixability at the time of molding, is well compatible with the mold (no galling with the mold),
Moreover, it means that the material does not crack.

【0006】[0006]

【課題を解決するための手段】本発明者らは、プレス成
形性に優れたシャドウマスク用Fe−Ni系合金薄板を
開発すべく鋭意研究を重ねた結果、合金板の成分組成と
0.2%耐力および{211}結晶面の集積度を特定の
範囲内に調整することにより優れたプレス成形性が得ら
れること、また、このような合金薄板の製造方法に関
し、熱延板を所定温度で熱延板焼鈍するとともに、仕上
冷間圧延での圧延率を、仕上冷間圧延前の平均オーステ
ナイト結晶粒径に応じて適切に制御し、さらにプレス成
形前の軟化焼鈍を所定の条件で行うことにより、プレス
成形前の軟化焼鈍を実施した後の合金薄板の0.2%耐
力および{211}結晶面の集積度を特定の範囲内に調
整することができることを見出した。本発明はこのよう
な知見に基づきなされたもので、その特徴とする構成は
以下の通りである。
The inventors of the present invention have conducted extensive studies to develop an Fe-Ni alloy thin plate for a shadow mask, which is excellent in press formability. % Press yield and excellent press formability can be obtained by adjusting the degree of integration of {211} crystal planes within a specific range, and a method for producing such an alloy thin plate is Along with hot-rolled sheet annealing, the rolling ratio in finish cold rolling is appropriately controlled according to the average austenite crystal grain size before finish cold rolling, and softening annealing before press forming is performed under predetermined conditions. According to the above, it was found that the 0.2% proof stress and the degree of accumulation of {211} crystal faces of the alloy sheet after softening annealing before press forming can be adjusted within a specific range. The present invention has been made on the basis of such knowledge, and the characteristic configuration is as follows.

【0007】[0007]

【0008】(1) Ni:34〜38wt%、Si:
0.07wt%以下、B:0.0020wt%以下、
O:0.0020wt%以下、N:0.0020wt%
未満、Cr:0.001〜0.05wt%、Co:1w
t%以下、残部Fe及び不可避不純物からなり、プレス
成形前の軟化焼鈍を実施した後における0.2%耐力が
28.0kgf/mm以下、板表面での{211}結
晶面の集積度が16%以下であることを特徴とするプレ
ス成形性に優れたシャドウマスク用Fe−Ni系合金薄
板。
(1) Ni: 34 to 38 wt%, Si:
0.07 wt% or less, B: 0.0020 wt% or less,
O: 0.0020 wt% or less, N: 0.0020 wt%
Less than, Cr: 0.001 to 0.05 wt%, Co: 1w
t% or less, the balance Fe and unavoidable impurities, 0.2% proof stress after performing softening annealing before press molding is 28.0 kgf / mm 2 or less, and the degree of integration of {211} crystal faces on the plate surface is A Fe-Ni alloy thin plate for a shadow mask, which is excellent in press formability and is 16% or less.

【0009】(2) Ni:28〜38wt%、Si:
0.07wt%以下、B:0.0020wt%以下、
O:0.0020wt%以下、N:0.0020wt%
未満、Cr:0.001〜0.05wt%、Co:1w
t%超〜7wt%、残部Fe及び不可避不純物からな
り、プレス成形前の軟化焼鈍を実施した後における0.
2%耐力が28.0kgf/mm以下、板表面での
{211}結晶面の集積度が16%以下であることを特
徴とするプレス成形性に優れたシャドウマスク用Fe−
Ni−Co系合金薄板。
(2) Ni: 28 to 38 wt%, Si:
0.07 wt% or less, B: 0.0020 wt% or less,
O: 0.0020 wt% or less, N: 0.0020 wt%
Less than, Cr: 0.001 to 0.05 wt%, Co: 1w
more than t% to 7 wt%, the balance Fe and unavoidable impurities, and is 0.
Fe-for a shadow mask excellent in press formability, characterized by having a 2% proof stress of 28.0 kgf / mm 2 or less and a degree of integration of {211} crystal faces on the plate surface of 16% or less.
Ni-Co alloy thin plate.

【0010】(3) 上記(1)に記載の成分組成を有
する熱延板を、910〜990℃で熱延板焼鈍した後、
冷間圧延−再結晶焼鈍−冷間圧延の工程を経て最終の再
結晶焼鈍を実施し、次いで、前記最終の再結晶焼鈍後の
平均オーステナイト結晶粒径D(μm)に応じて下式を
満足する圧延率R(%)で仕上冷間圧延を実施し、 16≦R≦75 6.38D−133.9≦R≦6.38D−51.0 次いで、プレス成形前の軟化焼鈍を焼鈍温度:790℃
以下、焼鈍時間:40分以下で且つ下式を満足する条件
で実施することにより、 T≧−53.8log t+806 但し T:焼鈍温度(℃) t:焼鈍時間(分) 0.2%耐力が28.0kgf/mm以下、板表面で
の{211}結晶面の集積度が16%以下のFe−Ni
系合金薄板を得ることを特徴とするプレス成形性に優れ
たシャドウマスク用Fe−Ni系合金薄板の製造方法。
(3) After hot-rolling the hot-rolled sheet having the component composition described in (1 ) above at 910 to 990 ° C.,
The final recrystallization annealing is performed through the steps of cold rolling-recrystallization annealing-cold rolling, and then the following expression is satisfied according to the average austenite crystal grain size D (μm) after the final recrystallization annealing. Finish cold rolling is performed at a rolling ratio R (%) of 16 ≦ R ≦ 75 6.38D-133.9 ≦ R ≦ 6.38D-51.0, and then the softening annealing before press forming is performed at an annealing temperature: 790 ° C
Hereinafter, by performing the annealing time: 40 minutes or less and under the conditions satisfying the following formula, T ≧ −53.8log t + 806 where T: annealing temperature (° C.) t: annealing time (min) 0.2% proof stress Fe-Ni of 28.0 kgf / mm 2 or less and the degree of integration of {211} crystal planes on the plate surface of 16% or less
A method for producing a Fe-Ni alloy thin plate for a shadow mask, which is excellent in press formability, characterized by obtaining a thin alloy plate.

【0011】(4) 上記(1)に記載の成分組成を有
する熱延板を、910〜990℃で熱延板焼鈍した後、
冷間圧延−再結晶焼鈍−冷間圧延の工程を経て最終の再
結晶焼鈍を実施し、次いで、前記最終の再結晶焼鈍後の
平均オーステナイト結晶粒径D(μm)に応じて下式を
満足する圧延率R(%)で仕上冷間圧延を実施し、 21≦R≦70 6.38D−122.6≦R≦6.38D−65.2 次いで、プレス成形前の軟化焼鈍を焼鈍温度:790℃
以下、焼鈍時間:40分以下で且つ下式を満足する条件
で実施することにより、 T≧−53.8log t+806 但し T:焼鈍温度(℃) t:焼鈍時間(分) 0.2%耐力が27.5kgf/mm以下、板表面で
の{211}結晶面の集積度が16%以下のFe−Ni
系合金薄板を得ることを特徴とするプレス成形性に優れ
たシャドウマスク用Fe−Ni系合金薄板の製造方法。
(4) After hot-rolling the hot-rolled sheet having the component composition described in (1 ) above at 910 to 990 ° C.,
The final recrystallization annealing is performed through the steps of cold rolling-recrystallization annealing-cold rolling, and then the following expression is satisfied according to the average austenite crystal grain size D (μm) after the final recrystallization annealing. Finish cold rolling is performed at a rolling ratio R (%) of 21 ≦ R ≦ 70 6.38D-122.6 ≦ R ≦ 6.38D-65.2 Then, the softening annealing before press forming is performed at an annealing temperature: 790 ° C
Hereinafter, by performing the annealing time: 40 minutes or less and under the conditions satisfying the following formula, T ≧ −53.8log t + 806 where T: annealing temperature (° C.) t: annealing time (min) 0.2% proof stress Fe-Ni with 27.5 kgf / mm 2 or less and a degree of integration of {211} crystal planes on the plate surface of 16% or less
A method for producing a Fe-Ni alloy thin plate for a shadow mask, which is excellent in press formability, characterized by obtaining a thin alloy plate.

【0012】(5) 上記(1)に記載の成分組成を有
する熱延板を、910〜990℃で熱延板焼鈍した後、
冷間圧延−再結晶焼鈍−冷間圧延の工程を経て最終の再
結晶焼鈍を実施し、次いで、前記最終の再結晶焼鈍後の
平均オーステナイト結晶粒径D(μm)に応じて下式を
満足する圧延率R(%)で仕上冷間圧延を実施し、 26≦R≦63 6.38D−108.0≦R≦6.38D−79.3 次いで、プレス成形前の軟化焼鈍を焼鈍温度:790℃
以下、焼鈍時間:40分以下で且つ下式を満足する条件
で実施することにより、 T≧−53.8log t+806 但し T:焼鈍温度(℃) t:焼鈍時間(分) 0.2%耐力が27.0kgf/mm以下、板表面で
の{211}結晶面の集積度が16%以下のFe−Ni
系合金薄板を得ることを特徴とするプレス成形性に優れ
たシャドウマスク用Fe−Ni系合金薄板の製造方法。
(5) After hot-rolling the hot-rolled sheet having the component composition described in (1 ) above at 910 to 990 ° C.,
The final recrystallization annealing is performed through the steps of cold rolling-recrystallization annealing-cold rolling, and then the following expression is satisfied according to the average austenite crystal grain size D (μm) after the final recrystallization annealing. Finishing cold rolling is performed at a rolling ratio R (%) of 26 ≦ R ≦ 63 6.38D−108.0 ≦ R ≦ 6.38D−79.3, and then softening annealing before press forming is performed at an annealing temperature: 790 ° C
Hereinafter, by performing the annealing time: 40 minutes or less and under the conditions satisfying the following formula, T ≧ −53.8log t + 806 where T: annealing temperature (° C.) t: annealing time (min) 0.2% proof stress Fe-Ni of 27.0 kgf / mm 2 or less, and the degree of integration of {211} crystal planes on the plate surface of 16% or less
A method for producing a Fe-Ni alloy thin plate for a shadow mask, which is excellent in press formability, characterized by obtaining a thin alloy plate.

【0013】(6) 上記(2)に記載の成分組成を有
する熱延板を、910〜990℃で熱延板焼鈍した後、
冷間圧延−再結晶焼鈍−冷間圧延の工程を経て最終の再
結晶焼鈍を実施し、次いで、前記最終の再結晶焼鈍後の
平均オーステナイト結晶粒径D(μm)に応じて下式を
満足する圧延率R(%)で仕上冷間圧延を実施し、 16≦R≦75 6.38D−133.9≦R≦6.38D−51.0 次いで、プレス成形前の軟化焼鈍を焼鈍温度:790℃
以下、焼鈍時間:40分以下で且つ下式を満足する条件
で実施することにより、 T≧−53.8log t+806 但し T:焼鈍温度(℃) t:焼鈍時間(分) 0.2%耐力が28.0kgf/mm以下、板表面で
の{211}結晶面の集積度が16%以下のFe−Ni
−Co系合金薄板を得ることを特徴とするプレス成形性
に優れたシャドウマスク用Fe−Ni−Co系合金薄板
の製造方法。
(6) After hot-rolling the hot-rolled sheet having the composition as described in (2 ) above at 910 to 990 ° C.,
The final recrystallization annealing is performed through the steps of cold rolling-recrystallization annealing-cold rolling, and then the following expression is satisfied according to the average austenite crystal grain size D (μm) after the final recrystallization annealing. Finish cold rolling is performed at a rolling ratio R (%) of 16 ≦ R ≦ 75 6.38D-133.9 ≦ R ≦ 6.38D-51.0, and then the softening annealing before press forming is performed at an annealing temperature: 790 ° C
Hereinafter, by performing the annealing time: 40 minutes or less and under the conditions satisfying the following formula, T ≧ −53.8log t + 806 where T: annealing temperature (° C.) t: annealing time (min) 0.2% proof stress Fe-Ni of 28.0 kgf / mm 2 or less and the degree of integration of {211} crystal planes on the plate surface of 16% or less
A method for producing an Fe-Ni-Co alloy thin plate for a shadow mask, which is excellent in press formability, characterized by obtaining a -Co alloy thin plate.

【0014】(7) 上記(2)に記載の成分組成を有
する熱延板を、910〜990℃で熱延板焼鈍した後、
冷間圧延−再結晶焼鈍−冷間圧延の工程を経て最終の再
結晶焼鈍を実施し、次いで、前記最終の再結晶焼鈍後の
平均オーステナイト結晶粒径D(μm)に応じて下式を
満足する圧延率R(%)で仕上冷間圧延を実施し、 21≦R≦70 6.38D−122.6≦R≦6.38D−65.2 次いで、プレス成形前の軟化焼鈍を焼鈍温度:790℃
以下、焼鈍時間:40分以下で且つ下式を満足する条件
で実施することにより、 T≧−53.8log t+806 但し T:焼鈍温度(℃) t:焼鈍時間(分) 0.2%耐力が27.5kgf/mm以下、板表面で
の{211}結晶面の集積度が16%以下のFe−Ni
−Co系合金薄板を得ることを特徴とするプレス成形性
に優れたシャドウマスク用Fe−Ni−Co系合金薄板
の製造方法。
(7) After annealing the hot-rolled sheet having the component composition described in (2 ) above at 910 to 990 ° C.,
The final recrystallization annealing is performed through the steps of cold rolling-recrystallization annealing-cold rolling, and then the following expression is satisfied according to the average austenite crystal grain size D (μm) after the final recrystallization annealing. Finish cold rolling is performed at a rolling ratio R (%) of 21 ≦ R ≦ 70 6.38D-122.6 ≦ R ≦ 6.38D-65.2 Then, the softening annealing before press forming is performed at an annealing temperature: 790 ° C
Hereinafter, by performing the annealing time: 40 minutes or less and under the conditions satisfying the following formula, T ≧ −53.8log t + 806 where T: annealing temperature (° C.) t: annealing time (min) 0.2% proof stress Fe-Ni with 27.5 kgf / mm 2 or less and a degree of integration of {211} crystal planes on the plate surface of 16% or less
A method for producing an Fe-Ni-Co alloy thin plate for a shadow mask, which is excellent in press formability, characterized by obtaining a -Co alloy thin plate.

【0015】(8) 上記(2)に記載の成分組成を有
する熱延板を、910〜990℃で熱延板焼鈍した後、
冷間圧延−再結晶焼鈍−冷間圧延の工程を経て最終の再
結晶焼鈍を実施し、次いで、前記最終の再結晶焼鈍後の
平均オーステナイト結晶粒径D(μm)に応じて下式を
満足する圧延率R(%)で仕上冷間圧延を実施し、 26≦R≦63 6.38D−108.0≦R≦6.38D−79.3 次いで、プレス成形前の軟化焼鈍を焼鈍温度:790℃
以下、焼鈍時間:40分以下で且つ下式を満足する条件
で実施することにより、 T≧−53.8log t+806 但し T:焼鈍温度(℃) t:焼鈍時間(分) 0.2%耐力が27.0kgf/mm以下、板表面で
の{211}結晶面の集積度が16%以下のFe−Ni
−Co系合金薄板を得ることを特徴とするプレス成形性
に優れたシャドウマスク用Fe−Ni−Co系合金薄板
の製造方法。
(8) After hot-rolling the hot-rolled sheet having the composition described in (2 ) above at 910 to 990 ° C.,
The final recrystallization annealing is performed through the steps of cold rolling-recrystallization annealing-cold rolling, and then the following expression is satisfied according to the average austenite crystal grain size D (μm) after the final recrystallization annealing. Finishing cold rolling is performed at a rolling ratio R (%) of 26 ≦ R ≦ 63 6.38D−108.0 ≦ R ≦ 6.38D−79.3, and then softening annealing before press forming is performed at an annealing temperature: 790 ° C
Hereinafter, by performing the annealing time: 40 minutes or less and under the conditions satisfying the following formula, T ≧ −53.8log t + 806 where T: annealing temperature (° C.) t: annealing time (min) 0.2% proof stress Fe-Ni of 27.0 kgf / mm 2 or less, and the degree of integration of {211} crystal planes on the plate surface of 16% or less
A method for producing an Fe-Ni-Co alloy thin plate for a shadow mask, which is excellent in press formability, characterized by obtaining a -Co alloy thin plate.

【0016】[0016]

【作用】以下、本発明の詳細とその限定理由について説
明する。本発明では、温間プレスを前提とした場合のプ
レス成形時の形状凍結性の向上と合金板の割れ発生抑制
のために要求される降伏強度として、プレス成形前の軟
化焼鈍(以下、プレス前焼鈍という)を実施した後にお
ける室温での0.2%耐力を28.0kgf/mm2
下と定める。なお、0.2%耐力を28.0kgf/m
2以下の範囲においてより低減させれば、プレス成形
時の形状凍結性をより優れたものとすることができる。
本発明の骨子は、主としてB、Oの含有量を特定の範囲
に制限することで、本発明が前提とする特定のプレス前
焼鈍条件の下での結晶粒の成長性を高め、粗粒化により
低い降伏強度を確保し、主としてSi、Nの含有量を特
定の範囲に制限することで、プレス成形時における金型
とのなじみを良好にして金型へのかじりの発生を抑制
し、さらに、上記低強度化とプレス前焼鈍後の板表面で
の{211}結晶面の集積度を所定の範囲に規制するこ
とで、プレス成形時の材料の割れ発生を抑制することに
ある。
The details of the present invention and the reasons for limitation thereof will be described below. In the present invention, the softening annealing before press forming (hereinafter, referred to as before pressing) The 0.2% proof stress at room temperature after carrying out the (annealing) is determined to be 28.0 kgf / mm 2 or less. Note that 0.2% proof stress is 28.0 kgf / m
By further reducing it in the range of m 2 or less, the shape fixability at the time of press molding can be made more excellent.
In the essence of the present invention, by limiting the content of B and O mainly to a specific range, the crystal grain growth property under the specific pre-annealing conditions premised by the present invention is increased, and the graininess is increased. Secures a lower yield strength and mainly limits the contents of Si and N within a specific range, thereby making the mold fit well during press molding and suppressing the occurrence of galling on the mold. By controlling the degree of integration of {211} crystal planes on the surface of the plate after the reduction of strength and the annealing before pressing to a predetermined range, it is possible to suppress cracking of the material during press forming.

【0017】まず、合金の成分組成の限定理由について
説明する。色ずれの発生を防止するためにシャドウマス
ク用Fe−Ni系合金薄板に要求される30〜100℃
の温度域における平均熱膨張係数の上限値は、2.0×
(1/106)/℃である。熱膨張係数は合金のNi量
に依存し、上記の平均熱膨張係数の条件を満足するため
のNi量は34〜38wt%である。このためNiは3
4〜38wt%の範囲とする。また、より低い平均熱膨
張係数を得るためには、Niを35〜37wt%、さら
好ましくは35.5〜36.5wt%とすることが望ま
しい。Coは、通常Fe−Ni系合金中に不可避不純物
としてある程度含まれており、Coが1wt%以下では
特性にほとんど影響を与えず、Ni量も上記範囲でよ
い。一方、Coを1wt%超〜7wt%含有する場合に
は、上記の平均熱膨張係数の条件を満足するためのNi
の範囲は28〜38wt%である。このためCoを1w
t%超〜7wt%含有する場合には、Niは28〜38
wt%の範囲とする。また、Coを3〜6wt%、Ni
を30〜33wt%とすることにより、さらに優れた特
性が得られる。また、Coが7wt%を超えると逆に熱
膨張係数が劣化するため、Coの上限は7wt%とす
る。
First, the reasons for limiting the component composition of the alloy will be described. 30-100 ° C required for Fe-Ni alloy thin plate for shadow mask to prevent color shift
The upper limit of the average coefficient of thermal expansion in the temperature range of
(1/10 6 ) / ° C. The thermal expansion coefficient depends on the Ni content of the alloy, and the Ni content for satisfying the above condition of the average thermal expansion coefficient is 34 to 38 wt%. Therefore, Ni is 3
The range is 4 to 38 wt%. Further, in order to obtain a lower average thermal expansion coefficient, it is desirable that the Ni content is 35 to 37 wt%, and more preferably 35.5 to 36.5 wt%. Co is usually contained in the Fe—Ni-based alloy to some extent as an unavoidable impurity, and when Co is 1 wt% or less, it hardly affects the characteristics, and the amount of Ni may be in the above range. On the other hand, when Co is contained in an amount of more than 1 wt% to 7 wt%, Ni for satisfying the above condition of the average thermal expansion coefficient.
Is in the range of 28 to 38 wt%. Therefore, Co is 1w
In the case of containing more than t% to 7 wt%, Ni is 28 to 38
The range is wt%. In addition, Co is 3 to 6 wt%, Ni
When the content is 30 to 33 wt%, more excellent characteristics can be obtained. On the other hand, if Co exceeds 7 wt%, the thermal expansion coefficient deteriorates, so the upper limit of Co is 7 wt%.

【0018】Oは不可避不純物元素の1つであり、O量
が多いと合金中の酸化物系非金属介在物が多くなり、こ
の介在物がプレス前焼鈍での結晶粒の成長性、特に79
0℃以下、40分以下という本発明が前提とするプレス
前焼鈍条件の下での結晶粒の成長性を阻害する。Oが
0.0020wt%を超えると、この粒成長の阻害作用
が著しくなり、プレス前焼鈍後に28.0kgf/mm
2以下の0.2%耐力が得られない。このためOは0.
0020wt%を上限とする。なお、下限は特に限定し
ないが、溶製上の経済性の面からは0.001wt%程
度が実質的な下限となる。
O is one of the unavoidable impurity elements, and when the amount of O is large, the amount of oxide-based nonmetallic inclusions in the alloy is large, and this inclusion grows in crystal grains during pre-press annealing, especially 79
This impedes the crystal grain growth under the pre-press annealing conditions of 0 ° C. or less and 40 minutes or less, which is the premise of the present invention. If O exceeds 0.0020 wt%, the inhibitory effect on the grain growth becomes remarkable, and 28.0 kgf / mm after pre-press annealing.
0.2% yield strength of 2 or less cannot be obtained. Therefore, O is 0.
The upper limit is 0020 wt%. The lower limit is not particularly limited, but from the viewpoint of economical efficiency in melting, about 0.001 wt% is a practical lower limit.

【0019】Bは熱間加工性を向上させる作用がある
が、その含有量が多くなるとプレス前焼鈍時に形成され
る再結晶粒の粒界に偏析し、粒界移動を阻害する。この
結果、結晶粒の成長性が阻害され、プレス前焼鈍後の所
望の0.2%耐力が得られなくなる。特に、本発明が前
提とするプレス前焼鈍条件の下では粒成長の阻害作用が
強く、しかも、この作用はすべての結晶粒に対して一様
に働くものではないため、結果的に著しい混粒組織を生
じ、プレス成形時の材料の伸びのムラも発生させてしま
う。また、Bは材料スカート部の割れの原因となるプレ
ス前焼鈍後の{211}結晶面の集積度を高める作用が
ある。B量が0.0020wt%を超えると上記した粒
成長の阻害作用が顕著になるため28.0kgf/mm
2以下の0.2%耐力が得られず、また、プレス成形時
の伸びムラ等の問題も生じ、加えて、{211}結晶面
の集積度も本発明が規定する上限を超えてしまう。この
ためBは0.0020wt%以下とする。
B has the effect of improving hot workability, but if its content increases, it segregates at the grain boundaries of the recrystallized grains formed during pre-press annealing and inhibits grain boundary migration. As a result, the crystal grain growth is hindered, and the desired 0.2% proof stress after the pre-press annealing cannot be obtained. In particular, under the pre-press annealing condition which is the premise of the present invention, the grain growth inhibitory action is strong, and this action does not work uniformly for all the crystal grains, resulting in significant mixed grain A structure is generated, and unevenness in the elongation of the material during press molding also occurs. In addition, B has the effect of increasing the degree of integration of the {211} crystal faces after pre-press annealing that causes cracking of the material skirt portion. When the amount of B exceeds 0.0020 wt%, the above grain growth inhibitory effect becomes remarkable, so 28.0 kgf / mm
A 0.2% proof stress of 2 or less cannot be obtained, and problems such as unevenness in elongation at the time of press molding occur, and in addition, the degree of integration of {211} crystal faces exceeds the upper limit defined by the present invention. Therefore, B is 0.0020 wt% or less.

【0020】Siは溶製時の脱酸元素として添加される
が、その添加量が0.05wt%を超えると、プレス前
焼鈍時に合金板表面にSiの酸化膜が形成され、この酸
化膜によりプレス成形時の金型とのなじみが悪くなり、
合金板の金型へのかじり付きが生じるようになる。この
ためSiは0.07wt%を上限とする。また、Si量
をさらに低減することにより、合金板と金型とのなじみ
をより良好なものとすることができる。なお、Siの下
限は特に限定しないが、溶製上の経済性の面からは0.
001wt%程度が実質的な下限となる。
Si is added as a deoxidizing element at the time of melting. If the added amount exceeds 0.05 wt%, an oxide film of Si is formed on the surface of the alloy plate during annealing before pressing, and this oxide film causes Familiarity with the mold during press molding deteriorates,
The galling of the alloy plate to the mold will occur. Therefore, the upper limit of Si is 0.07 wt%. Further, by further reducing the amount of Si, the alloy plate and the mold can be made more compatible with each other. Although the lower limit of Si is not particularly limited, it is 0.
The practical lower limit is about 001 wt%.

【0021】Nは溶製時に不可避的に混入する元素であ
り、Nを0.0020wt%以上含有するとプレス前焼
鈍時に合金板表面にNが濃化して窒化物を形成し、この
窒化物によりプレス成形時の金型とのなじみが悪くな
り、合金板の金型へのかじり付きが生じるようになる。
このためNは0.0020wt%未満とする。なお、N
の下限は特に限定しないが、溶製上の経済性の面からは
0.0001wt%程度が実質的な下限となる。なお、
上記の成分元素以外の元素については、C:0.000
1〜0.0050wt%、Mn:0.001〜0.35
wt%、Cr:0.001〜0.05wt%の範囲とす
ることが好ましい。
N is an element that is inevitably mixed in during melting. If N is contained in an amount of 0.0020 wt% or more, N is concentrated on the surface of the alloy plate during pre-press annealing to form a nitride, which is pressed by the nitride. Familiarity with the mold at the time of molding becomes poor, and galling of the alloy plate to the mold occurs.
Therefore, N is set to less than 0.0020 wt%. Note that N
The lower limit is not particularly limited, but from the viewpoint of economical efficiency in melting, about 0.0001 wt% is a practical lower limit. In addition,
For elements other than the above component elements, C: 0.000
1 to 0.0050 wt%, Mn: 0.001 to 0.35
It is preferable to set it in the range of wt% and Cr: 0.001 to 0.05 wt%.

【0022】以上のような成分条件およびプレス前焼鈍
後の0.2%耐力を満足することにより、プレス成形時
の金型へのかじりを抑制し、且つ形状凍結性を優れたレ
ベルとすることが可能であるが、これだけではプレス成
形性のもう1つの側面である材料の割れの問題は改善さ
れない。本発明者らはこのような問題を解決するため、
本発明範囲の成分組成および0.2%耐力を有し、板表
面の結晶方位が種々異なった合金板を作成し、板表面の
結晶方位とプレス成形時の割れ発生との関係を調べた。
その結果、合金板の割れを抑制するためにはプレス前焼
鈍後の合金板の0.2%耐力を規定するだけでなく、板
表面の{211}結晶面の集積度を特定値以下に制御す
ることが必要であることを見出した。
By satisfying the above component conditions and 0.2% proof stress after press pre-annealing, it is possible to suppress the galling of the mold during press molding and to make the shape fixability excellent. However, this alone does not improve the problem of material cracking, another aspect of press formability. In order to solve such a problem, the present inventors have
Alloy plates having a component composition within the range of the present invention and a 0.2% proof stress and different crystal orientations on the plate surface were prepared, and the relationship between the crystal orientation on the plate surface and the occurrence of cracks during press forming was investigated.
As a result, in order to suppress cracking of the alloy sheet, not only the 0.2% proof stress of the alloy sheet after annealing before pressing is specified, but also the degree of integration of {211} crystal planes on the sheet surface is controlled to be below a specific value. Found that it is necessary to do.

【0023】図1は、本発明の成分条件を満足する合金
板について、プレス成形時の合金板の割れの発生と{2
11}結晶面の集積度および0.2%耐力との関係を示
したものである。{211}結晶面の集積度は、プレス
前焼鈍後の合金板の(422)回折面の相対X線回折強
度比を(111)、(200)、(220)、(31
1)、(331)および(420)の各回折面の相対X
線強度比の和で割ることにより求めた。ここで、相対X
線回折強度比とは各回折面で測定されたX線回折強度を
その回折面の理論X線回折強度で割ったものである。例
えば、(111)回折面の相対X線回折強度比は(11
1)回折面のX線回折強度を(111)回折面のX線回
折理論強度で割ったものである。なお、{211}結晶
面の集積度の測定は、{211}面と方位でみて等価な
(422)回折面のX線回折強度の測定により行った。
FIG. 1 shows the occurrence of cracks in the alloy plate during press forming and {2
11} shows the relationship between the degree of integration of crystal planes and 0.2% proof stress. The degree of integration of {211} crystal planes is (111), (200), (220), (31) as the relative X-ray diffraction intensity ratio of the (422) diffraction plane of the alloy plate after annealing before pressing.
Relative X of each diffraction surface of 1), (331) and (420)
It was calculated by dividing by the sum of the line intensity ratios. Where relative X
The line diffraction intensity ratio is the X-ray diffraction intensity measured on each diffraction surface divided by the theoretical X-ray diffraction intensity of that diffraction surface. For example, the relative X-ray diffraction intensity ratio of the (111) diffraction plane is (11
1) X-ray diffraction intensity of the diffractive surface divided by theoretical X-ray diffraction intensity of the (111) diffractive surface. The degree of integration of the {211} crystal plane was measured by measuring the X-ray diffraction intensity of a (422) diffraction plane which is equivalent to the {211} plane in terms of orientation.

【0024】図1によれば、0.2%耐力が28.0k
gf/mm2以下で且つ{211}結晶面の集積度が1
6%以下ではプレス成形時の合金板の割れは発生してお
らず、本発明が意図する優れた効果が得られている。以
上の理由から本発明では、合金板の割れを抑制するため
の条件として、プレス前焼鈍後の板表面での{211}
結晶面の集積度を16%以下と規定する。
According to FIG. 1, the 0.2% proof stress is 28.0 k.
gf / mm 2 or less and the degree of integration of {211} crystal faces is 1
If it is 6% or less, cracking of the alloy plate does not occur during press forming, and the excellent effect intended by the present invention is obtained. For the above reasons, in the present invention, as a condition for suppressing cracking of the alloy plate, {211} on the plate surface after annealing before pressing is used.
The degree of crystal plane integration is defined as 16% or less.

【0025】本発明の合金薄板は、上述した成分組成を
有する熱延板を熱延板焼鈍した後、冷間圧延−再結晶焼
鈍−冷間圧延の工程を経て最終の再結晶焼鈍を実施し、
次いで仕上冷間圧延を実施し、しかる後プレス前焼鈍を
実施することにより製造される。まず、上記熱延板焼鈍
は{211}結晶面の集積度を16%以下とするために
特定の温度範囲で行われる必要がある。本発明の成分条
件を満足する熱延板を種々の温度で熱延板焼鈍し、冷間
圧延−再結晶焼鈍−冷間圧延−再結晶焼鈍(890℃×
1分)−仕上冷間圧延(圧延率21%)−プレス前焼鈍
(750℃×20分)の製造工程で合金板を製造した。
また、比較のため熱延板焼鈍を実施しない熱延板から同
様の製造工程で合金板を製造した。得られた合金板の板
表面での{211}結晶面の集積度および引張試験によ
る伸びと熱延板焼鈍温度との関係を図2に示す。これに
よれば、熱延板焼鈍温度が910〜990℃の時に{2
11}結晶面の集積度が16%以下となっている。この
ため本発明では、{211}結晶面の集積度を16%以
下とするための条件として、熱延板焼鈍温度を910〜
990℃と規定する。
The alloy thin sheet of the present invention is obtained by subjecting a hot rolled sheet having the above-described composition to the hot rolled sheet annealing, and then the final recrystallization annealing through the steps of cold rolling-recrystallization annealing-cold rolling. ,
Then, finish cold rolling is carried out, and thereafter, pre-press annealing is carried out to manufacture the steel sheet. First, the hot-rolled sheet annealing needs to be performed within a specific temperature range so that the degree of integration of {211} crystal faces is 16% or less. Hot-rolled sheets satisfying the component conditions of the present invention are annealed at various temperatures, and cold rolling-recrystallization annealing-cold rolling-recrystallization annealing (890 ° C x
An alloy plate was manufactured in the manufacturing process of 1 minute) -finish cold rolling (rolling rate 21%)-annealing before press (750 ° C x 20 minutes).
For comparison, an alloy sheet was produced from a hot-rolled sheet that was not subjected to hot-rolled sheet annealing by the same production process. FIG. 2 shows the relationship between the degree of integration of {211} crystal planes on the plate surface of the obtained alloy plate and the elongation by the tensile test, and the annealing temperature of the hot rolled plate. According to this, when the hot-rolled sheet annealing temperature is 910 to 990 ° C, {2
11} The degree of integration of crystal faces is 16% or less. Therefore, in the present invention, the hot rolled sheet annealing temperature is 910 to 910 as a condition for making the degree of integration of {211} crystal planes 16% or less.
It is specified as 990 ° C.

【0026】なお、本発明が規定する{211}結晶面
の集積度を得るには、製造工程において分塊圧延後のス
ラブ均一化熱処理を行うことは好ましくない。例えば、
スラブの均一化熱処理が1200℃以上、10時間以上
の条件で行われた場合、{211}結晶面の集積度は本
発明の規定値を超えてしまうため、このような処理は避
けなければならない。{211}結晶面の集積度が16
%を超えるとプレス成形時に材料の割れが発生する機構
については必ずしも明らかではないが、図2に示される
圧延直角方向の伸びをみると、{211}結晶面の集積
度が高い場合にはこの伸びが低い値を示していることか
ら、{211}結晶面の集積度が高くなると圧延直角方
向の伸びが低下し、破断限界が低くなるために割れが発
生するのではないかと考えられる。
In order to obtain the degree of integration of the {211} crystal planes defined by the present invention, it is not preferable to perform the slab homogenization heat treatment after the slabbing in the manufacturing process. For example,
When the slab homogenization heat treatment is performed at 1200 ° C. or higher for 10 hours or longer, the degree of integration of {211} crystal planes exceeds the specified value of the present invention, so such treatment must be avoided. . The degree of integration of the {211} crystal plane is 16
%, The mechanism of material cracking during press forming is not necessarily clear. However, looking at the elongation in the direction perpendicular to the rolling shown in FIG. Since the elongation shows a low value, it is considered that if the degree of integration of the {211} crystal plane becomes higher, the elongation in the direction perpendicular to the rolling decreases and the fracture limit becomes lower, so that cracking may occur.

【0027】プレス前焼鈍後の{211}結晶面の集積
度を16%以下とし且つ0.2%耐力を28.0Kgf
/mm2以下とするためには、上記した規定に加え、仕
上冷間圧延条件(仕上冷間圧延率)とプレス前焼鈍条件
の制御が重要である。図3は、本発明の成分条件を満足
する熱延板から熱延板焼鈍(910〜990℃)−冷間
圧延−再結晶焼鈍−冷間圧延−再結晶焼鈍−仕上冷間圧
延−プレス前焼鈍(750℃×15分)の製造工程を経
て製造された合金板について、引張試験により0.2%
耐力(図中の括弧内の数値)を測定し、これを仕上冷間
圧延率と仕上冷間圧延前の平均オーステナイト結晶粒径
との関係で示したものである。この試験では、仕上冷間
圧延前の再結晶焼鈍温度を変化させることで所定の平均
オーステナイト結晶粒径を得た。
The degree of integration of {211} crystal faces after annealing before pressing is set to 16% or less and the 0.2% proof stress is 28.0 Kgf.
In order to achieve a value of / mm 2 or less, it is important to control finish cold rolling conditions (finish cold rolling ratio) and pre-press annealing conditions in addition to the above-mentioned regulations. FIG. 3 shows a hot-rolled sheet that satisfies the component conditions of the present invention and is annealed from a hot-rolled sheet (910 to 990 ° C.)-Cold rolling-recrystallization annealing-cold rolling-recrystallization annealing-finish cold rolling-before pressing. 0.2% by a tensile test on the alloy plate manufactured through the manufacturing process of annealing (750 ° C. × 15 minutes)
The yield strength (numerical value in parentheses in the figure) was measured, and this is shown by the relationship between the finish cold rolling ratio and the average austenite grain size before finish cold rolling. In this test, a predetermined average austenite grain size was obtained by changing the recrystallization annealing temperature before finish cold rolling.

【0028】図3よれば、仕上冷間圧延率R(%)を1
6〜75%の範囲で、且つ仕上冷間圧延前の平均オース
テナイト結晶粒径D(μm)に応じて、 6.38D−133.9≦R≦6.38D−51.0 とする(すなわち、図中の領域I内とする)ことによ
り、0.2%耐力を28.0Kgf/mm2以下にでき
ることが判る。仕上冷間圧延率Rが16%未満または
6.38D−133.9>Rの場合には、本発明で規定
するプレス前焼鈍条件の下では再結晶が不十分であり、
且つ再結晶粒の粒成長も不十分であるため、0.2%耐
力は28.0Kgf/mm2を超えてしまう。一方、仕
上冷間圧延率Rが75%超またはR>6.38D−5
1.0の場合には、本発明で規定するプレス前焼鈍条件
の下では100%再結晶するが、再結晶時の核生成頻度
が高くなり過ぎるため再結晶粒が細かくなり、このため
0.2%耐力は28.0Kgf/mm2を超えてしま
う。
According to FIG. 3, the finish cold rolling rate R (%) is 1
In the range of 6 to 75% and according to the average austenite crystal grain size D (μm) before finish cold rolling, 6.38D-133.9 ≦ R ≦ 6.38D-51.0 (that is, It is understood that the 0.2% proof stress can be set to 28.0 Kgf / mm 2 or less by setting the area I in the figure). When the finish cold rolling rate R is less than 16% or 6.38D-133.9> R, recrystallization is insufficient under the pre-press annealing conditions specified in the present invention,
Moreover, the grain growth of the recrystallized grains is also insufficient, so the 0.2% proof stress exceeds 28.0 Kgf / mm 2 . On the other hand, the finish cold rolling rate R exceeds 75% or R> 6.38D-5
In the case of 1.0, 100% recrystallization is carried out under the pre-press annealing condition specified in the present invention, but the frequency of nucleation during recrystallization becomes too high, and the recrystallized grains become fine. The 2% proof stress exceeds 28.0 Kgf / mm 2 .

【0029】以上のような理由から本発明では、本発明
が規定するプレス前焼鈍条件の下で28.0Kgf/m
2以下の0.2%耐力を得るための仕上冷間圧延条件
として、仕上冷間圧延前の平均オーステナイト結晶粒径
D(μm)に応じて下記(1a)、(1b)式を満足す
る仕上冷間圧延率R(%)を規定する。 16≦R≦75 …(1a) 6.38D−133.9≦R≦6.38D−51.0 …(1b) また、このような仕上冷間圧延前の平均オーステナイト
結晶粒径に応じた適正な仕上冷間圧延率R(%)の範囲
内であれば、プレス前焼鈍後の合金板表面の{211}
結晶面の集積度を16%以下とすることができる。
For the above reasons, in the present invention, 28.0 Kgf / m under the pre-press annealing conditions specified by the present invention.
As the finish cold rolling condition for obtaining 0.2% yield strength of m 2 or less, the following formulas (1a) and (1b) are satisfied according to the average austenite crystal grain size D (μm) before finish cold rolling. The finish cold rolling rate R (%) is specified. 16 ≦ R ≦ 75 (1a) 6.38D-133.9 ≦ R ≦ 6.38D-51.0 (1b) Further, the appropriateness according to the average austenite crystal grain size before such finish cold rolling. If the finish cold rolling rate R (%) is within the range, {211} of the surface of the alloy plate after annealing before pressing
The degree of integration of crystal planes can be 16% or less.

【0030】上記したような本発明合金板の組織制御
は、熱延板焼鈍での集合組織制御に加え、仕上冷間圧延
前の結晶粒径に応じた適正な仕上冷間圧延率とすること
で、再結晶時の核生成頻度が適正にコントロールされる
ことによるものである。図3によれば、仕上冷間圧延前
の平均オーステナイト結晶粒径Dに応じた仕上冷間圧延
率R(%)を最適化することにより、プレス前焼鈍後の
0.2%耐力をより低くすることが可能であることが判
る。すなわち、 21≦R≦70 …(2a) 6.38D−122.6≦R≦6.38D−65.2 …(2b) とする(すなわち、図中の領域II内とする)ことによ
り、0.2%耐力を27.5Kgf/mm2以下にする
ことができ、さらに、 26≦R≦63 …(3a) 6.38D−108.0≦R≦6.38D−79.3 …(3b) とする(すなわち、図中の領域III内とする)ことに
より、0.2%耐力を27.0Kgf/mm2以下にす
ることができる。
In order to control the texture of the alloy sheet of the present invention as described above, in addition to the texture control in hot-rolled sheet annealing, an appropriate finish cold rolling rate according to the crystal grain size before finish cold rolling is used. The reason is that the frequency of nucleation during recrystallization is properly controlled. According to FIG. 3, by optimizing the finish cold rolling rate R (%) according to the average austenite crystal grain size D before finish cold rolling, the 0.2% yield strength after pre-press annealing was lowered. It turns out that it is possible to do. That is, 21 ≦ R ≦ 70 (2a) 6.38D-122.6 ≦ R ≦ 6.38D-65.2 (2b) (that is, within region II in the figure) The 2% proof stress can be 27.5 Kgf / mm 2 or less, and further 26 ≦ R ≦ 63 (3a) 6.38D-108.0 ≦ R ≦ 6.38D-79.3 (3b). (That is, within the region III in the figure), the 0.2% proof stress can be reduced to 27.0 Kgf / mm 2 or less.

【0031】このため本発明では、0.2%耐力:2
7.5Kgf/mm2以下が得られる仕上冷間圧延条件
として、仕上冷間圧延前の平均オーステナイト結晶粒径
D(μm)に応じて上記(2a)、(2b)式を満足す
る仕上冷間圧延率R(%)を、また、0.2%耐力:2
7.0Kgf/mm2以下が得られる仕上冷間圧延条件
として、仕上冷間圧延前の平均オーステナイト結晶粒径
D(μm)に応じて上記(3a)、(3b)式を満足す
る仕上冷間圧延率R(%)をそれぞれ規定する。なお、
上記仕上冷間圧延率Rとの関係で規定される仕上冷間圧
延前の平均オーステナイト結晶粒径Dは、熱延板を熱延
板焼鈍し、続く冷間圧延の後の焼鈍を焼鈍温度:860
〜950℃、焼鈍時間:0.5〜2分の範囲で適切に選
択することにより得ることができる。
Therefore, in the present invention, 0.2% proof stress: 2
A finish cold rolling condition that achieves 7.5 Kgf / mm 2 or less is as follows: the finish cold rolling satisfying the above formulas (2a) and (2b) according to the average austenite crystal grain size D (μm) before finish cold rolling. Rolling rate R (%), 0.2% yield strength: 2
As finishing cold rolling conditions that can obtain 7.0 Kgf / mm 2 or less, finish cold rolling satisfying the above formulas (3a) and (3b) according to the average austenite crystal grain size D (μm) before finish cold rolling is performed. The rolling ratio R (%) is specified. In addition,
The average austenite grain size D before finish cold rolling, which is defined by the relationship with the finish cold rolling rate R, is obtained by annealing the hot rolled sheet by hot rolling and annealing after the subsequent cold rolling. 860
˜950 ° C., annealing time: It can be obtained by appropriately selecting in the range of 0.5 to 2 minutes.

【0032】図4は、成分組成、熱延板焼鈍条件、仕上
冷間圧延前の平均オーステナイト結晶粒径に応じた仕上
冷間圧延率を本発明範囲とし、熱延板から熱延板焼鈍
(910〜990℃)−冷間圧延−再結晶焼鈍−冷間圧
延−再結晶焼鈍−仕上冷間圧延−プレス前焼鈍の製造工
程を経て製造された合金板について、プレス前焼鈍の焼
鈍温度T、焼鈍時間tとプレス前焼鈍後の0.2%耐力
および{211}結晶面の集積度との関係を示したもの
である。図4によれば、熱延板焼鈍条件、仕上冷間圧延
前の平均オーステナイト結晶粒径に応じた仕上冷間圧延
率が本発明範囲内であっても、T<−53.8log t+
806では再結晶が十分ではなく、このため0.2%耐
力は28.0Kgf/mm2を超え、しかも{211}
結晶面の集積度も16%を超えている。また、焼鈍温度
Tが790℃超または焼鈍時間tが40分超の場合に
は、{211}結晶面が発達してくるため、この結晶面
の集積度が16%を超えてしまう。以上の理由から本発
明では、所望の0.2%耐力および{211}結晶面の
集積度を得るプレス前焼鈍条件として、焼鈍温度T:7
90℃以下、焼鈍時間t:40分以下、T≧−53.8
log t+806と規定する。
FIG. 4 shows the finish cold rolling ratio according to the composition of components, the hot rolled sheet annealing conditions, and the average austenite grain size before finish cold rolling within the scope of the present invention. 910-990 ° C.)-Cold rolling-recrystallization annealing-cold rolling-recrystallization annealing-finishing cold rolling-annealing temperature T of pre-press annealing for an alloy sheet manufactured through the manufacturing steps of pre-press annealing. 3 shows the relationship between the annealing time t, the 0.2% proof stress after annealing before pressing and the degree of integration of {211} crystal faces. According to FIG. 4, even if the finish cold rolling rate according to the hot rolled sheet annealing conditions and the average austenite grain size before finish cold rolling is within the range of the present invention, T <−53.8 log t +.
In 806, recrystallization was not sufficient, so the 0.2% proof stress exceeded 28.0 Kgf / mm 2 , and {211}.
The degree of integration of crystal planes exceeds 16%. Further, when the annealing temperature T exceeds 790 ° C. or the annealing time t exceeds 40 minutes, the {211} crystal plane develops, so that the integration degree of this crystal plane exceeds 16%. For the above reason, in the present invention, the annealing temperature T: 7 is used as the pre-press annealing condition for obtaining the desired 0.2% proof stress and the degree of integration of {211} crystal faces.
90 ° C. or less, annealing time t: 40 minutes or less, T ≧ −53.8
log t + 806.

【0033】図5は、本発明合金(実施例の合金No.
1)および比較合金(実施例の合金No.21およびN
o.22)の熱延板を用い、これらの熱延板から熱延板
焼鈍(910〜990℃)−冷間圧延−再結晶焼鈍−冷
間圧延−再結晶焼鈍−仕上冷間圧延−プレス前焼鈍の製
造工程を経て製造された合金板について、プレス前焼鈍
の焼鈍時間に応じた0.2%耐力および{211}結晶
面の集積度の変化を焼鈍温度別に示したものである。な
お、いずれの合金も熱延板焼鈍条件、仕上冷間圧延前の
平均オーステナイト結晶粒径に応じた仕上冷間圧延率は
本発明範囲内にある。図5によれば、本発明合金では上
述した本発明範囲のプレス前焼鈍条件において本発明が
規定する0.2%耐力と{211}結晶面の集積度が得
られている。これに対して比較合金では、750℃の焼
鈍時でも0.2%耐力は28.0Kgf/mm2を超
え、また、{211}結晶面の集積度も16%を超えて
おり、プレス成形性に問題があることが示されている。
このように本発明では、製造条件の規定に加えて、合金
の成分組成を所定の条件とすることが極めて重要である
ことが判る。
FIG. 5 shows the alloy of the present invention (alloy No. of the example).
1) and comparative alloys (alloy Nos. 21 and N of the examples)
o. 22), using these hot rolled sheets, hot rolled sheet annealing (910 to 990 ° C.)-Cold rolling-recrystallization annealing-cold rolling-recrystallization annealing-finishing cold rolling-pre-press annealing. Of the alloy sheet manufactured through the manufacturing process of No. 2 above, the change in 0.2% proof stress and the degree of integration of {211} crystal faces depending on the annealing time of pre-press annealing is shown for each annealing temperature. It should be noted that all alloys have a finish cold rolling ratio according to the hot-rolled sheet annealing conditions and the average austenite crystal grain size before finish cold rolling within the scope of the present invention. According to FIG. 5, in the alloy of the present invention, the 0.2% proof stress and the degree of integration of the {211} crystal planes defined by the present invention are obtained under the pre-press annealing conditions within the scope of the present invention described above. On the other hand, in the comparative alloy, the 0.2% proof stress exceeds 28.0 Kgf / mm 2 even when annealed at 750 ° C., and the degree of accumulation of {211} crystal faces also exceeds 16%. Has been shown to have problems.
As described above, in the present invention, it is found that it is extremely important to set the component composition of the alloy to the predetermined condition in addition to the regulation of the manufacturing conditions.

【0034】本発明が規定するプレス前焼鈍は、フォト
エッチングの前に実施してもよく、プレス前焼鈍条件が
本発明範囲内であれば、フォトエッチングの品質が損な
われることはない。従来材では、プレス前焼鈍を本発明
が規定するような条件で実施した後にフォトエッチング
を実施するとフォトエッチングの品質が損なわれるた
め、事実上プレス前焼鈍をフォトエッチングの前に実施
することはできない。これに対して、特定の成分組成と
{211}結晶面の集積度を備えた本発明材では、プレ
ス前焼鈍後にフォトエッチングを実施してもエッチング
性が損なわれることはない。なお、本発明が規定する
{211}結晶面の集積度を得る方法としては、上述し
た方法の以外に、急冷凝固の採用、熱間加工での再結晶
のコントロールによる集合組織制御等がある。
The pre-press annealing defined by the present invention may be carried out before the photo-etching, and if the pre-press annealing condition is within the scope of the present invention, the quality of the photo-etching is not deteriorated. In conventional materials, pre-press annealing cannot be performed before photo-etching because photo-etching quality is impaired when photo-etching is performed after performing pre-press annealing under the conditions specified by the present invention. . On the other hand, in the material of the present invention having a specific component composition and a degree of integration of {211} crystal faces, the etching property is not impaired even if photoetching is performed after pre-press annealing. In addition to the methods described above, methods of obtaining the degree of integration of {211} crystal planes defined by the present invention include the adoption of rapid solidification, texture control by controlling recrystallization in hot working, and the like.

【0035】[0035]

【実施例】【Example】

〔実施例1〕取鍋精錬によって表1および表2に示す化
学成分の合金No.1〜No.23を調整し、合金N
o.1〜No.13、No.18〜No.23について
はインゴットに鋳造し、これらインゴットを手入れ後、
分塊圧延、表面疵取り、熱間圧延(加熱条件:1100
℃×3hr)して熱延板を得た。また、合金No.14
〜No.17については薄鋳板に直接鋳造し、この薄鋳
板を1300〜1000℃の温度で圧下率40%で熱間
圧延した後700℃で巻取り、熱延板を得た。これら熱
延板に対して、熱延板焼鈍(930℃)−冷間圧延−再
結晶焼鈍−冷間圧延−再結晶焼鈍(表5に示す条件によ
る焼鈍)−仕上冷間圧延(圧延率21%)を順次実施し
て板厚0.25mmの合金板を得た。なお、上記熱延板
は、熱延後の段階で十分に再結晶していた。これらの合
金板をエッチングによりフラットマスクに加工した後、
750℃×20分の条件でプレス前焼鈍し、材料No.
1〜No.23を得た。これら材料にプレス成形を行な
い、プレス成形性を調べた。表1および表2に各材料の
仕上冷間圧延前の平均オーステナイト結晶粒径を、ま
た、表3および表4に{211}結晶面の集積度、引張
特性およびプレス成形性を示す。なお、引張特性(0.
2%耐力および圧延直角方向の伸び)と{211}結晶
面の集積度はプレス前焼鈍後の合金板について調べた。
引張特性は常温で測定したものであり、また、{21
1}結晶面の集積度の測定は、先に述べたX線回折によ
るものである。
[Example 1] Alloy No. having the chemical composition shown in Tables 1 and 2 was obtained by ladle refining. 1-No. Adjust 23, alloy N
o. 1-No. 13, No. 18-No. For No. 23, cast it into an ingot, and after caring for these ingots,
Slump rolling, surface flaw removal, hot rolling (heating conditions: 1100
(° C x 3 hr) to obtain a hot rolled sheet. In addition, alloy No. 14
~ No. Regarding No. 17, the thin cast plate was directly cast, and the thin cast plate was hot-rolled at a temperature of 1300 to 1000 ° C. at a reduction rate of 40% and then wound at 700 ° C. to obtain a hot-rolled plate. For these hot-rolled sheets, hot-rolled sheet annealing (930 ° C.)-Cold rolling-recrystallization annealing-cold rolling-recrystallization annealing (annealing under the conditions shown in Table 5) -finishing cold rolling (rolling rate 21 %) In order to obtain an alloy plate having a plate thickness of 0.25 mm. The hot rolled sheet was sufficiently recrystallized at the stage after hot rolling. After processing these alloy plates into a flat mask by etching,
Pre-press annealing was performed under the condition of 750 ° C. × 20 minutes, and the material No.
1-No. I got 23. Press molding was performed on these materials to examine press moldability. Tables 1 and 2 show the average austenite crystal grain size of each material before finish cold rolling, and Tables 3 and 4 show the degree of integration of {211} crystal faces, tensile properties and press formability. The tensile properties (0.
The 2% proof stress and the elongation in the direction perpendicular to the rolling direction) and the degree of integration of {211} crystal planes were examined for the alloy sheet after annealing before pressing.
Tensile properties were measured at room temperature, and
1} The measurement of the integration degree of the crystal plane is based on the X-ray diffraction described above.

【0036】表3および表4によれば、本発明条件を満
足する成分組成、{211}結晶面の集積度および0.
2%耐力を有する材料No.1〜No.13はいずれも
優れたプレス成形性を示しており、また、Coを含有し
た本発明例である材料No.14〜No.17も同様に
優れた特性を示している。これに対して、材料No.1
8およびNo.20は、それぞれSi量、N量が本発明
範囲を超えた比較例であり、いずれも金型とのなじみの
点で問題がある。材料No.19はO量が本発明範囲を
超えた比較例であり、0.2%耐力が28.9Kgf/
mm2を超えているため形状凍結性が劣っており、合金
板の割れも発生している。また、材料No.21および
No.22は、それぞれB量のみ、B量とO量が本発明
範囲を超えた比較例であり、いずれも0.2%耐力が2
8.0Kgf/mm2を超えているため形状凍結性が劣
っている。また、これらの比較例は{211}結晶面の
集積度が本発明範囲を超えているため、合金板の割れも
発生している。材料No.23は仕上冷間圧延前の平均
オーステナイト結晶粒径が本発明の規定する仕上冷間圧
延率Rの条件を満たすレベルまで達しておらず、このた
め0.2%耐力が28.0kgf/mm2を超えて形状
凍結性が劣り、また、合金板の割れも発生している。以
上のように本発明条件を満足する成分組成、{211}
結晶面の集積度および0.2%耐力とすることにより、
本発明の目的とする優れたプレス成形性を有するFe−
Ni系合金薄板およびFe−Ni−Co系合金薄板が得
られることが判る。
According to Tables 3 and 4, the composition of components satisfying the conditions of the present invention, the degree of accumulation of {211} crystal faces, and 0.
Material No. with 2% proof stress 1-No. All of them show excellent press formability, and the material No. 13 which is an example of the present invention and contains Co. 14-No. Similarly, 17 also shows excellent characteristics. On the other hand, the material No. 1
8 and No. No. 20 is a comparative example in which the amount of Si and the amount of N exceeded the range of the present invention, respectively, and both have problems in compatibility with the mold. Material No. No. 19 is a comparative example in which the O content exceeds the range of the present invention, and the 0.2% proof stress is 28.9 Kgf /
Since it exceeds mm 2 , the shape fixability is inferior, and the alloy plate also cracks. In addition, the material No. 21 and No. No. 22 is a comparative example in which only the B content and the B content and the O content exceeded the range of the present invention, respectively, and each had a 0.2% proof stress of 2
Since it exceeds 8.0 kgf / mm 2 , the shape fixability is poor. Further, in these comparative examples, the degree of integration of the {211} crystal planes exceeds the range of the present invention, so that the alloy plate also cracks. Material No. In No. 23, the average austenite grain size before finish cold rolling did not reach the level satisfying the condition of the finish cold rolling rate R defined by the present invention, and therefore the 0.2% proof stress was 28.0 kgf / mm 2 Shape inferiority is inferior and the alloy plate is cracked. As described above, the component composition satisfying the conditions of the present invention, {211}
By setting the degree of crystal plane integration and the 0.2% proof stress,
Fe- having excellent press formability which is the object of the present invention
It can be seen that the Ni-based alloy thin plate and the Fe-Ni-Co-based alloy thin plate can be obtained.

【0037】〔実施例2〕実施例1で用いた合金No.
1、No.9、No.14の熱延板を用い、これらの熱
延板に対して表6に示す温度で熱延板焼鈍を実施したも
のと熱延板焼鈍を実施しないものについて、冷間圧延−
再結晶焼鈍−冷間圧延−再結晶焼鈍(890℃×1分)
−仕上冷間圧延(圧延率21%)を順次実施して板厚
0.25mmの合金板を得た。各合金板をエッチングに
よりフラットマスクに加工した後、750℃×20分の
条件でプレス前焼鈍し、材料No.24〜28を得た。
これら材料にプレス成形を行ない、プレス成形性を調べ
た。表6に各材料の熱延板焼鈍温度、仕上冷間圧延前の
平均オーステナイト結晶粒径および{211}結晶面の
集積度を、また、表7に引張特性とプレス成形性を示
す。なお、各特性値の測定方法は実施例1と同様であ
る。
Example 2 Alloy No. used in Example 1
1, No. 9, No. 14 hot-rolled sheets were used, and those hot-rolled sheets were annealed at the temperatures shown in Table 6 and those that were not hot-rolled were cold-rolled-
Recrystallization annealing-Cold rolling-Recrystallization annealing (890 ° C x 1 minute)
-Finishing cold rolling (rolling rate 21%) was sequentially performed to obtain an alloy plate having a plate thickness of 0.25 mm. After each alloy plate was processed into a flat mask by etching, it was annealed before press under the condition of 750 ° C. × 20 minutes, and the material No. 24 to 28 were obtained.
Press molding was performed on these materials to examine press moldability. Table 6 shows the hot-rolled sheet annealing temperature of each material, the average austenite crystal grain size before finish cold rolling and the degree of integration of {211} crystal faces, and Table 7 shows the tensile properties and press formability. The method of measuring each characteristic value is the same as in Example 1.

【0038】表6および表7によれば、本発明の成分条
件と製造条件を満足する材料No.24、No.25
は、いずれも優れたプレス成形性を示している。これに
対して材料No.26〜No.28は、それぞれ熱延板
焼鈍温度が本発明の下限未満の比較例、熱延板焼鈍温度
が本発明の上限を超える比較例、熱延板焼鈍を実施しな
い比較例であり、いずれも{211}結晶面の集積度が
本発明が規定する上限を超え、プレス成形時に合金板の
割れが発生している。また、材料No.28は0.2%
耐力が28.0Kgf/mm2を超え、プレス成形時の
形状凍結性も劣っている。以上のように{211}結晶
面の集積度を本発明範囲とするためには、熱延板焼鈍を
本発明条件にしたがって実施することが重要であること
が判る。
According to Tables 6 and 7, the material Nos. Satisfying the component conditions and manufacturing conditions of the present invention are shown. 24, No. 25
Shows excellent press formability. On the other hand, the material No. 26-No. 28 is a comparative example in which the hot-rolled sheet annealing temperature is less than the lower limit of the present invention, a comparative example in which the hot-rolled sheet annealing temperature exceeds the upper limit of the present invention, and a comparative example in which the hot-rolled sheet annealing is not performed, and both are {211. } The degree of integration of crystal planes exceeds the upper limit defined by the present invention, and the alloy plate is cracked during press forming. In addition, the material No. 28 is 0.2%
The yield strength exceeds 28.0 Kgf / mm 2, and the shape fixability during press molding is also poor. As described above, in order to bring the degree of integration of {211} crystal faces into the range of the present invention, it is important to carry out hot-rolled sheet annealing according to the conditions of the present invention.

【0039】〔実施例3〕実施例1で用いた合金No.
1、No.2、No.4、No.6、No.7、No.
8、No.9、No.11、No.12、No.13お
よびNo.14の熱延板を用い、これらの熱延板に対し
て、熱延板焼鈍(930℃)−冷間圧延−再結晶焼鈍−
冷間圧延−再結晶焼鈍(表8および表9に示す温度で1
分保持)−仕上冷間圧延を順次実施し、板厚0.25m
mの合金板を得た。これらの合金板をエッチングにより
フラットマスクに加工した後、750℃×20分の条件
でプレス前焼鈍し、材料No.29〜No.66を得
た。これらの材料をプレス成形し、プレス成形性を調べ
た。表8および表9に各材料の仕上冷間圧延前の焼鈍温
度、仕上冷間圧延前の平均オーステナイト結晶粒径、仕
上冷間圧延率および引張特性を、また、表10および表
11に{211}結晶面の集積度とプレス成形性を示
す。なお、各特性値の測定方法は実施例1と同様であ
る。
Example 3 Alloy No. used in Example 1
1, No. 2, No. 4, No. 6, No. 7, No.
8, No. 9, No. 11, No. 12, No. 13 and No. 14 hot rolled sheets were used, and hot rolled sheet annealing (930 ° C.)-Cold rolling-recrystallization annealing-for these hot rolled sheets
Cold rolling-recrystallization annealing (at the temperatures shown in Table 8 and Table 1
Minute hold) -finish cold rolling is sequentially performed, and the plate thickness is 0.25 m.
An alloy plate of m was obtained. After these alloy plates were processed into flat masks by etching, they were annealed before pressing under the conditions of 750 ° C. × 20 minutes, and the material No. 29-No. I got 66. These materials were press-molded and the press-moldability was examined. Tables 8 and 9 show the annealing temperature of each material before finish cold rolling, the average austenite grain size before finish cold rolling, the finish cold rolling rate and the tensile properties, and Tables 10 and 11 show {211 } Shows the degree of integration of crystal faces and press formability. The method of measuring each characteristic value is the same as in Example 1.

【0040】表8〜表11によれば、本発明の成分条
件、熱延板焼鈍条件およびプレス前焼鈍条件を満足し、
仕上冷間圧延前の平均オーステナイト結晶粒径と仕上冷
間圧延率との関係が本発明の規定する領域内にある材料
No.30〜No.35、No.38、No.41〜N
o.43、No.47〜No.66は、いずれも{21
1}結晶面の集積度が16%以下となっている。このう
ち材料No.30、No.35、No.38、No.4
1、No.47、No.49、No.50、No.5
4、No.60、No.63およびNo.66は、上述
した(1−a)式および(1−b)式を満足する仕上冷
間圧延率R(図3の領域Iの範囲)で製造された本発明
例であり、0.2%耐力は28.0Kgf/mm2以下
である。また、材料No.31、No.33、No.3
4、No.43、No.48、No.52、No.5
5、No.59およびNo.65は、上述した(2−
a)式および(2−b)式を満足する仕上冷間圧延率R
(図3の領域IIの範囲)で製造された本発明例であ
り、0.2%耐力は27.5kgf/mm2以下であ
る。さらに、材料No.32、No.42、No.5
1、No.53、No.56、No.57、No.5
8、No.61、No.62およびNo.64は、上述
した(3−a)式および(3−b)式を満足する仕上冷
間圧延率R(図3の領域IIIの範囲)で製造された本
発明例であり、0.2%耐力は27.0kgf/mm2
以下である。このようにいずれの材料も本発明が規定す
る0.2%耐力が得られており、優れたプレス成形性を
示している。また、0.2%耐力の低下により、より優
れた形状凍結性が得られていることも判る。
According to Tables 8 to 11, the composition conditions, hot-rolled sheet annealing conditions and pre-press annealing conditions of the present invention are satisfied,
A material No. having a relationship between the average austenite grain size before finish cold rolling and the finish cold rolling rate is within the range defined by the present invention. 30-No. 35, No. 38, No. 41-N
o. 43, No. 47-No. 66 are both {21
1} The degree of integration of crystal faces is 16% or less. Of these, the material No. 30, No. 35, No. 38, No. Four
1, No. 47, No. 49, No. 50, No. 5
4, No. 60, No. 63 and No. Reference numeral 66 is an example of the present invention manufactured at a finish cold rolling rate R (range of region I in FIG. 3) satisfying the above-described formulas (1-a) and (1-b), and 0.2%. The yield strength is 28.0 Kgf / mm 2 or less. In addition, the material No. 31, No. 33, No. Three
4, No. 43, No. 48, No. 52, No. 5
5, No. 59 and No. 59. 65 is the above-mentioned (2-
Finishing cold rolling rate R satisfying equations a) and (2-b)
It is an example of the present invention manufactured in (range of region II in FIG. 3), and has a 0.2% proof stress of 27.5 kgf / mm 2 or less. Further, the material No. 32, No. 42, No. 5
1, No. 53, No. 56, No. 57, No. 5
8, No. 61, No. 62 and No. 62. 64 is an example of the present invention manufactured at a finish cold rolling rate R (range of region III in FIG. 3) satisfying the above-mentioned formulas (3-a) and (3-b), and 0.2%. Proof strength is 27.0 kgf / mm 2
It is the following. As described above, the 0.2% proof stress defined by the present invention is obtained for all the materials, and excellent press formability is exhibited. It is also found that the lowering of the 0.2% proof stress provides more excellent shape fixability.

【0041】これに対して、材料No.29、No.3
6、No.37、No.39、No.40、No.44
およびNo.45は、本発明範囲の成分組成条件、熱延
板焼鈍条件およびプレス前焼鈍条件でありながら、仕上
冷間圧延前の平均オーステナイト結晶粒径と仕上冷間圧
延率との関係が本発明の規定する領域から外れた比較例
であり、これらは0.2%耐力と{211}結晶面の集
積度のいずれか一方或いは両方が本発明の規定条件を超
えており、プレス成形時において形状凍結性と合金板の
割れ発生のうちいずれか一方または両方に問題を生じて
いる。なお、材料No.46は仕上冷間圧延前の焼鈍条
件が850℃×1分であるため平均オーステナイト結晶
粒径が10.0μmであり、仕上冷間圧延率15%にお
いて0.2%耐力は28.0kgf/mm2を超え、プ
レス成形時の形状凍結性が劣っている。以上のように、
本発明の成分条件、熱延板焼鈍条件およびプレス前焼鈍
条件を満足しても、仕上冷間圧延前の平均オーステナイ
ト結晶粒径と仕上冷間圧延率との関係が本発明の規定す
る領域から外れた場合には、優れたプレス成形性が得ら
れないことが判る。
On the other hand, the material No. 29, No. Three
6, No. 37, No. 39, No. 40, No. 44
And No. No. 45 is a compositional condition within the scope of the present invention, a hot rolled sheet annealing condition and a pre-press annealing condition, but the relationship between the average austenite grain size before finish cold rolling and the finish cold rolling rate is defined by the present invention. These are comparative examples deviating from the region where either one or both of 0.2% proof stress and the degree of integration of {211} crystal planes exceed the stipulated conditions of the present invention, and the shape fixability at the time of press molding. One or both of the cracking of the alloy sheet and the alloy sheet has a problem. Material No. No. 46 has an average austenite grain size of 10.0 μm because the annealing condition before finish cold rolling is 850 ° C. × 1 minute, and the 0.2% proof stress is 28.0 kgf / mm at a finish cold rolling rate of 15%. It exceeds 2, and the shape fixability during press molding is poor. As mentioned above,
Even if the component conditions of the present invention, the hot rolled sheet annealing conditions and the pre-press annealing conditions are satisfied, the relationship between the average austenite grain size and the finish cold rolling rate before finish cold rolling is from the region defined by the present invention. It can be seen that if it comes off, excellent press formability cannot be obtained.

【0042】〔実施例4〕実施例1で用いた合金No.
1、No.4、No.9、No.10、No.12、N
o.14、No.21およびNo.22、の熱延板を用
い、これら熱延板に対して、熱延板焼鈍(930℃)−
冷間圧延−再結晶焼鈍−冷間圧延−再結晶焼鈍(890
℃×1min)−仕上冷間圧延(圧延率21%)を順次
実施し、板厚0.25mmの合金板を得た。これらの合
金板をエッチングによりフラットマスクに加工した後、
表12に示す条件でプレス前焼鈍し、材料No.67〜
84を得た。これらの材料をプレス成形して、プレス成
形性を調べた。表12に仕上冷間圧延前の平均オーステ
ナイト結晶粒径、プレス前焼鈍条件、{211}結晶面
の集積度、引張特性およびプレス成形性を示す。なお、
各特性値の測定方法は実施例1と同様である。
Example 4 Alloy No. used in Example 1
1, No. 4, No. 9, No. 10, No. 12, N
o. 14, No. 21 and No. No. 22, hot-rolled sheet was used, and the hot-rolled sheet was annealed (930 ° C.)-
Cold Rolling-Recrystallization Annealing-Cold Rolling-Recrystallization Annealing (890
(° C x 1 min) -finish cold rolling (rolling rate 21%) were sequentially carried out to obtain an alloy plate having a plate thickness of 0.25 mm. After processing these alloy plates into a flat mask by etching,
Pre-press annealing was performed under the conditions shown in Table 12, and the material No. 67-
84 was obtained. These materials were press-molded and the press-moldability was examined. Table 12 shows the average austenite crystal grain size before finish cold rolling, annealing conditions before press, degree of accumulation of {211} crystal faces, tensile properties and press formability. In addition,
The method of measuring each characteristic value is the same as that in the first embodiment.

【0043】表12によれば、本発明の成分条件、熱延
板焼鈍条件および仕上冷間圧延条件(仕上冷間圧延率)
を満足し、プレス前焼鈍条件(温度、時間)が本発明の
規定範囲内にある材料No.67、No.69、No.
70およびNo.76〜No.84は、いずれも{21
1}結晶面の集積度が16%以下であり、0.2%耐力
も本発明の規定範囲内にあり、優れたプレス成形品質を
示している。これに対して、材料No.72およびN
o.73は、本発明の成分条件、熱延板焼鈍条件および
仕上冷間圧延条件(仕上冷間圧延率)でありながら、プ
レス前焼鈍に関して、それぞれ焼鈍温度が本発明の上限
を超えた比較例、焼鈍時間が本発明の上限を超えた比較
例であり、いずれも{211}結晶面の集積度が16%
を超え、合金板に割れが発生している。また、材料N
o.68はプレス前焼鈍の焼鈍温度Tと焼鈍時間tが本
発明の条件式(T≧−53.8log t+806)を満足
しない比較例、No.71はプレス前焼鈍の焼鈍時間が
本発明の上限を超え、且つ焼鈍温度Tと焼鈍時間tが上
記条件式を満足しない比較例であり、いずれの比較例も
0.2%耐力が28.0kgf/mm2を超えるためプ
レス成形時の形状凍結性が劣り、また、{211}結晶
面の集積度も16%を超え、プレス成形時に合金板の割
れも発生している。
According to Table 12, the component conditions of the present invention, hot-rolled sheet annealing conditions and finish cold rolling conditions (finish cold rolling ratio).
And the annealing conditions (temperature, time) before pressing within the specified range of the present invention are satisfied. 67, No. 69, No.
70 and No. 70. 76-No. 84 are both {21
1} The degree of integration of crystal planes is 16% or less, and the 0.2% proof stress is also within the specified range of the present invention, showing excellent press molding quality. On the other hand, the material No. 72 and N
o. No. 73 is a component example of the present invention, a hot rolled sheet annealing condition and a finish cold rolling condition (finish cold rolling ratio), but with respect to pre-press annealing, a comparative example in which the annealing temperature exceeded the upper limit of the present invention, This is a comparative example in which the annealing time exceeds the upper limit of the present invention, and the degree of integration of {211} crystal faces is 16% in all cases.
And the alloy plate is cracked. Also, the material N
o. No. 68 is a comparative example in which the annealing temperature T of the pre-press annealing and the annealing time t do not satisfy the conditional expression (T ≧ −53.8log t + 806) of the present invention, No. 68. Reference numeral 71 is a comparative example in which the annealing time of pre-press annealing exceeds the upper limit of the present invention, and the annealing temperature T and the annealing time t do not satisfy the above conditional expressions, and all the comparative examples have a 0.2% proof stress of 28.0 kgf. / Mm 2 is exceeded, the shape fixability during press forming is poor, and the degree of accumulation of {211} crystal faces exceeds 16%, and cracking of the alloy plate occurs during press forming.

【0044】なお、材料No.74およびNo.75は
比較合金を用いた比較例であり、これらは750℃で6
0minのプレス前焼鈍を行なった場合にも、0.2%
耐力は28.0kgf/mm2超であり、プレス成形時
の形状凍結性が劣っている。また、これらの材料の{2
11}結晶面の集積度は16%を超えており、プレス成
形時に合金板の割れも発生している。以上のように、本
発明の成分条件、熱延板焼鈍条件および仕上冷間圧延条
件を満足しても、プレス前焼鈍条件が本発明範囲から外
れた場合には、優れたプレス成形性は得られないことが
判る。
Material No. 74 and No. 74. No. 75 is a comparative example using a comparative alloy, and these are 6 at 750 ° C.
0.2% even when pre-press annealing of 0 min is performed
The yield strength is more than 28.0 kgf / mm 2 , and the shape fixability during press molding is poor. In addition, {2 of these materials
11} The degree of integration of crystal planes exceeds 16%, and the alloy plate also cracks during press forming. As described above, even if the component conditions of the present invention, hot-rolled sheet annealing conditions and finish cold rolling conditions are satisfied, if the pre-press annealing conditions deviate from the scope of the present invention, excellent press formability is obtained. I know I can't.

【0045】〔実施例5〕実施例1で用いた合金No.
1、No.4の熱延板を用い、これらの熱延板に対し
て、熱延板焼鈍(930℃)−冷間圧延−再結晶焼鈍−
冷間圧延−再結晶焼鈍(890℃×1min)−仕上冷
間圧延(圧延率21%)を順次実施し、板厚0.25m
mの合金板を得た。これらの合金板を表13に示す条件
でプレス前焼鈍し、材料No.85〜No.87を得
た。これらの材料をエッチングによりフラットマスクに
加工した後、プレス成形を行い、プレス成形性を調べ
た。表13に各材料の仕上冷間圧延前の平均オーステナ
イト結晶粒径、プレス前焼鈍条件および{211}結晶
面の集積度を、また、表14に引張特性、プレス成形性
およびエッチング性を示す。なお、エッチング性はエッ
チング後のフラットマスクのムラ発生状況を目視で観察
することにより調べた。また、他の特性値の測定方法は
実施例1と同様である。
Example 5 Alloy No. used in Example 1
1, No. 4 using the hot-rolled sheet of No. 4, hot-rolled sheet annealing (930 ℃) -cold rolling-recrystallization annealing-
Cold rolling-recrystallization annealing (890 ° C x 1 min) -finishing cold rolling (rolling rate 21%) were sequentially carried out to obtain a plate thickness of 0.25 m.
An alloy plate of m was obtained. These alloy plates were annealed before press under the conditions shown in Table 13, and the material No. 85-No. I got 87. After processing these materials into flat masks by etching, press molding was performed to examine press moldability. Table 13 shows the average austenite crystal grain size before finish cold rolling of each material, the pre-press annealing conditions and the degree of integration of {211} crystal faces, and Table 14 shows the tensile properties, press formability and etching properties. The etching property was examined by visually observing the occurrence of unevenness of the flat mask after etching. Moreover, the measuring method of other characteristic values is the same as that of the first embodiment.

【0046】表13および表14によれば、本発明の成
分条件および製造条件を満足する材料No.85〜N
o.87は、いずれもエッチング性が良好であり、ま
た、{211}結晶面の集積度が16%以下で且つ0.
2%耐力も本発明の規定範囲内にあり、優れたプレス成
形性を示している。以上のように、本発明の成分条件お
よび製造条件を満足することにより優れたプレス成形性
が得られ、しかもプレス前焼鈍の後にエッチングが施さ
れた場合でも得られたフラットマスクにムラはなく、良
好なエッチング性が得られることが判る。なお、以上述
べた実施例1〜実施例5に示されるように、{211}
結晶面の集積度が16%を超えた比較例ではプレス前焼
鈍後の圧延直角方向の伸びが本発明例に比べて低くなっ
ており、{211}結晶面の集積度が高いと、プレス前
焼鈍後の圧延直角方向の伸びが低下し、プレス成形時に
割れが発生するものと推定される。
According to Tables 13 and 14, the material Nos. Satisfying the component conditions and manufacturing conditions of the present invention are shown. 85-N
o. No. 87 has a good etching property, and the degree of integration of {211} crystal planes is 16% or less and 0.
The 2% proof stress is also within the specified range of the present invention, and shows excellent press formability. As described above, excellent press formability is obtained by satisfying the component conditions and the production conditions of the present invention, and there is no unevenness in the obtained flat mask even when etching is performed after pre-press annealing, It can be seen that good etching properties can be obtained. In addition, as shown in the first to fifth embodiments described above, {211}
In the comparative example in which the degree of integration of crystal planes exceeds 16%, the elongation in the direction perpendicular to the rolling after annealing before pressing is lower than that of the example of the present invention. It is presumed that the elongation in the direction perpendicular to the rolling after annealing decreases and cracking occurs during press forming.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【0051】[0051]

【表5】 [Table 5]

【0052】[0052]

【表6】 [Table 6]

【0053】[0053]

【表7】 [Table 7]

【0054】[0054]

【表8】 [Table 8]

【0055】[0055]

【表9】 [Table 9]

【0056】[0056]

【表10】 [Table 10]

【0057】[0057]

【表11】 [Table 11]

【0058】[0058]

【表12】 [Table 12]

【0059】[0059]

【表13】 [Table 13]

【0060】[0060]

【表14】 [Table 14]

【0061】[0061]

【発明の効果】以上述べたように本発明のシャドウマス
ク用Fe−Ni系合金薄板およびFe−Ni−Co系合
金薄板は、プレス前焼鈍を720℃〜790℃という低
い温度で且つ40分以下の短い焼鈍時間で実施しても、
優れたプレス成形性、すなわち、成形時の形状凍結性に
優れ、金型とのなじみ良好で、しかも材料の割れが生じ
ない優れたプレス成形性を示す。さらに、本発明の合金
薄板ではプレス前焼鈍をエッチング前に施した場合でも
所要のエッチング性およびプレス成形性が得られ、この
ため予めプレス前焼鈍を実施しておけば、ブラウン管メ
ーカー側でのプレス前焼鈍を省略することができ、この
点からも合金板のユーザーにとって経済的メリットの大
きい発明である。また、本発明の製造方法によれば、こ
のような合金薄板を容易に製造することができる。
As described above, the Fe-Ni-based alloy thin plate and the Fe-Ni-Co-based alloy thin plate for a shadow mask according to the present invention are subjected to annealing before press at a low temperature of 720 ° C to 790 ° C for 40 minutes or less. Even if it is performed with a short annealing time of
It exhibits excellent press formability, that is, excellent shape fixability at the time of forming, good compatibility with a mold, and excellent press formability without material cracking. Further, in the alloy thin plate of the present invention, the required etching property and press formability can be obtained even when pre-press annealing is performed before etching. Therefore, if pre-press annealing is performed in advance, the press on the side of the cathode ray tube maker Since pre-annealing can be omitted, this is also an invention with great economic merit for users of alloy sheets. Further, according to the manufacturing method of the present invention, such an alloy thin plate can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】プレス前焼鈍後の0.2%耐力および{21
1}結晶面の集積度とプレス成形時の割れ発生との関係
を示すグラフ
FIG. 1 0.2% proof stress after annealing before press and {21
1} Graph showing the relationship between the degree of integration of crystal faces and the occurrence of cracks during press molding

【図2】プレス前焼鈍後の{211}結晶面の集積度お
よび圧延直角方向の伸びと熱延板焼鈍温度との関係を示
すグラフ
FIG. 2 is a graph showing the relationship between the degree of integration of the {211} crystal plane and the elongation in the direction perpendicular to the rolling, and the annealing temperature of the hot-rolled sheet after annealing before pressing.

【図3】仕上冷間圧延前の平均オーステナイト結晶粒径
および仕上冷間圧延率とプレス前焼鈍後の0.2%耐力
との関係を示すグラフ
FIG. 3 is a graph showing the relationship between the average austenite grain size before finish cold rolling and the finish cold rolling ratio, and the 0.2% proof stress after annealing before pressing.

【図4】プレス前焼鈍条件とプレス前焼鈍後の0.2%
耐力および{211}結晶面の集積度との関係を示すグ
ラフ
[Fig. 4] Pre-press annealing condition and 0.2% after pre-press annealing
Graph showing the relationship between proof stress and degree of integration of {211} crystal planes

【図5】プレス前焼鈍条件とプレス前焼鈍後の0.2%
耐力および{211}結晶面の集積度との関係を示すグ
ラフ
[Fig. 5] Pre-press annealing conditions and 0.2% after pre-press annealing
Graph showing the relationship between proof stress and degree of integration of {211} crystal planes

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−209254(JP,A) 特開 平6−158229(JP,A) 特開 平6−57384(JP,A) 特開 平5−65598(JP,A) 特開 昭62−185860(JP,A) 特開 平4−354853(JP,A) 特開 昭64−25944(JP,A) 特開 平4−341543(JP,A) 特開 平3−202446(JP,A) 特開 平4−358042(JP,A) 特開 昭64−52022(JP,A) 特開 昭62−149819(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 H01J 29/07 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-5-209254 (JP, A) JP-A-6-158229 (JP, A) JP-A-6-57384 (JP, A) JP-A-5- 65598 (JP, A) JP 62-185860 (JP, A) JP 4-354853 (JP, A) JP 64-25944 (JP, A) JP 4-341543 (JP, A) JP-A-3-202446 (JP, A) JP-A-4-358042 (JP, A) JP-A 64-52022 (JP, A) JP-A 62-149819 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00-38/60 H01J 29/07

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ni:34〜38wt%、Si:0.0
7wt%以下、B:0.0020wt%以下、O:0.
0020wt%以下、N:0.0020wt%未満、
r:0.001〜0.05wt%、Co:1wt%以
下、残部Fe及び不可避不純物からなり、プレス成形前
の軟化焼鈍を実施した後における0.2%耐力が28.
0kgf/mm以下、板表面での{211}結晶面の
集積度が16%以下であることを特徴とするプレス成形
性に優れたシャドウマスク用Fe−Ni系合金薄板。
1. Ni: 34 to 38 wt%, Si: 0.0
7 wt% or less, B: 0.0020 wt% or less, O: 0.
0020 wt% or less, N: less than 0.0020 wt%, C
r: 0.001 to 0.05 wt % , Co: 1 wt% or less, balance Fe and unavoidable impurities, and 0.2% proof stress after performing softening annealing before press molding is 28.
An Fe-Ni alloy thin plate for a shadow mask excellent in press formability, which has an accumulation degree of {211} crystal planes of 16% or less on the plate surface of 0 kgf / mm 2 or less.
【請求項2】 Ni:28〜38wt%、Si:0.0
7wt%以下、B:0.0020wt%以下、O:0.
0020wt%以下、N:0.0020wt%未満、
r:0.001〜0.05wt%、Co:1wt%超〜
7wt%、残部Fe及び不可避不純物からなり、プレス
成形前の軟化焼鈍を実施した後における0.2%耐力が
28.0kgf/mm以下、板表面での{211}結
晶面の集積度が16%以下であることを特徴とするプレ
ス成形性に優れたシャドウマスク用Fe−Ni−Co系
合金薄板。
2. Ni: 28 to 38 wt%, Si: 0.0
7 wt% or less, B: 0.0020 wt% or less, O: 0.
0020 wt% or less, N: less than 0.0020 wt%, C
r: 0.001 to 0.05 wt % , Co: more than 1 wt%
7 wt%, balance Fe and unavoidable impurities, 0.2% proof stress after softening annealing before press forming is 28.0 kgf / mm 2 or less, and the degree of accumulation of {211} crystal faces on the plate surface is 16 % Or less, a Fe-Ni-Co alloy thin plate for a shadow mask excellent in press formability.
【請求項3】 請求項1に記載の成分組成を有する熱延
板を、910〜990℃で熱延板焼鈍した後、冷間圧延
−再結晶焼鈍−冷間圧延の工程を経て最終の再結晶焼鈍
を実施し、次いで、前記最終の再結晶焼鈍後の平均オー
ステナイト結晶粒径D(μm)に応じて下式を満足する
圧延率R(%)で仕上冷間圧延を実施し、 16≦R≦75 6.38D−133.9≦R≦6.38D−51.0 次いで、プレス成形前の軟化焼鈍を焼鈍温度:790℃
以下、焼鈍時間:40分以下で且つ下式を満足する条件
で実施することにより、 T≧−53.8log t+806 但し T:焼鈍温度(℃) t:焼鈍時間(分) 0.2%耐力が28.0kgf/mm以下、板表面で
の{211}結晶面の集積度が16%以下のFe−Ni
系合金薄板を得ることを特徴とするプレス成形性に優れ
たシャドウマスク用Fe−Ni系合金薄板の製造方法。
3. A hot-rolled sheet having the component composition according to claim 1 is annealed at 910 to 990 ° C., and then subjected to the steps of cold rolling-recrystallization annealing-cold rolling for final re-rolling. Crystal annealing is carried out, and then finish cold rolling is carried out at a rolling ratio R (%) satisfying the following formula in accordance with the average austenite crystal grain size D (μm) after the final recrystallization annealing, and 16 ≦ R ≦ 75 6.38D-133.9 ≦ R ≦ 6.38D-51.0 Then, the softening annealing before press forming is performed at an annealing temperature of 790 ° C.
Hereinafter, by performing the annealing time: 40 minutes or less and under the conditions satisfying the following formula, T ≧ −53.8log t + 806 where T: annealing temperature (° C.) t: annealing time (min) 0.2% proof stress Fe-Ni of 28.0 kgf / mm 2 or less and the degree of integration of {211} crystal planes on the plate surface of 16% or less
A method for producing a Fe-Ni alloy thin plate for a shadow mask, which is excellent in press formability, characterized by obtaining a thin alloy plate.
【請求項4】 請求項1に記載の成分組成を有する熱延
板を、910〜990℃で熱延板焼鈍した後、冷間圧延
−再結晶焼鈍−冷間圧延の工程を経て最終の再結晶焼鈍
を実施し、次いで、前記最終の再結晶焼鈍後の平均オー
ステナイト結晶粒径D(μm)に応じて下式を満足する
圧延率R(%)で仕上冷間圧延を実施し、 21≦R≦70 6.38D−122.6≦R≦6.38D−65.2 次いで、プレス成形前の軟化焼鈍を焼鈍温度:790℃
以下、焼鈍時間:40分以下で且つ下式を満足する条件
で実施することにより、 T≧−53.8log t+806 但し T:焼鈍温度(℃) t:焼鈍時間(分) 0.2%耐力が27.5kgf/mm以下、板表面で
の{211}結晶面の集積度が16%以下のFe−Ni
系合金薄板を得ることを特徴とするプレス成形性に優れ
たシャドウマスク用Fe−Ni系合金薄板の製造方法。
4. A hot rolled sheet having the component composition according to claim 1 is annealed at 910 to 990 ° C., and then subjected to the steps of cold rolling-recrystallization annealing-cold rolling for final re-rolling. Crystal annealing is carried out, and then finish cold rolling is carried out at a rolling ratio R (%) satisfying the following formula according to the average austenite crystal grain size D (μm) after the final recrystallization annealing, and 21 ≦ R ≦ 70 6.38D-122.6 ≦ R ≦ 6.38D-65.2 Next, the softening annealing before press forming is performed at an annealing temperature of 790 ° C.
Hereinafter, by performing the annealing time: 40 minutes or less and under the conditions satisfying the following formula, T ≧ −53.8log t + 806 where T: annealing temperature (° C.) t: annealing time (min) 0.2% proof stress Fe-Ni with 27.5 kgf / mm 2 or less and a degree of integration of {211} crystal planes on the plate surface of 16% or less
A method for producing a Fe-Ni alloy thin plate for a shadow mask, which is excellent in press formability, characterized by obtaining a thin alloy plate.
【請求項5】 請求項1に記載の成分組成を有する熱延
板を、910〜990℃で熱延板焼鈍した後、冷間圧延
−再結晶焼鈍−冷間圧延の工程を経て最終の再結晶焼鈍
を実施し、次いで、前記最終の再結晶焼鈍後の平均オー
ステナイト結晶粒径D(μm)に応じて下式を満足する
圧延率R(%)で仕上冷間圧延を実施し、 26≦R≦63 6.38D−108.0≦R≦6.38D−79.3 次いで、プレス成形前の軟化焼鈍を焼鈍温度:790℃
以下、焼鈍時間:40分以下で且つ下式を満足する条件
で実施することにより、 T≧−53.8log t+806 但し T:焼鈍温度(℃) t:焼鈍時間(分) 0.2%耐力が27.0kgf/mm以下、板表面で
の{211}結晶面の集積度が16%以下のFe−Ni
系合金薄板を得ることを特徴とするプレス成形性に優れ
たシャドウマスク用Fe−Ni系合金薄板の製造方法。
5. A hot-rolled sheet having the composition of claim 1 is annealed at 910 to 990 ° C. and then subjected to the steps of cold rolling-recrystallization annealing-cold rolling for final re-rolling. Crystal annealing is carried out, and then finish cold rolling is carried out at a rolling ratio R (%) satisfying the following formula according to the average austenite crystal grain size D (μm) after the final recrystallization annealing, and 26 ≦ R ≦ 63 6.38D-108.0 ≦ R ≦ 6.38D-79.3 Next, the softening annealing before press forming is performed at an annealing temperature of 790 ° C.
Hereinafter, by performing the annealing time: 40 minutes or less and under the conditions satisfying the following formula, T ≧ −53.8log t + 806 where T: annealing temperature (° C.) t: annealing time (min) 0.2% proof stress Fe-Ni of 27.0 kgf / mm 2 or less, and the degree of integration of {211} crystal planes on the plate surface of 16% or less
A method for producing a Fe-Ni alloy thin plate for a shadow mask, which is excellent in press formability, characterized by obtaining a thin alloy plate.
【請求項6】 請求項2に記載の成分組成を有する熱延
板を、910〜990℃で熱延板焼鈍した後、冷間圧延
−再結晶焼鈍−冷間圧延の工程を経て最終の再結晶焼鈍
を実施し、次いで、前記最終の再結晶焼鈍後の平均オー
ステナイト結晶粒径D(μm)に応じて下式を満足する
圧延率R(%)で仕上冷間圧延を実施し、 16≦R≦75 6.38D−133.9≦R≦6.38D−51.0 次いで、プレス成形前の軟化焼鈍を焼鈍温度:790℃
以下、焼鈍時間:40分以下で且つ下式を満足する条件
で実施することにより、 T≧−53.8log t+806 但し T:焼鈍温度(℃) t:焼鈍時間(分) 0.2%耐力が28.0kgf/mm以下、板表面で
の{211}結晶面の集積度が16%以下のFe−Ni
−Co系合金薄板を得ることを特徴とするプレス成形性
に優れたシャドウマスク用Fe−Ni−Co系合金薄板
の製造方法。
6. A hot-rolled sheet having the composition of claim 2 is annealed at 910 to 990 ° C., and then subjected to the steps of cold rolling-recrystallization annealing-cold rolling for final re-rolling. Crystal annealing is carried out, and then finish cold rolling is carried out at a rolling ratio R (%) satisfying the following formula in accordance with the average austenite crystal grain size D (μm) after the final recrystallization annealing, and 16 ≦ R ≦ 75 6.38D-133.9 ≦ R ≦ 6.38D-51.0 Then, the softening annealing before press forming is performed at an annealing temperature of 790 ° C.
Hereinafter, by performing the annealing time: 40 minutes or less and under the conditions satisfying the following formula, T ≧ −53.8log t + 806 where T: annealing temperature (° C.) t: annealing time (min) 0.2% proof stress Fe-Ni of 28.0 kgf / mm 2 or less and the degree of integration of {211} crystal planes on the plate surface of 16% or less
A method for producing an Fe-Ni-Co alloy thin plate for a shadow mask, which is excellent in press formability, characterized by obtaining a -Co alloy thin plate.
【請求項7】 請求項2に記載の成分組成を有する熱延
板を、910〜990℃で熱延板焼鈍した後、冷間圧延
−再結晶焼鈍−冷間圧延の工程を経て最終の再結晶焼鈍
を実施し、次いで、前記最終の再結晶焼鈍後の平均オー
ステナイト結晶粒径D(μm)に応じて下式を満足する
圧延率R(%)で仕上冷間圧延を実施し、 21≦R≦70 6.38D−122.6≦R≦6.38D−65.2 次いで、プレス成形前の軟化焼鈍を焼鈍温度:790℃
以下、焼鈍時間:40分以下で且つ下式を満足する条件
で実施することにより、 T≧−53.8log t+806 但し T:焼鈍温度(℃) t:焼鈍時間(分) 0.2%耐力が27.5kgf/mm以下、板表面で
の{211}結晶面の集積度が16%以下のFe−Ni
−Co系合金薄板を得ることを特徴とするプレス成形性
に優れたシャドウマスク用Fe−Ni−Co系合金薄板
の製造方法。
7. A hot rolled sheet having a composition as set forth in claim 2, after annealing the hot rolled sheet at nine hundred ten to nine hundred and ninety ° C., cold rolling - recrystallization annealing - through the steps of the cold rolling final re Crystal annealing is carried out, and then finish cold rolling is carried out at a rolling ratio R (%) satisfying the following formula according to the average austenite crystal grain size D (μm) after the final recrystallization annealing, and 21 ≦ R ≦ 70 6.38D-122.6 ≦ R ≦ 6.38D-65.2 Next, the softening annealing before press forming is performed at an annealing temperature of 790 ° C.
Hereinafter, by performing the annealing time: 40 minutes or less and under the conditions satisfying the following formula, T ≧ −53.8log t + 806 where T: annealing temperature (° C.) t: annealing time (min) 0.2% proof stress Fe-Ni with 27.5 kgf / mm 2 or less and a degree of integration of {211} crystal planes on the plate surface of 16% or less
A method for producing an Fe-Ni-Co alloy thin plate for a shadow mask, which is excellent in press formability, characterized by obtaining a -Co alloy thin plate.
【請求項8】 請求項2に記載の成分組成を有する熱延
板を、910〜990℃で熱延板焼鈍した後、冷間圧延
−再結晶焼鈍−冷間圧延の工程を経て最終の再結晶焼鈍
を実施し、次いで、前記最終の再結晶焼鈍後の平均オー
ステナイト結晶粒径D(μm)に応じて下式を満足する
圧延率R(%)で仕上冷間圧延を実施し、 26≦R≦63 6.38D−108.0≦R≦6.38D−79.3 次いで、プレス成形前の軟化焼鈍を焼鈍温度:790℃
以下、焼鈍時間:40分以下で且つ下式を満足する条件
で実施することにより、 T≧−53.8log t+806 但し T:焼鈍温度(℃) t:焼鈍時間(分) 0.2%耐力が27.0kgf/mm以下、板表面で
の{211}結晶面の集積度が16%以下のFe−Ni
−Co系合金薄板を得ることを特徴とするプレス成形性
に優れたシャドウマスク用Fe−Ni−Co系合金薄板
の製造方法。
8. A hot rolled sheet having the component composition according to claim 2 is annealed at 910 to 990 ° C., and then subjected to the steps of cold rolling-recrystallization annealing-cold rolling for final re-rolling. Crystal annealing is carried out, and then finish cold rolling is carried out at a rolling ratio R (%) satisfying the following formula according to the average austenite crystal grain size D (μm) after the final recrystallization annealing, and 26 ≦ R ≦ 63 6.38D-108.0 ≦ R ≦ 6.38D-79.3 Next, the softening annealing before press forming is performed at an annealing temperature of 790 ° C.
Hereinafter, by performing the annealing time: 40 minutes or less and under the conditions satisfying the following formula, T ≧ −53.8log t + 806 where T: annealing temperature (° C.) t: annealing time (min) 0.2% proof stress Fe-Ni of 27.0 kgf / mm 2 or less, and the degree of integration of {211} crystal planes on the plate surface of 16% or less
A method for producing an Fe-Ni-Co alloy thin plate for a shadow mask, which is excellent in press formability, characterized by obtaining a -Co alloy thin plate.
JP15288593A 1992-01-24 1993-05-31 Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for shadow mask having excellent press formability and method for producing the same Expired - Fee Related JP3367147B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP15288593A JP3367147B2 (en) 1993-05-31 1993-05-31 Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for shadow mask having excellent press formability and method for producing the same
US08/160,399 US5620535A (en) 1992-01-24 1993-12-01 Alloy sheet for shadow mask
EP96101338A EP0739992B1 (en) 1993-05-31 1993-12-15 Alloy sheet for shadow mask and method for manufacturing thereof
DE1993612477 DE69312477T2 (en) 1993-05-31 1993-12-15 Alloy for shadow mask and process for its production
EP19930120232 EP0627494B1 (en) 1993-05-31 1993-12-15 Alloy sheet for shadow mask and method for manufacturing thereof
DE1993619153 DE69319153T2 (en) 1993-05-31 1993-12-15 Alloy for shadow mask and process for its production
CN94103317A CN1037984C (en) 1993-05-31 1994-03-18 Alloy sheet for shadow mask and method for manufacturing thereof
KR1019940005990A KR970003640B1 (en) 1993-05-31 1994-03-24 Alloy sheet for shadow mask and method for manufacturing
US08/429,252 US5637161A (en) 1992-01-24 1995-04-25 Method of producing an alloy sheet for a shadow mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15288593A JP3367147B2 (en) 1993-05-31 1993-05-31 Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for shadow mask having excellent press formability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06336654A JPH06336654A (en) 1994-12-06
JP3367147B2 true JP3367147B2 (en) 2003-01-14

Family

ID=15550253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15288593A Expired - Fee Related JP3367147B2 (en) 1992-01-24 1993-05-31 Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for shadow mask having excellent press formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3367147B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2728724B1 (en) * 1994-12-27 1997-01-24 Imphy Sa METHOD FOR MANUFACTURING AN IRON-NICKEL ALLOY SHADOW MASK

Also Published As

Publication number Publication date
JPH06336654A (en) 1994-12-06

Similar Documents

Publication Publication Date Title
KR950004936B1 (en) Fe-ni alloy sheet for shadow mask excellent in etching pierce ability preventing sticking during annealing and inhibiting production of gases
JPH05214492A (en) Fe-ni alloy excellent in sticking and seizure preventing property at the time of annealing and gas diffusing property and its production
EP0739992B1 (en) Alloy sheet for shadow mask and method for manufacturing thereof
JP2871414B2 (en) Alloy thin plate for shadow mask excellent in press formability and method for producing the same
JPH06316736A (en) Ni-fe magnetic alloy excellent in magnetic property and producibility and its production
JP3367147B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for shadow mask having excellent press formability and method for producing the same
US5637161A (en) Method of producing an alloy sheet for a shadow mask
JP2870399B2 (en) Fe-Ni-based alloy sheet and Fe-Ni-Co-based alloy sheet for color picture tube with excellent processability
JP3353321B2 (en) Method for producing Fe-Ni alloy sheet for shadow mask excellent in press formability and Fe-Ni alloy sheet for shadow mask excellent in press formability
JP3538850B2 (en) Fe-Ni alloy thin plate and Fe-Ni-Co alloy thin plate for shadow mask excellent in press formability and method for producing the same
JP3367153B2 (en) Fe-Ni-Cr-based alloy thin plate and Fe-Ni-Co-Cr-based alloy thin plate for shadow mask excellent in press formability, and method for producing the same
JPH0873935A (en) Production of alloy strip of iron-nickel alloy
JP3079897B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for color picture tube excellent in press formability and method for producing the same
JP3326897B2 (en) Fe-Ni alloy thin plate for shadow mask
JP3042273B2 (en) Method for producing Fe-Ni-based alloy thin plate for IC lead frame with excellent rust resistance
JP2970316B2 (en) Fe-Ni-based alloy sheet and Fe-Ni-Co-based alloy sheet having excellent blackening properties for shadow mask
JPH07188817A (en) Ni-fe magnetic alloy excellent in magnetic property and workability and its production
KR100519615B1 (en) Thin Alloy Sheet of Low Thermal Expansion and Shadow Mask Using the Same
JP3299487B2 (en) Method for producing Fe-Ni alloy thin plate
JP3363689B2 (en) Shadow mask material excellent in press formability and method of manufacturing shadow mask
JPH07116559B2 (en) Fe-Ni alloy thin plate for shadow mask and method for manufacturing the same
KR100419643B1 (en) Manufacturing method of cold rolled steel sheet with superior magnetic properties for mask-frame in braun-tube
JPH06158229A (en) Fe-ni alloy thin sheet and fe-ni-co alloy thin sheet for shadow mask excellent in press formability
JP2909299B2 (en) Material for high-definition shadow mask, mask material and manufacturing method thereof
JP3327902B2 (en) Fe-Ni shadow mask material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees